ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
Revision: 1277
Committed: Mon Jul 14 12:35:58 2008 UTC (16 years, 9 months ago) by gezelter
Original Path: trunk/src/brains/SimInfo.hpp
File size: 21015 byte(s)
Log Message:
Changes for implementing Amber force field:  Added Inversions and
worked on BaseAtomTypes so that they'd function with the fortran side.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.hpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #ifndef BRAINS_SIMMODEL_HPP
50 #define BRAINS_SIMMODEL_HPP
51
52 #include <iostream>
53 #include <set>
54 #include <utility>
55 #include <vector>
56
57 #include "brains/Exclude.hpp"
58 #include "io/Globals.hpp"
59 #include "math/Vector3.hpp"
60 #include "math/SquareMatrix3.hpp"
61 #include "types/MoleculeStamp.hpp"
62 #include "UseTheForce/ForceField.hpp"
63 #include "utils/PropertyMap.hpp"
64 #include "utils/LocalIndexManager.hpp"
65
66 //another nonsense macro declaration
67 #define __C
68 #include "brains/fSimulation.h"
69
70 namespace oopse{
71
72 //forward decalration
73 class SnapshotManager;
74 class Molecule;
75 class SelectionManager;
76 class StuntDouble;
77 /**
78 * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
79 * @brief One of the heavy weight classes of OOPSE, SimInfo maintains a list of molecules.
80 * The Molecule class maintains all of the concrete objects
81 * (atoms, bond, bend, torsions, inversions, rigid bodies, cutoff groups,
82 * constraints). In both the single and parallel versions, atoms and
83 * rigid bodies have both global and local indices. The local index is
84 * not relevant to molecules or cutoff groups.
85 */
86 class SimInfo {
87 public:
88 typedef std::map<int, Molecule*>::iterator MoleculeIterator;
89
90 /**
91 * Constructor of SimInfo
92 * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
93 * second element is the total number of molecules with the same molecule stamp in the system
94 * @param ff pointer of a concrete ForceField instance
95 * @param simParams
96 * @note
97 */
98 SimInfo(ForceField* ff, Globals* simParams);
99 virtual ~SimInfo();
100
101 /**
102 * Adds a molecule
103 * @return return true if adding successfully, return false if the molecule is already in SimInfo
104 * @param mol molecule to be added
105 */
106 bool addMolecule(Molecule* mol);
107
108 /**
109 * Removes a molecule from SimInfo
110 * @return true if removing successfully, return false if molecule is not in this SimInfo
111 */
112 bool removeMolecule(Molecule* mol);
113
114 /** Returns the total number of molecules in the system. */
115 int getNGlobalMolecules() {
116 return nGlobalMols_;
117 }
118
119 /** Returns the total number of atoms in the system. */
120 int getNGlobalAtoms() {
121 return nGlobalAtoms_;
122 }
123
124 /** Returns the total number of cutoff groups in the system. */
125 int getNGlobalCutoffGroups() {
126 return nGlobalCutoffGroups_;
127 }
128
129 /**
130 * Returns the total number of integrable objects (total number of rigid bodies plus the total number
131 * of atoms which do not belong to the rigid bodies) in the system
132 */
133 int getNGlobalIntegrableObjects() {
134 return nGlobalIntegrableObjects_;
135 }
136
137 /**
138 * Returns the total number of integrable objects (total number of rigid bodies plus the total number
139 * of atoms which do not belong to the rigid bodies) in the system
140 */
141 int getNGlobalRigidBodies() {
142 return nGlobalRigidBodies_;
143 }
144
145 int getNGlobalConstraints();
146 /**
147 * Returns the number of local molecules.
148 * @return the number of local molecules
149 */
150 int getNMolecules() {
151 return molecules_.size();
152 }
153
154 /** Returns the number of local atoms */
155 unsigned int getNAtoms() {
156 return nAtoms_;
157 }
158
159 /** Returns the number of local bonds */
160 unsigned int getNBonds(){
161 return nBonds_;
162 }
163
164 /** Returns the number of local bends */
165 unsigned int getNBends() {
166 return nBends_;
167 }
168
169 /** Returns the number of local torsions */
170 unsigned int getNTorsions() {
171 return nTorsions_;
172 }
173
174 /** Returns the number of local torsions */
175 unsigned int getNInversions() {
176 return nInversions_;
177 }
178 /** Returns the number of local rigid bodies */
179 unsigned int getNRigidBodies() {
180 return nRigidBodies_;
181 }
182
183 /** Returns the number of local integrable objects */
184 unsigned int getNIntegrableObjects() {
185 return nIntegrableObjects_;
186 }
187
188 /** Returns the number of local cutoff groups */
189 unsigned int getNCutoffGroups() {
190 return nCutoffGroups_;
191 }
192
193 /** Returns the total number of constraints in this SimInfo */
194 unsigned int getNConstraints() {
195 return nConstraints_;
196 }
197
198 /**
199 * Returns the first molecule in this SimInfo and intialize the iterator.
