ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.hpp (file contents), Revision 143 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
branches/development/src/brains/SimInfo.hpp (file contents), Revision 1570 by gezelter, Thu May 26 21:56:04 2011 UTC

# Line 1 | Line 1
1 < #ifndef __SIMINFO_H__
2 < #define __SIMINFO_H__
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimInfo.hpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <map>
50 < #include <string>
49 > #ifndef BRAINS_SIMMODEL_HPP
50 > #define BRAINS_SIMMODEL_HPP
51 >
52 > #include <iostream>
53 > #include <set>
54 > #include <utility>
55   #include <vector>
56  
57 < #include "primitives/Atom.hpp"
58 < #include "primitives/RigidBody.hpp"
59 < #include "primitives/Molecule.hpp"
60 < #include "brains/Exclude.hpp"
61 < #include "brains/SkipList.hpp"
62 < #include "primitives/AbstractClasses.hpp"
63 < #include "types/MakeStamps.hpp"
64 < #include "brains/SimState.hpp"
65 < #include "restraints/Restraints.hpp"
57 > #include "brains/PairList.hpp"
58 > #include "io/Globals.hpp"
59 > #include "math/Vector3.hpp"
60 > #include "math/SquareMatrix3.hpp"
61 > #include "types/MoleculeStamp.hpp"
62 > #include "UseTheForce/ForceField.hpp"
63 > #include "utils/PropertyMap.hpp"
64 > #include "utils/LocalIndexManager.hpp"
65 > #include "nonbonded/SwitchingFunction.hpp"
66  
67 < #define __C
68 < #include "brains/fSimulation.h"
69 < #include "utils/GenericData.hpp"
67 > using namespace std;
68 > namespace OpenMD{
69 >  //forward declaration
70 >  class SnapshotManager;
71 >  class Molecule;
72 >  class SelectionManager;
73 >  class StuntDouble;
74  
75 +  /**
76 +   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
77 +   *
78 +   * @brief One of the heavy-weight classes of OpenMD, SimInfo
79 +   * maintains objects and variables relating to the current
80 +   * simulation.  This includes the master list of Molecules.  The
81 +   * Molecule class maintains all of the concrete objects (Atoms,
82 +   * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
83 +   * Constraints). In both the single and parallel versions, Atoms and
84 +   * RigidBodies have both global and local indices.
85 +   */
86 +  class SimInfo {
87 +  public:
88 +    typedef map<int, Molecule*>::iterator  MoleculeIterator;
89 +    
90 +    /**
91 +     * Constructor of SimInfo
92 +     *
93 +     * @param molStampPairs MoleculeStamp Array. The first element of
94 +     * the pair is molecule stamp, the second element is the total
95 +     * number of molecules with the same molecule stamp in the system
96 +     *
97 +     * @param ff pointer of a concrete ForceField instance
98 +     *
99 +     * @param simParams
100 +     */
101 +    SimInfo(ForceField* ff, Globals* simParams);
102 +    virtual ~SimInfo();
103  
104 < //#include "Minimizer.hpp"
105 < //#include "minimizers/OOPSEMinimizer.hpp"
104 >    /**
105 >     * Adds a molecule
106 >     *
107 >     * @return return true if adding successfully, return false if the
108 >     * molecule is already in SimInfo
109 >     *
110 >     * @param mol molecule to be added
111 >     */
112 >    bool addMolecule(Molecule* mol);
113  
114 +    /**
115 +     * Removes a molecule from SimInfo
116 +     *
117 +     * @return true if removing successfully, return false if molecule
118 +     * is not in this SimInfo
119 +     */
120 +    bool removeMolecule(Molecule* mol);
121  
122 < double roundMe( double x );
123 < class OOPSEMinimizer;
124 < class SimInfo{
122 >    /** Returns the total number of molecules in the system. */
123 >    int getNGlobalMolecules() {
124 >      return nGlobalMols_;
125 >    }
126  
127 < public:
127 >    /** Returns the total number of atoms in the system. */
128 >    int getNGlobalAtoms() {
129 >      return nGlobalAtoms_;
130 >    }
131  
132 <  SimInfo();
133 <  ~SimInfo();
