62 |
|
#include "UseTheForce/ForceField.hpp" |
63 |
|
#include "utils/PropertyMap.hpp" |
64 |
|
#include "utils/LocalIndexManager.hpp" |
65 |
+ |
#include "nonbonded/SwitchingFunction.hpp" |
66 |
|
|
66 |
– |
//another nonsense macro declaration |
67 |
– |
#define __OPENMD_C |
68 |
– |
#include "brains/fSimulation.h" |
69 |
– |
|
67 |
|
using namespace std; |
68 |
|
namespace OpenMD{ |
69 |
< |
|
73 |
< |
enum CutoffMethod { |
74 |
< |
HARD, |
75 |
< |
SWITCHING_FUNCTION, |
76 |
< |
SHIFTED_POTENTIAL, |
77 |
< |
SHIFTED_FORCE |
78 |
< |
}; |
79 |
< |
|
80 |
< |
//forward decalration |
69 |
> |
//forward declaration |
70 |
|
class SnapshotManager; |
71 |
|
class Molecule; |
72 |
|
class SelectionManager; |
295 |
|
/** Overloaded version of gyrational volume that also returns |
296 |
|
det(I) so dV/dr can be calculated*/ |
297 |
|
void getGyrationalVolume(RealType &vol, RealType &detI); |
298 |
< |
/** main driver function to interact with fortran during the |
310 |
< |
initialization and molecule migration */ |
298 |
> |
|
299 |
|
void update(); |
300 |
+ |
/** |
301 |
+ |
* Do final bookkeeping before Force managers need their data. |
302 |
+ |
*/ |
303 |
+ |
void prepareTopology(); |
304 |
|
|
305 |
+ |
|
306 |
|
/** Returns the local index manager */ |
307 |
|
LocalIndexManager* getLocalIndexManager() { |
308 |
|
return &localIndexMan_; |
338 |
|
return globalMolMembership_[id]; |
339 |
|
} |
340 |
|
|
341 |
< |
RealType getCutoffRadius() { |
342 |
< |
return cutoffRadius_; |
343 |
< |
} |
341 |
> |
/** |
342 |
> |
* returns a vector which maps the local atom index on this |
343 |
> |
* processor to the global atom index. With only one processor, |
344 |
> |
* these should be identical. |
345 |
> |
*/ |
346 |
> |
vector<int> getGlobalAtomIndices(); |
347 |
|
|
348 |
< |
RealType getSwitchingRadius() { |
349 |
< |
return switchingRadius_; |
350 |
< |
} |
348 |
> |
/** |
349 |
> |
* returns a vector which maps the local cutoff group index on |
350 |
> |
* this processor to the global cutoff group index. With only one |
351 |
> |
* processor, these should be identical. |
352 |
> |
*/ |
353 |
> |
vector<int> getGlobalGroupIndices(); |
354 |
|
|
356 |
– |
RealType getListRadius() { |
357 |
– |
return listRadius_; |
358 |
– |
} |
355 |
|
|
356 |
|
string getFinalConfigFileName() { |
357 |
|
return finalConfigFileName_; |
411 |
|
} |
412 |
|
|
413 |
|
|
414 |
< |
bool isFortranInitialized() { |
415 |
< |
return fortranInitialized_; |
414 |
> |
bool isTopologyDone() { |
415 |
> |
return topologyDone_; |
416 |
|
} |
417 |
|
|
418 |
|
bool getCalcBoxDipole() { |
472 |
|
*/ |
473 |
|
void removeInteractionPairs(Molecule* mol); |
474 |
|
|
479 |
– |
|
480 |
– |
/** Returns the unique atom types of local processor in an array */ |
481 |
– |
set<AtomType*> getUniqueAtomTypes(); |
482 |
– |
|
475 |
|
/** Returns the set of atom types present in this simulation */ |
476 |
|
set<AtomType*> getSimulatedAtomTypes(); |
477 |
|
|
481 |
|
|
482 |
|
private: |
483 |
|
|
484 |
< |
/** fill up the simtype struct*/ |
485 |
< |
void setupSimType(); |
484 |
> |
/** fill up the simtype struct and other simulation-related variables */ |
485 |
> |
void setupSimVariables(); |
486 |
|
|
495 |
– |
/** |
496 |
– |
* Setup Fortran Simulation |
497 |
– |
* @see #setupFortranParallel |
498 |
– |
*/ |
499 |
– |
void setupFortranSim(); |
487 |
|
|
501 |
– |
/** Figure out the cutoff radius */ |
502 |
– |
void setupCutoffRadius(); |
503 |
– |
/** Figure out the cutoff method */ |
504 |
– |
void setupCutoffMethod(); |
505 |
– |
/** Figure out the switching radius */ |
506 |
– |
void setupSwitchingRadius(); |
507 |
– |
/** Figure out the neighbor list skin thickness */ |
508 |
– |
void setupSkinThickness(); |
509 |
– |
/** Figure out which polynomial type to use for the switching function */ |
510 |
– |
void setupSwitchingFunction(); |
511 |
– |
|
488 |
|
/** Determine if we need to accumulate the simulation box dipole */ |
489 |
|
void setupAccumulateBoxDipole(); |
490 |