200 * @return the first molecule, return NULL if there is not molecule in this SimInfo
201 * @param i the iterator of molecule array (user shouldn't change it)
202 */
203 Molecule* beginMolecule(MoleculeIterator& i);
204
205 /**
206 * Returns the next avaliable Molecule based on the iterator.
207 * @return the next avaliable molecule, return NULL if reaching the end of the array
208 * @param i the iterator of molecule array
209 */
210 Molecule* nextMolecule(MoleculeIterator& i);
211
212 /** Returns the number of degrees of freedom */
213 int getNdf() {
214 return ndf_ - getFdf();
215 }
216
217 /** Returns the number of raw degrees of freedom */
218 int getNdfRaw() {
219 return ndfRaw_;
220 }
221
222 /** Returns the number of translational degrees of freedom */
223 int getNdfTrans() {
224 return ndfTrans_;
225 }
226
227 /** sets the current number of frozen degrees of freedom */
228 void setFdf(int fdf) {
229 fdf_local = fdf;
230 }
231
232 int getFdf();
233
234 //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
235
236 /** Returns the total number of z-constraint molecules in the system */
237 int getNZconstraint() {
238 return nZconstraint_;
239 }
240
241 /**
242 * Sets the number of z-constraint molecules in the system.
243 */
244 void setNZconstraint(int nZconstraint) {
245 nZconstraint_ = nZconstraint;
246 }
247
248 /** Returns the snapshot manager. */
249 SnapshotManager* getSnapshotManager() {
250 return sman_;
251 }
252
253 /** Sets the snapshot manager. */
254 void setSnapshotManager(SnapshotManager* sman);
255
256 /** Returns the force field */
257 ForceField* getForceField() {
258 return forceField_;
259 }
260
261 Globals* getSimParams() {
262 return simParams_;
263 }
264
265 /** Returns the velocity of center of mass of the whole system.*/
266 Vector3d getComVel();
267
268 /** Returns the center of the mass of the whole system.*/
269 Vector3d getCom();
270 /** Returns the center of the mass and Center of Mass velocity of the whole system.*/
271 void getComAll(Vector3d& com,Vector3d& comVel);
272
273 /** Returns intertia tensor for the entire system and system Angular Momentum.*/
274 void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
275
276 /** Returns system angular momentum */
277 Vector3d getAngularMomentum();
278
279 /** Returns volume of system as estimated by an ellipsoid defined by the radii of gyration*/
280 void getGyrationalVolume(RealType &vol);
281 /** Overloaded version of gyrational volume that also returns det(I) so dV/dr can be calculated*/
282 void getGyrationalVolume(RealType &vol, RealType &detI);
283 /** main driver function to interact with fortran during the initialization and molecule migration */
284 void update();
285
286 /** Returns the local index manager */
287 LocalIndexManager* getLocalIndexManager() {
288 return &localIndexMan_;
289 }
290
291 int getMoleculeStampId(int globalIndex) {
292 //assert(globalIndex < molStampIds_.size())
293 return molStampIds_[globalIndex];
294 }
295
296 /** Returns the molecule stamp */
297 MoleculeStamp* getMoleculeStamp(int id) {
298 return moleculeStamps_[id];
299 }
300
301 /** Return the total number of the molecule stamps */
302 int getNMoleculeStamp() {
303 return moleculeStamps_.size();
304 }
305 /**
306 * Finds a molecule with a specified global index
307 * @return a pointer point to found molecule
308 * @param index
309 */
310 Molecule* getMoleculeByGlobalIndex(int index) {
311 MoleculeIterator i;
312 i = molecules_.find(index);
313
314 return i != molecules_.end() ? i->second : NULL;
315 }
316
317 RealType getRcut() {
318 return rcut_;
319 }
320
321 RealType getRsw() {
322 return rsw_;
323 }
324
325 RealType getList() {
326 return rlist_;
327 }
328
329 std::string getFinalConfigFileName() {
330 return finalConfigFileName_;
331 }
332
333 void setFinalConfigFileName(const std::string& fileName) {
334 finalConfigFileName_ = fileName;
335 }
336
337 std::string getRawMetaData() {
338 return rawMetaData_;
339 }
340 void setRawMetaData(const std::string& rawMetaData) {
341 rawMetaData_ = rawMetaData;
342 }
343
344 std::string getDumpFileName() {
345 return dumpFileName_;
346 }
347
348 void setDumpFileName(const std::string& fileName) {
349 dumpFileName_ = fileName;
350 }
351
352 std::string getStatFileName() {
353 return statFileName_;
354 }
355
356 void setStatFileName(const std::string& fileName) {
357 statFileName_ = fileName;
358 }
359
360 std::string getRestFileName() {
361 return restFileName_;
362 }
363
364 void setRestFileName(const std::string& fileName) {
365 restFileName_ = fileName;
366 }
367