132 >    /** Returns the total number of cutoff groups in the system. */
133 >    int getNGlobalCutoffGroups() {
134 >      return nGlobalCutoffGroups_;
135 >    }
136  
137 <  int n_atoms; // the number of atoms
138 <  Atom **atoms; // the array of atom objects
137 >    /**
138 >     * Returns the total number of integrable objects (total number of
139 >     * rigid bodies plus the total number of atoms which do not belong
140 >     * to the rigid bodies) in the system
141 >     */
142 >    int getNGlobalIntegrableObjects() {
143 >      return nGlobalIntegrableObjects_;
144 >    }
145  
146 <  vector<RigidBody*> rigidBodies;  // A vector of rigid bodies
147 <  vector<StuntDouble*> integrableObjects;
148 <  
149 <  double tau[9]; // the stress tensor
146 >    /**
147 >     * Returns the total number of integrable objects (total number of
148 >     * rigid bodies plus the total number of atoms which do not belong
149 >     * to the rigid bodies) in the system
150 >     */
151 >    int getNGlobalRigidBodies() {
152 >      return nGlobalRigidBodies_;
153 >    }
154  
155 <  int n_bonds;    // number of bends
156 <  int n_bends;    // number of bends
157 <  int n_torsions; // number of torsions
158 <  int n_oriented; // number of of atoms with orientation
159 <  int ndf;        // number of actual degrees of freedom
160 <  int ndfRaw;     // number of settable degrees of freedom
161 <  int ndfTrans;   // number of translational degrees of freedom
162 <  int nZconstraints; // the number of zConstraints
155 >    int getNGlobalConstraints();
156 >    /**
157 >     * Returns the number of local molecules.
158 >     * @return the number of local molecules
159 >     */
160 >    int getNMolecules() {
161 >      return molecules_.size();
162 >    }
163  
164 <  int setTemp;   // boolean to set the temperature at each sampleTime
165 <  int resetIntegrator; // boolean to reset the integrator
164 >    /** Returns the number of local atoms */
165 >    unsigned int getNAtoms() {
166 >      return nAtoms_;
167 >    }
168  
169 <  int n_dipoles; // number of dipoles
169 >    /** Returns the number of local bonds */        
170 >    unsigned int getNBonds(){
171 >      return nBonds_;
172 >    }
173  
174 <  int n_exclude;
175 <  Exclude* excludes;  // the exclude list for ignoring pairs in fortran
176 <  int nGlobalExcludes;
177 <  int* globalExcludes; // same as above, but these guys participate in
62 <                       // no long range forces.
174 >    /** Returns the number of local bends */        
175 >    unsigned int getNBends() {
176 >      return nBends_;
177 >    }
178  
179 <  int* identArray;     // array of unique identifiers for the atoms
180 <  int* molMembershipArray;  // map of atom numbers onto molecule numbers
179 >    /** Returns the number of local torsions */        
180 >    unsigned int getNTorsions() {
181 >      return nTorsions_;
182 >    }
183  
184 <  int n_constraints; // the number of constraints on the system
184 >    /** Returns the number of local torsions */        
185 >    unsigned int getNInversions() {
186 >      return nInversions_;
187 >    }
188 >    /** Returns the number of local rigid bodies */        
189 >    unsigned int getNRigidBodies() {
190 >      return nRigidBodies_;
191 >    }
192  
193 <  int n_SRI;   // the number of short range interactions
193 >    /** Returns the number of local integrable objects */
194 >    unsigned int getNIntegrableObjects() {
195 >      return nIntegrableObjects_;
196 >    }
197  
198 <  double lrPot; // the potential energy from the long range calculations.
198 >    /** Returns the number of local cutoff groups */
199 >    unsigned int getNCutoffGroups() {
200 >      return nCutoffGroups_;
201 >    }
202  
203 <  double Hmat[3][3];  // the periodic boundry conditions. The Hmat is the
204 <                      // column vectors of the x, y, and z box vectors.