|
|
539 |
|
bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */ |
540 |
|
bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */ |
541 |
|
|
542 |
+ |
public: |
543 |
+ |
bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; } |
544 |
+ |
bool usesDirectionalAtoms() { return usesDirectionalAtoms_; } |
545 |
+ |
bool usesMetallicAtoms() { return usesMetallicAtoms_; } |
546 |
+ |
bool usesAtomicVirial() { return usesAtomicVirial_; } |
547 |
+ |
bool requiresPrepair() { return requiresPrepair_; } |
548 |
+ |
bool requiresSkipCorrection() { return requiresSkipCorrection_;} |
549 |
+ |
bool requiresSelfCorrection() { return requiresSelfCorrection_;} |
550 |
+ |
|
551 |
+ |
private: |
552 |
|
/// Data structures holding primary simulation objects |
553 |
|
map<int, Molecule*> molecules_; /**< map holding pointers to LOCAL molecules */ |
554 |
< |
simtype fInfo_; /**< A dual struct shared by C++ |
569 |
< |
and Fortran to pass |
570 |
< |
information about what types |
571 |
< |
of calculation are |
572 |
< |
required */ |
573 |
< |
|
554 |
> |
|
555 |
|
/// Stamps are templates for objects that are then used to create |
556 |
|
/// groups of objects. For example, a molecule stamp contains |
557 |
|
/// information on how to build that molecule (i.e. the topology, |
567 |
|
* the simulation. It should be nGlobalAtoms_ in size. |
568 |
|
*/ |
569 |
|
vector<int> globalGroupMembership_; |
570 |
+ |
public: |
571 |
+ |
vector<int> getGlobalGroupMembership() { return globalGroupMembership_; } |
572 |
+ |
private: |
573 |
|
|
574 |
|
/** |
575 |
|
* A vector that maps between the global index of an atom and the |
577 |
|
* by SimCreator once and only once, since it is never changed |
578 |
|
* during the simulation. It shoudl be nGlobalAtoms_ in size. |
579 |
|
*/ |
580 |
< |
vector<int> globalMolMembership_; |
580 |
> |
vector<int> globalMolMembership_; |
581 |
> |
|
582 |
> |
/** |
583 |
> |
* A vector that maps between the local index of an atom and the |
584 |
> |
* index of the AtomType. |
585 |
> |
*/ |
586 |
> |
vector<int> identArray_; |
587 |
> |
public: |
588 |
> |
vector<int> getIdentArray() { return identArray_; } |
589 |
> |
private: |
590 |
> |
|
591 |
> |
/** |
592 |
> |
* A vector which contains the fractional contribution of an |
593 |
> |
* atom's mass to the total mass of the cutoffGroup that atom |
594 |
> |
* belongs to. In the case of single atom cutoff groups, the mass |
595 |
> |
* factor for that atom is 1. For massless atoms, the factor is |
596 |
> |
* also 1. |
597 |
> |
*/ |
598 |
> |
vector<RealType> massFactors_; |
599 |
> |
public: |
600 |
> |
vector<RealType> getMassFactors() { return massFactors_; } |
601 |
> |
private: |
602 |
> |
|
603 |
|
|
604 |
|
/// lists to handle atoms needing special treatment in the non-bonded interactions |
605 |
|
PairList excludedInteractions_; /**< atoms excluded from interacting with each other */ |
629 |
|
string statFileName_; |
630 |
|
string restFileName_; |
631 |
|
|
626 |
– |
RealType cutoffRadius_; /**< cutoff radius for non-bonded interactions */ |
627 |
– |
RealType switchingRadius_; /**< inner radius of switching function */ |
628 |
– |
RealType listRadius_; /**< Verlet neighbor list radius */ |
629 |
– |
RealType skinThickness_; /**< Verlet neighbor list skin thickness */ |
630 |
– |
CutoffMethod cutoffMethod_; /**< Cutoff Method for most non-bonded interactions */ |
632 |
|
|
633 |
< |
bool fortranInitialized_; /** flag to indicate whether the fortran side is initialized */ |
633 |
> |
bool topologyDone_; /** flag to indicate whether the topology has |
634 |
> |
been scanned and all the relevant |
635 |
> |
bookkeeping has been done*/ |
636 |
|
|
637 |
|
bool calcBoxDipole_; /**< flag to indicate whether or not we calculate |
638 |
|
the simulation box dipole moment */ |
673 |
|
} |
674 |
|
|
675 |
|
private: |
673 |
– |
|
674 |
– |
void setupFortranParallel(); |
676 |
|
|
677 |
|
/** |
678 |
|
* The size of molToProcMap_ is equal to total number of molecules |