368 /**
369 * Sets GlobalGroupMembership
370 * @see #SimCreator::setGlobalIndex
371 */
372 void setGlobalGroupMembership(const std::vector<int>& globalGroupMembership) {
373 assert(globalGroupMembership.size() == nGlobalAtoms_);
374 globalGroupMembership_ = globalGroupMembership;
375 }
376
377 /**
378 * Sets GlobalMolMembership
379 * @see #SimCreator::setGlobalIndex
380 */
381 void setGlobalMolMembership(const std::vector<int>& globalMolMembership) {
382 assert(globalMolMembership.size() == nGlobalAtoms_);
383 globalMolMembership_ = globalMolMembership;
384 }
385
386
387 bool isFortranInitialized() {
388 return fortranInitialized_;
389 }
390
391 bool getCalcBoxDipole() {
392 return calcBoxDipole_;
393 }
394
395 bool getUseAtomicVirial() {
396 return useAtomicVirial_;
397 }
398
399 //below functions are just forward functions
400 //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
401 //the other hand, has-a relation need composing.
402 /**
403 * Adds property into property map
404 * @param genData GenericData to be added into PropertyMap
405 */
406 void addProperty(GenericData* genData);
407
408 /**
409 * Removes property from PropertyMap by name
410 * @param propName the name of property to be removed
411 */
412 void removeProperty(const std::string& propName);
413
414 /**
415 * clear all of the properties
416 */
417 void clearProperties();
418
419 /**
420 * Returns all names of properties
421 * @return all names of properties
422 */
423 std::vector<std::string> getPropertyNames();
424
425 /**
426 * Returns all of the properties in PropertyMap
427 * @return all of the properties in PropertyMap
428 */
429 std::vector<GenericData*> getProperties();
430
431 /**
432 * Returns property
433 * @param propName name of property
434 * @return a pointer point to property with propName. If no property named propName
435 * exists, return NULL
436 */
437 GenericData* getPropertyByName(const std::string& propName);
438
439 /**
440 * add all exclude pairs of a molecule into exclude list.
441 */
442 void addExcludePairs(Molecule* mol);
443
444 /**
445 * remove all exclude pairs which belong to a molecule from exclude list
446 */
447
448 void removeExcludePairs(Molecule* mol);
449
450
451 /** Returns the unique atom types of local processor in an array */
452 std::set<AtomType*> getUniqueAtomTypes();
453
454 friend std::ostream& operator <<(std::ostream& o, SimInfo& info);
455
456 void getCutoff(RealType& rcut, RealType& rsw);
457
458 private:
459
460 /** fill up the simtype struct*/
461 void setupSimType();
462
463 /**
464 * Setup Fortran Simulation
465 * @see #setupFortranParallel
466 */
467 void setupFortranSim();
468
469 /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
470 void setupCutoff();
471
472 /** Figure out which coulombic correction method to use and pass to fortran */
473 void setupElectrostaticSummationMethod( int isError );
474
475 /** Figure out which polynomial type to use for the switching function */
476 void setupSwitchingFunction();
477
478 /** Determine if we need to accumulate the simulation box dipole */
479 void setupAccumulateBoxDipole();
480
481 /** Calculates the number of degress of freedom in the whole system */
482 void calcNdf();
483 void calcNdfRaw();
484 void calcNdfTrans();
485
486 ForceField* forceField_;
487 Globals* simParams_;
488
489 std::map<int, Molecule*> molecules_; /**< Molecule array */
490
491 /**
492 * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
493 * system.
494 */
495 void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
496
497 //degress of freedom
498 int ndf_; /**< number of degress of freedom (excludes constraints), ndf_ is local */
499 int fdf_local; /**< number of frozen degrees of freedom */
500 int fdf_; /**< number of frozen degrees of freedom */
501 int ndfRaw_; /**< number of degress of freedom (includes constraints), ndfRaw_ is local */
502 int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
503 int nZconstraint_; /** number of z-constraint molecules, nZconstraint_ is global */
504
505 //number of global objects
506 int nGlobalMols_; /**< number of molecules in the system */
507 int nGlobalAtoms_; /**< number of atoms in the system */
508 int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
509 int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
510 int nGlobalRigidBodies_; /**< number of rigid bodies in this system */
511 /**
512 * the size of globalGroupMembership_ is nGlobalAtoms. Its index is global index of an atom, and the
513 * corresponding content is the global index of cutoff group this atom belong to.