205 <                      //   h1  h2  h3
206 <                      // [ Xx  Yx  Zx ]
207 <                      // [ Xy  Yy  Zy ]
208 <                      // [ Xz  Yz  Zz ]
209 <                      //  
210 <  double HmatInv[3][3];
203 >    /** Returns the total number of constraints in this SimInfo */
204 >    unsigned int getNConstraints() {
205 >      return nConstraints_;
206 >    }
207 >        
208 >    /**
209 >     * Returns the first molecule in this SimInfo and intialize the iterator.
210 >     * @return the first molecule, return NULL if there is not molecule in this SimInfo
211 >     * @param i the iterator of molecule array (user shouldn't change it)
212 >     */
213 >    Molecule* beginMolecule(MoleculeIterator& i);
214  
215 <  double boxL[3]; // The Lengths of the 3 column vectors of Hmat
216 <  double boxVol;
217 <  int orthoRhombic;
218 <  
215 >    /**
216 >     * Returns the next avaliable Molecule based on the iterator.
217 >     * @return the next avaliable molecule, return NULL if reaching the end of the array
218 >     * @param i the iterator of molecule array
219 >     */
220 >    Molecule* nextMolecule(MoleculeIterator& i);
221  
222 <  double dielectric;      // the dielectric of the medium for reaction field
222 >    /** Returns the number of degrees of freedom */
223 >    int getNdf() {
224 >      return ndf_ - getFdf();
225 >    }
226  
227 <  
228 <  int usePBC; // whether we use periodic boundry conditions.
229 <  int useDirectionalAtoms;
230 <  int useLennardJones;
93 <  int useElectrostatics;
94 <  int useCharges;
95 <  int useDipoles;
96 <  int useSticky;
97 <  int useGayBerne;
98 <  int useEAM;
99 <  int useShapes;
100 <  int useFLARB;
101 <  int useReactionField;
102 <  bool haveCutoffGroups;
103 <  bool useInitXSstate;
104 <  double orthoTolerance;
227 >    /** Returns the number of raw degrees of freedom */
228 >    int getNdfRaw() {
229 >      return ndfRaw_;
230 >    }
231  
232 <  double dt, run_time;           // the time step and total time
233 <  double sampleTime, statusTime; // the position and energy dump frequencies
234 <  double target_temp;            // the target temperature of the system
235 <  double thermalTime;            // the temp kick interval
110 <  double currentTime;            // Used primarily for correlation Functions
111 <  double resetTime;              // Use to reset the integrator periodically
112 <  short int have_target_temp;
232 >    /** Returns the number of translational degrees of freedom */
233 >    int getNdfTrans() {
234 >      return ndfTrans_;
235 >    }
236  
237 <  int n_mol;           // n_molecules;
238 <  Molecule* molecules; // the array of molecules
239 <  
240 <  int nComponents;           // the number of components in the system
118 <  int* componentsNmol;       // the number of molecules of each component
119 <  MoleculeStamp** compStamps;// the stamps matching the components
120 <  LinkedMolStamp* headStamp; // list of stamps used in the simulation
121 <  
122 <  
123 <  char ensemble[100]; // the enesemble of the simulation (NVT, NVE, etc. )
124 <  char mixingRule[100]; // the mixing rules for Lennard jones/van der walls
125 <  BaseIntegrator *the_integrator; // the integrator of the simulation
237 >    /** sets the current number of frozen degrees of freedom */
238 >    void setFdf(int fdf) {
239 >      fdf_local = fdf;
240 >    }
241  
242 <  OOPSEMinimizer* the_minimizer; // the energy minimizer
243 <  Restraints* restraint;
244 <  bool has_minimizer;
242 >    int getFdf();
243 >    
244 >    //getNZconstraint and setNZconstraint ruin the coherence of
245 >    //SimInfo class, need refactoring
246 >        
247 >    /** Returns the total number of z-constraint molecules in the system */
248 >    int getNZconstraint() {
249 >      return nZconstraint_;
250 >    }
251  
252 <  string finalName;  // the name of the eor file to be written
253 <  string sampleName; // the name of the dump file to be written
254 <  string statusName; // the name of the stat file to be written
252 >    /**
253 >     * Sets the number of z-constraint molecules in the system.
254 >     */
255 >    void setNZconstraint(int nZconstraint) {
256 >      nZconstraint_ = nZconstraint;
257 >    }
258 >        
259 >    /** Returns the snapshot manager. */
260 >    SnapshotManager* getSnapshotManager() {
261 >      return sman_;
262 >    }
263  
264 <  int seed;                    //seed for random number generator
264 >    /** Sets the snapshot manager. */
265 >    void setSnapshotManager(SnapshotManager* sman);
266 >        
267 >    /** Returns the force field */
268 >    ForceField* getForceField() {
269 >      return forceField_;
270 >    }
271  
272 <  int useSolidThermInt;  // is solid-state thermodynamic integration being used
273 <  int useLiquidThermInt; // is liquid thermodynamic integration being used
274 <  double thermIntLambda; // lambda for TI
140 <  double thermIntK;      // power of lambda for TI
141 <  double vRaw;           // unperturbed potential for TI
142 <  double vHarm;          // harmonic potential for TI
143 <  int i;                 // just an int
272 >    Globals* getSimParams() {
273 >      return simParams_;
274 >    }
275  
276 <  vector<double> mfact;
277 <  vector<int> FglobalGroupMembership;
147 <  int ngroup;
148 <  int* globalGroupMembership;
276 >    /** Returns the velocity of center of mass of the whole system.*/
277 >    Vector3d getComVel();
278  
279 <  // refreshes the sim if things get changed (load balanceing, volume
280 <  // adjustment, etc.)
279 >    /** Returns the center of the mass of the whole system.*/
280 >    Vector3d getCom();
281 >    /** Returns the center of the mass and Center of Mass velocity of
282 >        the whole system.*/
283 >    void getComAll(Vector3d& com,Vector3d& comVel);
284  
285 <  void refreshSim( void );
286 <  
285 >    /** Returns intertia tensor for the entire system and system
286 >        Angular Momentum.*/
287 >    void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
288 >    
289 >    /** Returns system angular momentum */
290 >    Vector3d getAngularMomentum();
291  
292 <  // sets the internal function pointer to fortran.
292 >    /** Returns volume of system as estimated by an ellipsoid defined
293 >        by the radii of gyration*/
294 >    void getGyrationalVolume(RealType &vol);
295 >    /** Overloaded version of gyrational volume that also returns
296 >        det(I) so dV/dr can be calculated*/
297 >    void getGyrationalVolume(RealType &vol, RealType &detI);
298  
299 +    void update();
300 +    /**
301 +     * Do final bookkeeping before Force managers need their data.
302 +     */
303 +    void prepareTopology();
304  
159  int getNDF();
160  int getNDFraw();
161  int getNDFtranslational();
162  int getTotIntegrableObjects();
163  void setBox( double newBox[3] );
164  void setBoxM( double newBox[3][3] );
165  void getBoxM( double theBox[3][3] );
166  void scaleBox( double scale );
167  
168  void setDefaultRcut( double theRcut );
169  void setDefaultRcut( double theRcut, double theRsw );
170  void checkCutOffs( void );
305  
306 <  double getRcut( void )  { return rCut; }
307 <  double getRlist( void ) { return rList; }
308 <  double getRsw( void )   { return rSw; }
309 <  double getMaxCutoff( void ) { return maxCutoff; }
176 <  
177 <  void setTime( double theTime ) { currentTime = theTime; }
178 <  void incrTime( double the_dt ) { currentTime += the_dt; }
179 <  void decrTime( double the_dt ) { currentTime -= the_dt; }
180 <  double getTime( void ) { return currentTime; }
306 >    /** Returns the local index manager */