514 * It is filled by SimCreator once and only once, since it never changed during the simulation.
515 */
516 std::vector<int> globalGroupMembership_;
517
518 /**
519 * the size of globalGroupMembership_ is nGlobalAtoms. Its index is global index of an atom, and the
520 * corresponding content is the global index of molecule this atom belong to.
521 * It is filled by SimCreator once and only once, since it is never changed during the simulation.
522 */
523 std::vector<int> globalMolMembership_;
524
525
526 std::vector<int> molStampIds_; /**< stamp id array of all molecules in the system */
527 std::vector<MoleculeStamp*> moleculeStamps_; /**< molecule stamps array */
528
529 //number of local objects
530 int nAtoms_; /**< number of atoms in local processor */
531 int nBonds_; /**< number of bonds in local processor */
532 int nBends_; /**< number of bends in local processor */
533 int nTorsions_; /**< number of torsions in local processor */
534 int nInversions_; /**< number of inversions in local processor */
535 int nRigidBodies_; /**< number of rigid bodies in local processor */
536 int nIntegrableObjects_; /**< number of integrable objects in local processor */
537 int nCutoffGroups_; /**< number of cutoff groups in local processor */
538 int nConstraints_; /**< number of constraints in local processors */
539
540 simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
541 Exclude exclude_;
542 PropertyMap properties_; /**< Generic Property */
543 SnapshotManager* sman_; /**< SnapshotManager */
544
545 /**
546 * The reason to have a local index manager is that when molecule is migrating to other processors,
547 * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
548 * information of molecule migrating to current processor, Migrator class can query the LocalIndexManager
549 * to make a efficient data moving plan.
550 */
551 LocalIndexManager localIndexMan_;
552
553 // unparsed MetaData block for storing in Dump and EOR files:
554 std::string rawMetaData_;
555
556 //file names
557 std::string finalConfigFileName_;
558 std::string dumpFileName_;
559 std::string statFileName_;
560 std::string restFileName_;
561
562 RealType rcut_; /**< cutoff radius*/
563 RealType rsw_; /**< radius of switching function*/
564 RealType rlist_; /**< neighbor list radius */
565
566 bool ljsp_; /**< use shifted potential for LJ*/
567 bool ljsf_; /**< use shifted force for LJ*/
568
569 bool fortranInitialized_; /**< flag indicate whether fortran side
570 is initialized */
571
572 bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
573 the simulation box dipole moment */
574
575 bool useAtomicVirial_; /**< flag to indicate whether or not we use
576 Atomic Virials to calculate the pressure */
577
578 public:
579 /**
580 * return an integral objects by its global index. In MPI version, if the StuntDouble with specified
581 * global index does not belong to local processor, a NULL will be return.
582 */
583 StuntDouble* getIOIndexToIntegrableObject(int index);
584 void setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v);
585 private:
586 std::vector<StuntDouble*> IOIndexToIntegrableObject;
587 //public:
588 //void setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v);
589 /**
590 * return a StuntDouble by its global index. In MPI version, if the StuntDouble with specified
591 * global index does not belong to local processor, a NULL will be return.
592 */
593 //StuntDouble* getStuntDoubleFromGlobalIndex(int index);
594 //private:
595 //std::vector<StuntDouble*> sdByGlobalIndex_;
596
597 //in Parallel version, we need MolToProc
598 public:
599
600 /**
601 * Finds the processor where a molecule resides
602 * @return the id of the processor which contains the molecule
603 * @param globalIndex global Index of the molecule
604 */
605 int getMolToProc(int globalIndex) {
606 //assert(globalIndex < molToProcMap_.size());
607 return molToProcMap_[globalIndex];
608 }
609
610 /**
611 * Set MolToProcMap array
612 * @see #SimCreator::divideMolecules
613 */
614 void setMolToProcMap(const std::vector<int>& molToProcMap) {
615 molToProcMap_ = molToProcMap;
616 }
617
618 private:
619
620 void setupFortranParallel();
621
622 /**
623 * The size of molToProcMap_ is equal to total number of molecules
624 * in the system. It maps a molecule to the processor on which it
625 * resides. it is filled by SimCreator once and only once.
626 */
627 std::vector<int> molToProcMap_;
628
629
630 };
631
632 } //namespace oopse
633 #endif //BRAINS_SIMMODEL_HPP
634