307 >    LocalIndexManager* getLocalIndexManager() {
308 >      return &localIndexMan_;
309 >    }
310  
311 <  void wrapVector( double thePos[3] );
311 >    int getMoleculeStampId(int globalIndex) {
312 >      //assert(globalIndex < molStampIds_.size())
313 >      return molStampIds_[globalIndex];
314 >    }
315  
316 <  SimState* getConfiguration( void ) { return myConfiguration; }
317 <  
318 <  void addProperty(GenericData* prop);
319 <  GenericData* getProperty(const string& propName);
188 <  //vector<GenericData*>& getProperties()  {return properties;}    
316 >    /** Returns the molecule stamp */
317 >    MoleculeStamp* getMoleculeStamp(int id) {
318 >      return moleculeStamps_[id];
319 >    }
320  
321 <  int getSeed(void) {  return seed; }
322 <  void setSeed(int theSeed) {  seed = theSeed;}
321 >    /** Return the total number of the molecule stamps */
322 >    int getNMoleculeStamp() {
323 >      return moleculeStamps_.size();
324 >    }
325 >    /**
326 >     * Finds a molecule with a specified global index
327 >     * @return a pointer point to found molecule
328 >     * @param index
329 >     */
330 >    Molecule* getMoleculeByGlobalIndex(int index) {
331 >      MoleculeIterator i;
332 >      i = molecules_.find(index);
333  
334 < private:
334 >      return i != molecules_.end() ? i->second : NULL;
335 >    }
336  
337 <  SimState* myConfiguration;
337 >    int getGlobalMolMembership(int id){
338 >      return globalMolMembership_[id];
339 >    }
340  
341 <  int boxIsInit, haveRcut, haveRsw;
341 >    /**
342 >     * returns a vector which maps the local atom index on this
343 >     * processor to the global atom index.  With only one processor,
344 >     * these should be identical.
345 >     */
346 >    vector<int> getGlobalAtomIndices();
347  
348 <  double rList, rCut; // variables for the neighborlist
349 <  double rSw;         // the switching radius
348 >    /**
349 >     * returns a vector which maps the local cutoff group index on
350 >     * this processor to the global cutoff group index.  With only one
351 >     * processor, these should be identical.
352 >     */
353 >    vector<int> getGlobalGroupIndices();
354  
355 <  double maxCutoff;
355 >        
356 >    string getFinalConfigFileName() {
357 >      return finalConfigFileName_;
358 >    }
359  
360 <  double distXY;
361 <  double distYZ;
362 <  double distZX;
207 <  
208 <  void calcHmatInv( void );
209 <  void calcBoxL();
210 <  double calcMaxCutOff();
360 >    void setFinalConfigFileName(const string& fileName) {
361 >      finalConfigFileName_ = fileName;
362 >    }
363  
364 <  
365 <  //Addtional Properties of SimInfo
366 <  map<string, GenericData*> properties;
367 <  void getFortranGroupArrays(SimInfo* info,
368 <                             vector<int>& FglobalGroupMembership,
369 <                             vector<double>& mfact);
364 >    string getRawMetaData() {
365 >      return rawMetaData_;
366 >    }
367 >    void setRawMetaData(const string& rawMetaData) {
368 >      rawMetaData_ = rawMetaData;
369 >    }
370 >        
371 >    string getDumpFileName() {
372 >      return dumpFileName_;
373 >    }
374 >        
375 >    void setDumpFileName(const string& fileName) {
376 >      dumpFileName_ = fileName;
377 >    }
378  
379 +    string getStatFileName() {
380 +      return statFileName_;
381 +    }
382 +        
383 +    void setStatFileName(const string& fileName) {
384 +      statFileName_ = fileName;
385 +    }
386 +        
387 +    string getRestFileName() {
388 +      return restFileName_;
389 +    }
390 +        
391 +    void setRestFileName(const string& fileName) {
392 +      restFileName_ = fileName;
393 +    }
394  
395 < };
395 >    /**
396 >     * Sets GlobalGroupMembership
397 >     * @see #SimCreator::setGlobalIndex
398 >     */  
399 >    void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
400 >      assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
401 >      globalGroupMembership_ = globalGroupMembership;
402 >    }
403  
404 +    /**
405 +     * Sets GlobalMolMembership
406 +     * @see #SimCreator::setGlobalIndex
407 +     */        
408 +    void setGlobalMolMembership(const vector<int>& globalMolMembership) {
409 +      assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
410 +      globalMolMembership_ = globalMolMembership;
411 +    }
412  
413 < #endif
413 >
414 >    bool isTopologyDone() {
415 >      return topologyDone_;
416 >    }
417 >        
418 >    bool getCalcBoxDipole() {
419 >      return calcBoxDipole_;
420 >    }
421 >
422 >    bool getUseAtomicVirial() {
423 >      return useAtomicVirial_;
424 >    }
425 >
426 >    /**
427 >     * Adds property into property map
428 >     * @param genData GenericData to be added into PropertyMap
429 >     */
430 >    void addProperty(GenericData* genData);
431 >
432 >    /**
433 >     * Removes property from PropertyMap by name
434 >     * @param propName the name of property to be removed
435 >     */
436 >    void removeProperty(const string& propName);
437 >
438 >    /**
439 >     * clear all of the properties
440 >     */
441 >    void clearProperties();
442 >
443 >    /**
444 >     * Returns all names of properties
445 >     * @return all names of properties
446 >     */
447 >    vector<string> getPropertyNames();
448 >
449 >    /**
450 >     * Returns all of the properties in PropertyMap
451 >     * @return all of the properties in PropertyMap
452 >     */      
453 >    vector<GenericData*> getProperties();
454 >
455 >    /**
456 >     * Returns property
457 >     * @param propName name of property
458 >     * @return a pointer point to property with propName. If no property named propName
459 >     * exists, return NULL
460 >     */      
461 >    GenericData* getPropertyByName(const string& propName);
462 >
463 >    /**
464 >     * add all special interaction pairs (including excluded
465 >     * interactions) in a molecule into the appropriate lists.
466 >     */
467 >    void addInteractionPairs(Molecule* mol);
468 >
469 >    /**
470 >     * remove all special interaction pairs which belong to a molecule
471 >     * from the appropriate lists.
472 >     */
473 >    void removeInteractionPairs(Molecule* mol);
474 >
475 >    /** Returns the set of atom types present in this simulation */
476 >    set<AtomType*> getSimulatedAtomTypes();
477 >        
478 >    friend ostream& operator <<(ostream& o, SimInfo& info);
479 >
480 >    void getCutoff(RealType& rcut, RealType& rsw);
481 >        
482 >  private:
483 >
484 >    /** fill up the simtype struct and other simulation-related variables */
485 >    void setupSimVariables();
486 >
487 >
488 >    /** Determine if we need to accumulate the simulation box dipole */
489 >    void setupAccumulateBoxDipole();
490 >
491 >    /** Calculates the number of degress of freedom in the whole system */
492 >    void calcNdf();
493 >    void calcNdfRaw();
494 >    void calcNdfTrans();
495 >
496 >    /**
497 >     * Adds molecule stamp and the total number of the molecule with
498 >     * same molecule stamp in the whole system.
499 >     */
500 >    void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
501 >
502 >    // Other classes holdingn important information
503 >    ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
504 >    Globals* simParams_;     /**< provides access to simulation parameters set by user */
505 >
506 >    ///  Counts of local objects
507 >    int nAtoms_;              /**< number of atoms in local processor */
508 >    int nBonds_;              /**< number of bonds in local processor */
509 >    int nBends_;              /**< number of bends in local processor */
510 >    int nTorsions_;           /**< number of torsions in local processor */
511 >    int nInversions_;         /**< number of inversions in local processor */
512 >    int nRigidBodies_;        /**< number of rigid bodies in local processor */
513 >    int nIntegrableObjects_;  /**< number of integrable objects in local processor */
514 >    int nCutoffGroups_;       /**< number of cutoff groups in local processor */
515 >    int nConstraints_;        /**< number of constraints in local processors */
516 >        
517 >    /// Counts of global objects
518 >    int nGlobalMols_;              /**< number of molecules in the system (GLOBAL) */
519 >    int nGlobalAtoms_;             /**< number of atoms in the system (GLOBAL) */
520 >    int nGlobalCutoffGroups_;      /**< number of cutoff groups in this system (GLOBAL) */
521 >    int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
522 >    int nGlobalRigidBodies_;       /**< number of rigid bodies in this system (GLOBAL) */
523 >      
524 >    /// Degress of freedom
525 >    int ndf_;          /**< number of degress of freedom (excludes constraints) (LOCAL) */
526 >    int fdf_local;     /**< number of frozen degrees of freedom (LOCAL) */
527 >    int fdf_;          /**< number of frozen degrees of freedom (GLOBAL) */
528 >    int ndfRaw_;       /**< number of degress of freedom (includes constraints),  (LOCAL) */
529 >    int ndfTrans_;     /**< number of translation degress of freedom, (LOCAL) */
530 >    int nZconstraint_; /**< number of  z-constraint molecules (GLOBAL) */
531 >
532 >    /// logicals
533 >    bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
534 >    bool usesDirectionalAtoms_;   /**< are there atoms with position AND orientation? */
535 >    bool usesMetallicAtoms_;      /**< are there transition metal atoms? */
536 >    bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
537 >    bool usesAtomicVirial_;       /**< are we computing atomic virials? */
538 >    bool requiresPrepair_;        /**< does this simulation require a pre-pair loop? */
539 >    bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
540 >    bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
541 >
542 >  public:
543 >    bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
544 >    bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
545 >    bool usesMetallicAtoms() { return usesMetallicAtoms_; }
546 >    bool usesAtomicVirial() { return usesAtomicVirial_; }
547 >    bool requiresPrepair() { return requiresPrepair_; }
548 >    bool requiresSkipCorrection() { return requiresSkipCorrection_;}
549 >    bool requiresSelfCorrection() { return requiresSelfCorrection_;}
550 >
551 >  private:
552 >    /// Data structures holding primary simulation objects
553 >    map<int, Molecule*>  molecules_;  /**< map holding pointers to LOCAL molecules */
554 >
555 >    /// Stamps are templates for objects that are then used to create
556 >    /// groups of objects.  For example, a molecule stamp contains
557 >    /// information on how to build that molecule (i.e. the topology,
558 >    /// the atoms, the bonds, etc.)  Once the system is built, the
559 >    /// stamps are no longer useful.
560 >    vector<int> molStampIds_;                /**< stamp id for molecules in the system */
561 >    vector<MoleculeStamp*> moleculeStamps_;  /**< molecule stamps array */        
562 >
563 >    /**
564 >     * A vector that maps between the global index of an atom, and the
565 >     * global index of cutoff group the atom belong to.  It is filled
566 >     * by SimCreator once and only once, since it never changed during
567 >     * the simulation.  It should be nGlobalAtoms_ in size.
568 >     */
569 >    vector<int> globalGroupMembership_;
570 >  public:
571 >    vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
572 >  private:
573 >
574 >    /**
575 >     * A vector that maps between the global index of an atom and the
576 >     * global index of the molecule the atom belongs to.  It is filled
577 >     * by SimCreator once and only once, since it is never changed
578 >     * during the simulation. It shoudl be nGlobalAtoms_ in size.
579 >     */
580 >    vector<int> globalMolMembership_;
581 >
582 >    /**
583 >     * A vector that maps between the local index of an atom and the
584 >     * index of the AtomType.
585 >     */
586 >    vector<int> identArray_;
587 >  public:
588 >    vector<int> getIdentArray() { return identArray_; }
589 >  private:
590 >    
591 >    /**
592 >     * A vector which contains the fractional contribution of an
593 >     * atom's mass to the total mass of the cutoffGroup that atom
594 >     * belongs to.  In the case of single atom cutoff groups, the mass
595 >     * factor for that atom is 1.  For massless atoms, the factor is
596 >     * also 1.
597 >     */
598 >    vector<RealType> massFactors_;
599 >  public:
600 >    vector<RealType> getMassFactors() { return massFactors_; }
601 >
602 >    PairList getExcludedInteractions() { return excludedInteractions_; }
603 >    PairList getOneTwoInteractions() { return oneTwoInteractions_; }
604 >    PairList getOneThreeInteractions() { return oneThreeInteractions_; }
605 >    PairList getOneFourInteractions() { return oneFourInteractions_; }
606 >
607 >  private:
608 >
609 >              
610 >    /// lists to handle atoms needing special treatment in the non-bonded interactions
611 >    PairList excludedInteractions_;  /**< atoms excluded from interacting with each other */
612 >    PairList oneTwoInteractions_;    /**< atoms that are directly Bonded */
613 >    PairList oneThreeInteractions_;  /**< atoms sharing a Bend */    
614 >    PairList oneFourInteractions_;   /**< atoms sharing a Torsion */
615 >
616 >    PropertyMap properties_;       /**< Generic Properties can be added */
617 >    SnapshotManager* sman_;        /**< SnapshotManager (handles particle positions, etc.) */
618 >
619 >    /**
620 >     * The reason to have a local index manager is that when molecule
621 >     * is migrating to other processors, the atoms and the
622 >     * rigid-bodies will release their local indices to
623 >     * LocalIndexManager. Combining the information of molecule
624 >     * migrating to current processor, Migrator class can query the
625 >     * LocalIndexManager to make a efficient data moving plan.
626 >     */        
627 >    LocalIndexManager localIndexMan_;
628 >
629 >    // unparsed MetaData block for storing in Dump and EOR files:
630 >    string rawMetaData_;
631 >
632 >    // file names
633 >    string finalConfigFileName_;
634 >    string dumpFileName_;
635 >    string statFileName_;
636 >    string restFileName_;
637 >        
638 >
639 >    bool topologyDone_;  /** flag to indicate whether the topology has
640 >                             been scanned and all the relevant
641 >                             bookkeeping has been done*/
642 >    
643 >    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
644 >                            the simulation box dipole moment */
645 >    
646 >    bool useAtomicVirial_; /**< flag to indicate whether or not we use
647 >                              Atomic Virials to calculate the pressure */
648 >    
649 >  public:
650 >    /**
651 >     * return an integral objects by its global index. In MPI
652 >     * version, if the StuntDouble with specified global index does
653 >      * not belong to local processor, a NULL will be return.
654 >      */
655 >    StuntDouble* getIOIndexToIntegrableObject(int index);
656 >    void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
657 >    
658 >  private:
659 >    vector<StuntDouble*> IOIndexToIntegrableObject;
660 >    
661 >  public:
662 >                
663 >    /**
664 >     * Finds the processor where a molecule resides
665 >     * @return the id of the processor which contains the molecule
666 >     * @param globalIndex global Index of the molecule
667 >     */
668 >    int getMolToProc(int globalIndex) {
669 >      //assert(globalIndex < molToProcMap_.size());
670 >      return molToProcMap_[globalIndex];
671 >    }
672 >    
673 >    /**
674 >     * Set MolToProcMap array
675 >     * @see #SimCreator::divideMolecules
676 >     */
677 >    void setMolToProcMap(const vector<int>& molToProcMap) {
678 >      molToProcMap_ = molToProcMap;
679 >    }
680 >        
681 >  private:
682 >        
683 >    /**
684 >     * The size of molToProcMap_ is equal to total number of molecules
685 >     * in the system.  It maps a molecule to the processor on which it
686 >     * resides. it is filled by SimCreator once and only once.
687 >     */        
688 >    vector<int> molToProcMap_;
689 >
690 >  };
691 >
692 > } //namespace OpenMD
693 > #endif //BRAINS_SIMMODEL_HPP
694 >

Comparing:
trunk/src/brains/SimInfo.hpp (property svn:keywords), Revision 143 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
branches/development/src/brains/SimInfo.hpp (property svn:keywords), Revision 1570 by gezelter, Thu May 26 21:56:04 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines