ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.hpp (file contents), Revision 384 by tim, Tue Mar 1 19:11:47 2005 UTC vs.
branches/development/src/brains/SimInfo.hpp (file contents), Revision 1553 by gezelter, Fri Apr 29 17:25:12 2011 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 54 | Line 54
54   #include <utility>
55   #include <vector>
56  
57 < #include "brains/Exclude.hpp"
57 > #include "brains/PairList.hpp"
58   #include "io/Globals.hpp"
59   #include "math/Vector3.hpp"
60 + #include "math/SquareMatrix3.hpp"
61   #include "types/MoleculeStamp.hpp"
62   #include "UseTheForce/ForceField.hpp"
63   #include "utils/PropertyMap.hpp"
64   #include "utils/LocalIndexManager.hpp"
65 + #include "nonbonded/SwitchingFunction.hpp"
66  
67 < //another nonsense macro declaration
68 < #define __C
69 < #include "brains/fSimulation.h"
67 > using namespace std;
68 > namespace OpenMD{
69 >  //forward declaration
70 >  class SnapshotManager;
71 >  class Molecule;
72 >  class SelectionManager;
73 >  class StuntDouble;
74  
75 < namespace oopse{
75 >  /**
76 >   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
77 >   *
78 >   * @brief One of the heavy-weight classes of OpenMD, SimInfo
79 >   * maintains objects and variables relating to the current
80 >   * simulation.  This includes the master list of Molecules.  The
81 >   * Molecule class maintains all of the concrete objects (Atoms,
82 >   * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
83 >   * Constraints). In both the single and parallel versions, Atoms and
84 >   * RigidBodies have both global and local indices.
85 >   */
86 >  class SimInfo {
87 >  public:
88 >    typedef map<int, Molecule*>::iterator  MoleculeIterator;
89 >    
90 >    /**
91 >     * Constructor of SimInfo
92 >     *
93 >     * @param molStampPairs MoleculeStamp Array. The first element of
94 >     * the pair is molecule stamp, the second element is the total
95 >     * number of molecules with the same molecule stamp in the system
96 >     *
97 >     * @param ff pointer of a concrete ForceField instance
98 >     *
99 >     * @param simParams
100 >     */
101 >    SimInfo(ForceField* ff, Globals* simParams);
102 >    virtual ~SimInfo();
103  
104 < //forward decalration
105 < class SnapshotManager;
106 < class Molecule;
107 < class SelectionManager;
108 < /**
109 < * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
110 < * @brief As one of the heavy weight class of OOPSE, SimInfo
111 < * One of the major changes in SimInfo class is the data struct. It only maintains a list of molecules.
112 < * And the Molecule class will maintain all of the concrete objects (atoms, bond, bend, torsions, rigid bodies,
80 < * cutoff groups, constrains).
81 < * Another major change is the index. No matter single version or parallel version,  atoms and
82 < * rigid bodies have both global index and local index. Local index is not important to molecule as well as
83 < * cutoff group.
84 < */
85 < class SimInfo {
86 <    public:
87 <        typedef std::map<int, Molecule*>::iterator  MoleculeIterator;
104 >    /**
105 >     * Adds a molecule
106 >     *
107 >     * @return return true if adding successfully, return false if the
108 >     * molecule is already in SimInfo
109 >     *
110 >     * @param mol molecule to be added
111 >     */
112 >    bool addMolecule(Molecule* mol);
113  
114 <        /**
115 <         * Constructor of SimInfo
116 <         * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
117 <         * second element is the total number of molecules with the same molecule stamp in the system
118 <         * @param ff pointer of a concrete ForceField instance
119 <         * @param simParams
120 <         * @note
96 <         */
97 <        SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, ForceField* ff, Globals* simParams);
98 <        virtual ~SimInfo();
114 >    /**
115 >     * Removes a molecule from SimInfo
116 >     *
117 >     * @return true if removing successfully, return false if molecule
118 >     * is not in this SimInfo
119 >     */
120 >    bool removeMolecule(Molecule* mol);
121  
122 <        /**
123 <         * Adds a molecule
124 <         * @return return true if adding successfully, return false if the molecule is already in SimInfo
125 <         * @param mol molecule to be added
104 <         */
105 <        bool addMolecule(Molecule* mol);
122 >    /** Returns the total number of molecules in the system. */
123 >    int getNGlobalMolecules() {
124 >      return nGlobalMols_;
125 >    }
126  
127 <        /**
128 <         * Removes a molecule from SimInfo
129 <         * @return true if removing successfully, return false if molecule is not in this SimInfo
130 <         */
111 <        bool removeMolecule(Molecule* mol);
127 >    /** Returns the total number of atoms in the system. */
128 >    int getNGlobalAtoms() {
129 >      return nGlobalAtoms_;
130 >    }
131  
132 <        /** Returns the total number of molecules in the system. */
133 <        int getNGlobalMolecules() {
134 <            return nGlobalMols_;
135 <        }
132 >    /** Returns the total number of cutoff groups in the system. */
133 >    int getNGlobalCutoffGroups() {
134 >      return nGlobalCutoffGroups_;
135 >    }
136  
137 <        /** Returns the total number of atoms in the system. */
138 <        int getNGlobalAtoms() {
139 <            return nGlobalAtoms_;
140 <        }
137 >    /**
138 >     * Returns the total number of integrable objects (total number of
139 >     * rigid bodies plus the total number of atoms which do not belong
140 >     * to the rigid bodies) in the system
141 >     */
142 >    int getNGlobalIntegrableObjects() {
143 >      return nGlobalIntegrableObjects_;
144 >    }
145  
146 <        /** Returns the total number of cutoff groups in the system. */
147 <        int getNGlobalCutoffGroups() {
148 <            return nGlobalCutoffGroups_;
149 <        }
146 >    /**
147 >     * Returns the total number of integrable objects (total number of
148 >     * rigid bodies plus the total number of atoms which do not belong
149 >     * to the rigid bodies) in the system
150 >     */
151 >    int getNGlobalRigidBodies() {
152 >      return nGlobalRigidBodies_;
153 >    }
154  
155 <        /**
156 <         * Returns the total number of integrable objects (total number of rigid bodies plus the total number
157 <         * of atoms which do not belong to the rigid bodies) in the system
158 <         */
159 <        int getNGlobalIntegrableObjects() {
160 <            return nGlobalIntegrableObjects_;
161 <        }
155 >    int getNGlobalConstraints();
156 >    /**
157 >     * Returns the number of local molecules.
158 >     * @return the number of local molecules
159 >     */
160 >    int getNMolecules() {
161 >      return molecules_.size();
162 >    }
163  
164 <        /**
165 <         * Returns the total number of integrable objects (total number of rigid bodies plus the total number
166 <         * of atoms which do not belong to the rigid bodies) in the system
167 <         */
140 <        int getNGlobalRigidBodies() {
141 <            return nGlobalRigidBodies_;
142 <        }
164 >    /** Returns the number of local atoms */
165 >    unsigned int getNAtoms() {
166 >      return nAtoms_;
167 >    }
168  
169 <        int getNGlobalConstraints();
170 <        /**
171 <         * Returns the number of local molecules.
172 <         * @return the number of local molecules
148 <         */
149 <        int getNMolecules() {
150 <            return molecules_.size();
151 <        }
169 >    /** Returns the number of local bonds */        
170 >    unsigned int getNBonds(){
171 >      return nBonds_;
172 >    }
173  
174 <        /** Returns the number of local atoms */
175 <        unsigned int getNAtoms() {
176 <            return nAtoms_;
177 <        }
174 >    /** Returns the number of local bends */        
175 >    unsigned int getNBends() {
176 >      return nBends_;
177 >    }
178  
179 <        /** Returns the number of local bonds */        
180 <        unsigned int getNBonds(){
181 <            return nBonds_;
182 <        }
179 >    /** Returns the number of local torsions */        
180 >    unsigned int getNTorsions() {
181 >      return nTorsions_;
182 >    }
183  
184 <        /** Returns the number of local bends */        
185 <        unsigned int getNBends() {
186 <            return nBends_;
187 <        }
184 >    /** Returns the number of local torsions */        
185 >    unsigned int getNInversions() {
186 >      return nInversions_;
187 >    }
188 >    /** Returns the number of local rigid bodies */        
189 >    unsigned int getNRigidBodies() {
190 >      return nRigidBodies_;
191 >    }
192  
193 <        /** Returns the number of local torsions */        
194 <        unsigned int getNTorsions() {
195 <            return nTorsions_;
196 <        }
193 >    /** Returns the number of local integrable objects */
194 >    unsigned int getNIntegrableObjects() {
195 >      return nIntegrableObjects_;
196 >    }
197  
198 <        /** Returns the number of local rigid bodies */        
199 <        unsigned int getNRigidBodies() {
200 <            return nRigidBodies_;
201 <        }
198 >    /** Returns the number of local cutoff groups */
199 >    unsigned int getNCutoffGroups() {
200 >      return nCutoffGroups_;
201 >    }
202  
203 <        /** Returns the number of local integrable objects */
204 <        unsigned int getNIntegrableObjects() {
205 <            return nIntegrableObjects_;
206 <        }
182 <
183 <        /** Returns the number of local cutoff groups */
184 <        unsigned int getNCutoffGroups() {
185 <            return nCutoffGroups_;
186 <        }
187 <
188 <        /** Returns the total number of constraints in this SimInfo */
189 <        unsigned int getNConstraints() {
190 <            return nConstraints_;
191 <        }
203 >    /** Returns the total number of constraints in this SimInfo */
204 >    unsigned int getNConstraints() {
205 >      return nConstraints_;
206 >    }
207          
208 <        /**
209 <         * Returns the first molecule in this SimInfo and intialize the iterator.
210 <         * @return the first molecule, return NULL if there is not molecule in this SimInfo
211 <         * @param i the iterator of molecule array (user shouldn't change it)
212 <         */
213 <        Molecule* beginMolecule(MoleculeIterator& i);
208 >    /**
209 >     * Returns the first molecule in this SimInfo and intialize the iterator.
210 >     * @return the first molecule, return NULL if there is not molecule in this SimInfo
211 >     * @param i the iterator of molecule array (user shouldn't change it)
212 >     */
213 >    Molecule* beginMolecule(MoleculeIterator& i);
214  
215 <        /**
216 <          * Returns the next avaliable Molecule based on the iterator.
217 <          * @return the next avaliable molecule, return NULL if reaching the end of the array
218 <          * @param i the iterator of molecule array
219 <          */
220 <        Molecule* nextMolecule(MoleculeIterator& i);
215 >    /**
216 >     * Returns the next avaliable Molecule based on the iterator.
217 >     * @return the next avaliable molecule, return NULL if reaching the end of the array
218 >     * @param i the iterator of molecule array
219 >     */
220 >    Molecule* nextMolecule(MoleculeIterator& i);
221  
222 <        /** Returns the number of degrees of freedom */
223 <        int getNdf() {
224 <            return ndf_;
225 <        }
222 >    /** Returns the number of degrees of freedom */
223 >    int getNdf() {
224 >      return ndf_ - getFdf();
225 >    }
226  
227 <        /** Returns the number of raw degrees of freedom */
228 <        int getNdfRaw() {
229 <            return ndfRaw_;
230 <        }
227 >    /** Returns the number of raw degrees of freedom */
228 >    int getNdfRaw() {
229 >      return ndfRaw_;
230 >    }
231  
232 <        /** Returns the number of translational degrees of freedom */
233 <        int getNdfTrans() {
234 <            return ndfTrans_;
235 <        }
232 >    /** Returns the number of translational degrees of freedom */
233 >    int getNdfTrans() {
234 >      return ndfTrans_;
235 >    }
236  
237 <        //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
237 >    /** sets the current number of frozen degrees of freedom */
238 >    void setFdf(int fdf) {
239 >      fdf_local = fdf;
240 >    }
241 >
242 >    int getFdf();
243 >    
244 >    //getNZconstraint and setNZconstraint ruin the coherence of
245 >    //SimInfo class, need refactoring
246          
247 <        /** Returns the total number of z-constraint molecules in the system */
248 <        int getNZconstraint() {
249 <            return nZconstraint_;
250 <        }
247 >    /** Returns the total number of z-constraint molecules in the system */
248 >    int getNZconstraint() {
249 >      return nZconstraint_;
250 >    }
251  
252 <        /**
253 <         * Sets the number of z-constraint molecules in the system.
254 <         */
255 <        void setNZconstraint(int nZconstraint) {
256 <            nZconstraint_ = nZconstraint;
257 <        }
252 >    /**
253 >     * Sets the number of z-constraint molecules in the system.
254 >     */
255 >    void setNZconstraint(int nZconstraint) {
256 >      nZconstraint_ = nZconstraint;
257 >    }
258          
259 <        /** Returns the snapshot manager. */
260 <        SnapshotManager* getSnapshotManager() {
261 <            return sman_;
262 <        }
259 >    /** Returns the snapshot manager. */
260 >    SnapshotManager* getSnapshotManager() {
261 >      return sman_;
262 >    }
263  
264 <        /** Sets the snapshot manager. */
265 <        void setSnapshotManager(SnapshotManager* sman);
264 >    /** Sets the snapshot manager. */
265 >    void setSnapshotManager(SnapshotManager* sman);
266          
267 <        /** Returns the force field */
268 <        ForceField* getForceField() {
269 <            return forceField_;
270 <        }
267 >    /** Returns the force field */
268 >    ForceField* getForceField() {
269 >      return forceField_;
270 >    }
271  
272 <        Globals* getSimParams() {
273 <            return simParams_;
274 <        }
272 >    Globals* getSimParams() {
273 >      return simParams_;
274 >    }
275  
276 <        /** Returns the velocity of center of mass of the whole system.*/
277 <        Vector3d getComVel();
276 >    /** Returns the velocity of center of mass of the whole system.*/
277 >    Vector3d getComVel();
278  
279 <        /** Returns the center of the mass of the whole system.*/
280 <        Vector3d getCom();
279 >    /** Returns the center of the mass of the whole system.*/
280 >    Vector3d getCom();
281 >    /** Returns the center of the mass and Center of Mass velocity of
282 >        the whole system.*/
283 >    void getComAll(Vector3d& com,Vector3d& comVel);
284  
285 <        /** main driver function to interact with fortran during the initialization and molecule migration */
286 <        void update();
285 >    /** Returns intertia tensor for the entire system and system
286 >        Angular Momentum.*/
287 >    void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
288 >    
289 >    /** Returns system angular momentum */
290 >    Vector3d getAngularMomentum();
291  
292 <        /** Returns the local index manager */
293 <        LocalIndexManager* getLocalIndexManager() {
294 <            return &localIndexMan_;
295 <        }
292 >    /** Returns volume of system as estimated by an ellipsoid defined
293 >        by the radii of gyration*/
294 >    void getGyrationalVolume(RealType &vol);
295 >    /** Overloaded version of gyrational volume that also returns
296 >        det(I) so dV/dr can be calculated*/
297 >    void getGyrationalVolume(RealType &vol, RealType &detI);
298  
299 <        int getMoleculeStampId(int globalIndex) {
300 <            //assert(globalIndex < molStampIds_.size())
301 <            return molStampIds_[globalIndex];
302 <        }
299 >    void update();
300 >    /**
301 >     * Setup Fortran Simulation
302 >     */
303 >    void setupFortran();
304  
272        /** Returns the molecule stamp */
273        MoleculeStamp* getMoleculeStamp(int id) {
274            return moleculeStamps_[id];
275        }
305  
306 <        /** Return the total number of the molecule stamps */
307 <        int getNMoleculeStamp() {
308 <            return moleculeStamps_.size();
309 <        }
281 <        /**
282 <         * Finds a molecule with a specified global index
283 <         * @return a pointer point to found molecule
284 <         * @param index
285 <         */
286 <        Molecule* getMoleculeByGlobalIndex(int index) {
287 <            MoleculeIterator i;
288 <            i = molecules_.find(index);
306 >    /** Returns the local index manager */
307 >    LocalIndexManager* getLocalIndexManager() {
308 >      return &localIndexMan_;
309 >    }
310  
311 <            return i != molecules_.end() ? i->second : NULL;
312 <        }
311 >    int getMoleculeStampId(int globalIndex) {
312 >      //assert(globalIndex < molStampIds_.size())
313 >      return molStampIds_[globalIndex];
314 >    }
315  
316 <        /** Calculate the maximum cutoff radius based on the atom types */
317 <        double calcMaxCutoffRadius();
316 >    /** Returns the molecule stamp */
317 >    MoleculeStamp* getMoleculeStamp(int id) {
318 >      return moleculeStamps_[id];
319 >    }
320  
321 <        double getRcut() {
322 <            return rcut_;
323 <        }
321 >    /** Return the total number of the molecule stamps */
322 >    int getNMoleculeStamp() {
323 >      return moleculeStamps_.size();
324 >    }
325 >    /**
326 >     * Finds a molecule with a specified global index
327 >     * @return a pointer point to found molecule
328 >     * @param index
329 >     */
330 >    Molecule* getMoleculeByGlobalIndex(int index) {
331 >      MoleculeIterator i;
332 >      i = molecules_.find(index);
333  
334 <        double getRsw() {
335 <            return rsw_;
302 <        }
303 <        
304 <        std::string getFinalConfigFileName() {
305 <            return finalConfigFileName_;
306 <        }
307 <        
308 <        void setFinalConfigFileName(const std::string& fileName) {
309 <            finalConfigFileName_ = fileName;
310 <        }
334 >      return i != molecules_.end() ? i->second : NULL;
335 >    }
336  
337 <        std::string getDumpFileName() {
338 <            return dumpFileName_;
339 <        }
315 <        
316 <        void setDumpFileName(const std::string& fileName) {
317 <            dumpFileName_ = fileName;
318 <        }
337 >    int getGlobalMolMembership(int id){
338 >      return globalMolMembership_[id];
339 >    }
340  
341 <        std::string getStatFileName() {
342 <            return statFileName_;
343 <        }
344 <        
345 <        void setStatFileName(const std::string& fileName) {
346 <            statFileName_ = fileName;
326 <        }
341 >    /**
342 >     * returns a vector which maps the local atom index on this
343 >     * processor to the global atom index.  With only one processor,
344 >     * these should be identical.
345 >     */
346 >    vector<int> getGlobalAtomIndices();
347  
348 <        /**
349 <         * Sets GlobalGroupMembership
350 <         * @see #SimCreator::setGlobalIndex
351 <         */  
352 <        void setGlobalGroupMembership(const std::vector<int>& globalGroupMembership) {
353 <            assert(globalGroupMembership.size() == nGlobalAtoms_);
354 <            globalGroupMembership_ = globalGroupMembership;
355 <        }
356 <
357 <        /**
338 <         * Sets GlobalMolMembership
339 <         * @see #SimCreator::setGlobalIndex
340 <         */        
341 <        void setGlobalMolMembership(const std::vector<int>& globalMolMembership) {
342 <            assert(globalMolMembership.size() == nGlobalAtoms_);
343 <            globalMolMembership_ = globalMolMembership;
344 <        }
348 >    /**
349 >     * returns a vector which maps the local cutoff group index on
350 >     * this processor to the global cutoff group index.  With only one
351 >     * processor, these should be identical.
352 >     */
353 >    vector<int> getGlobalGroupIndices();
354 >        
355 >    string getFinalConfigFileName() {
356 >      return finalConfigFileName_;
357 >    }
358  
359 +    void setFinalConfigFileName(const string& fileName) {
360 +      finalConfigFileName_ = fileName;
361 +    }
362  
363 <        bool isFortranInitialized() {
364 <            return fortranInitialized_;
365 <        }
363 >    string getRawMetaData() {
364 >      return rawMetaData_;
365 >    }
366 >    void setRawMetaData(const string& rawMetaData) {
367 >      rawMetaData_ = rawMetaData;
368 >    }
369          
370 <        //below functions are just forward functions
371 <        //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
372 <        //the other hand, has-a relation need composing.
373 <        /**
374 <         * Adds property into property map
375 <         * @param genData GenericData to be added into PropertyMap
376 <         */
358 <        void addProperty(GenericData* genData);
370 >    string getDumpFileName() {
371 >      return dumpFileName_;
372 >    }
373 >        
374 >    void setDumpFileName(const string& fileName) {
375 >      dumpFileName_ = fileName;
376 >    }
377  
378 <        /**
379 <         * Removes property from PropertyMap by name
380 <         * @param propName the name of property to be removed
381 <         */
382 <        void removeProperty(const std::string& propName);
378 >    string getStatFileName() {
379 >      return statFileName_;
380 >    }
381 >        
382 >    void setStatFileName(const string& fileName) {
383 >      statFileName_ = fileName;
384 >    }
385 >        
386 >    string getRestFileName() {
387 >      return restFileName_;
388 >    }
389 >        
390 >    void setRestFileName(const string& fileName) {
391 >      restFileName_ = fileName;
392 >    }
393  
394 <        /**
395 <         * clear all of the properties
396 <         */
397 <        void clearProperties();
394 >    /**
395 >     * Sets GlobalGroupMembership
396 >     * @see #SimCreator::setGlobalIndex
397 >     */  
398 >    void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
399 >      assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
400 >      globalGroupMembership_ = globalGroupMembership;
401 >    }
402  
403 <        /**
404 <         * Returns all names of properties
405 <         * @return all names of properties
406 <         */
407 <        std::vector<std::string> getPropertyNames();
403 >    /**
404 >     * Sets GlobalMolMembership
405 >     * @see #SimCreator::setGlobalIndex
406 >     */        
407 >    void setGlobalMolMembership(const vector<int>& globalMolMembership) {
408 >      assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
409 >      globalMolMembership_ = globalMolMembership;
410 >    }
411  
377        /**
378         * Returns all of the properties in PropertyMap
379         * @return all of the properties in PropertyMap
380         */      
381        std::vector<GenericData*> getProperties();
412  
413 <        /**
414 <         * Returns property
415 <         * @param propName name of property
416 <         * @return a pointer point to property with propName. If no property named propName
417 <         * exists, return NULL
418 <         */      
419 <        GenericData* getPropertyByName(const std::string& propName);
413 >    bool isFortranInitialized() {
414 >      return fortranInitialized_;
415 >    }
416 >        
417 >    bool getCalcBoxDipole() {
418 >      return calcBoxDipole_;
419 >    }
420  
421 <        /**
422 <         * add all exclude pairs of a molecule into exclude list.
423 <         */
394 <        void addExcludePairs(Molecule* mol);
421 >    bool getUseAtomicVirial() {
422 >      return useAtomicVirial_;
423 >    }
424  
425 <        /**
426 <         * remove all exclude pairs which belong to a molecule from exclude list
427 <         */
425 >    /**
426 >     * Adds property into property map
427 >     * @param genData GenericData to be added into PropertyMap
428 >     */
429 >    void addProperty(GenericData* genData);
430  
431 <        void removeExcludePairs(Molecule* mol);
431 >    /**
432 >     * Removes property from PropertyMap by name
433 >     * @param propName the name of property to be removed
434 >     */
435 >    void removeProperty(const string& propName);
436  
437 +    /**
438 +     * clear all of the properties
439 +     */
440 +    void clearProperties();
441  
442 <        SelectionManager* getSelectionManager() {
443 <            return selectMan_;
444 <        }
442 >    /**
443 >     * Returns all names of properties
444 >     * @return all names of properties
445 >     */
446 >    vector<string> getPropertyNames();
447  
448 <        /** Returns the unique atom types of local processor in an array */
449 <        std::set<AtomType*> getUniqueAtomTypes();
448 >    /**
449 >     * Returns all of the properties in PropertyMap
450 >     * @return all of the properties in PropertyMap
451 >     */      
452 >    vector<GenericData*> getProperties();
453 >
454 >    /**
455 >     * Returns property
456 >     * @param propName name of property
457 >     * @return a pointer point to property with propName. If no property named propName
458 >     * exists, return NULL
459 >     */      
460 >    GenericData* getPropertyByName(const string& propName);
461 >
462 >    /**
463 >     * add all special interaction pairs (including excluded
464 >     * interactions) in a molecule into the appropriate lists.
465 >     */
466 >    void addInteractionPairs(Molecule* mol);
467 >
468 >    /**
469 >     * remove all special interaction pairs which belong to a molecule
470 >     * from the appropriate lists.
471 >     */
472 >    void removeInteractionPairs(Molecule* mol);
473 >
474 >    /** Returns the set of atom types present in this simulation */
475 >    set<AtomType*> getSimulatedAtomTypes();
476          
477 <        friend std::ostream& operator <<(std::ostream& o, SimInfo& info);
477 >    friend ostream& operator <<(ostream& o, SimInfo& info);
478  
479 <        void getCutoff(double& rcut, double& rsw);
479 >    void getCutoff(RealType& rcut, RealType& rsw);
480          
481 <    private:
481 >  private:
482  
483 <        /** fill up the simtype struct*/
484 <        void setupSimType();
483 >    /** fill up the simtype struct and other simulation-related variables */
484 >    void setupSimVariables();
485  
419        /**
420         * Setup Fortran Simulation
421         * @see #setupFortranParallel
422         */
423        void setupFortranSim();
486  
487 <        /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
488 <        void setupCutoff();
487 >    /** Determine if we need to accumulate the simulation box dipole */
488 >    void setupAccumulateBoxDipole();
489  
490 <        /** Calculates the number of degress of freedom in the whole system */
491 <        void calcNdf();
492 <        void calcNdfRaw();
493 <        void calcNdfTrans();
490 >    /** Calculates the number of degress of freedom in the whole system */
491 >    void calcNdf();
492 >    void calcNdfRaw();
493 >    void calcNdfTrans();
494  
495 <        /**
496 <         * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
497 <         * system.
498 <         */
499 <        void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
495 >    /**
496 >     * Adds molecule stamp and the total number of the molecule with
497 >     * same molecule stamp in the whole system.
498 >     */
499 >    void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
500  
501 <        ForceField* forceField_;      
502 <        Globals* simParams_;
501 >    // Other classes holdingn important information
502 >    ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
503 >    Globals* simParams_;     /**< provides access to simulation parameters set by user */
504  
505 <        std::map<int, Molecule*>  molecules_; /**< Molecule array */
506 <        
507 <        //degress of freedom
508 <        int ndf_;           /**< number of degress of freedom (excludes constraints),  ndf_ is local */
509 <        int ndfRaw_;    /**< number of degress of freedom (includes constraints),  ndfRaw_ is local */
510 <        int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
511 <        int nZconstraint_; /** number of  z-constraint molecules, nZconstraint_ is global */
512 <        
513 <        //number of global objects
514 <        int nGlobalMols_;       /**< number of molecules in the system */
452 <        int nGlobalAtoms_;   /**< number of atoms in the system */
453 <        int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
454 <        int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
455 <        int nGlobalRigidBodies_; /**< number of rigid bodies in this system */
456 <        /**
457 <         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
458 <         * corresponding content is the global index of cutoff group this atom belong to.
459 <         * It is filled by SimCreator once and only once, since it never changed during the simulation.
460 <         */
461 <        std::vector<int> globalGroupMembership_;
462 <
463 <        /**
464 <         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
465 <         * corresponding content is the global index of molecule this atom belong to.
466 <         * It is filled by SimCreator once and only once, since it is never changed during the simulation.
467 <         */
468 <        std::vector<int> globalMolMembership_;        
469 <
505 >    ///  Counts of local objects
506 >    int nAtoms_;              /**< number of atoms in local processor */
507 >    int nBonds_;              /**< number of bonds in local processor */
508 >    int nBends_;              /**< number of bends in local processor */
509 >    int nTorsions_;           /**< number of torsions in local processor */
510 >    int nInversions_;         /**< number of inversions in local processor */
511 >    int nRigidBodies_;        /**< number of rigid bodies in local processor */
512 >    int nIntegrableObjects_;  /**< number of integrable objects in local processor */
513 >    int nCutoffGroups_;       /**< number of cutoff groups in local processor */
514 >    int nConstraints_;        /**< number of constraints in local processors */
515          
516 <        std::vector<int> molStampIds_;                                /**< stamp id array of all molecules in the system */
517 <        std::vector<MoleculeStamp*> moleculeStamps_;      /**< molecule stamps array */        
518 <        
519 <        //number of local objects
520 <        int nAtoms_;                        /**< number of atoms in local processor */
521 <        int nBonds_;                        /**< number of bonds in local processor */
522 <        int nBends_;                        /**< number of bends in local processor */
523 <        int nTorsions_;                    /**< number of torsions in local processor */
524 <        int nRigidBodies_;              /**< number of rigid bodies in local processor */
525 <        int nIntegrableObjects_;    /**< number of integrable objects in local processor */
526 <        int nCutoffGroups_;             /**< number of cutoff groups in local processor */
527 <        int nConstraints_;              /**< number of constraints in local processors */
516 >    /// Counts of global objects
517 >    int nGlobalMols_;              /**< number of molecules in the system (GLOBAL) */
518 >    int nGlobalAtoms_;             /**< number of atoms in the system (GLOBAL) */
519 >    int nGlobalCutoffGroups_;      /**< number of cutoff groups in this system (GLOBAL) */
520 >    int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
521 >    int nGlobalRigidBodies_;       /**< number of rigid bodies in this system (GLOBAL) */
522 >      
523 >    /// Degress of freedom
524 >    int ndf_;          /**< number of degress of freedom (excludes constraints) (LOCAL) */
525 >    int fdf_local;     /**< number of frozen degrees of freedom (LOCAL) */
526 >    int fdf_;          /**< number of frozen degrees of freedom (GLOBAL) */
527 >    int ndfRaw_;       /**< number of degress of freedom (includes constraints),  (LOCAL) */
528 >    int ndfTrans_;     /**< number of translation degress of freedom, (LOCAL) */
529 >    int nZconstraint_; /**< number of  z-constraint molecules (GLOBAL) */
530  
531 <        simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
532 <        Exclude exclude_;      
533 <        PropertyMap properties_;                  /**< Generic Property */
534 <        SnapshotManager* sman_;               /**< SnapshotManager */
531 >    /// logicals
532 >    bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
533 >    bool usesDirectionalAtoms_;   /**< are there atoms with position AND orientation? */
534 >    bool usesMetallicAtoms_;      /**< are there transition metal atoms? */
535 >    bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
536 >    bool usesAtomicVirial_;       /**< are we computing atomic virials? */
537 >    bool requiresPrepair_;        /**< does this simulation require a pre-pair loop? */
538 >    bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
539 >    bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
540  
541 <        /**
542 <         * The reason to have a local index manager is that when molecule is migrating to other processors,
543 <         * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
544 <         * information of molecule migrating to current processor, Migrator class can query  the LocalIndexManager
545 <         * to make a efficient data moving plan.
546 <         */        
547 <        LocalIndexManager localIndexMan_;
541 >  public:
542 >    bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
543 >    bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
544 >    bool usesMetallicAtoms() { return usesMetallicAtoms_; }
545 >    bool usesAtomicVirial() { return usesAtomicVirial_; }
546 >    bool requiresPrepair() { return requiresPrepair_; }
547 >    bool requiresSkipCorrection() { return requiresSkipCorrection_;}
548 >    bool requiresSelfCorrection() { return requiresSelfCorrection_;}
549  
550 <        //file names
551 <        std::string finalConfigFileName_;
552 <        std::string dumpFileName_;
500 <        std::string statFileName_;
550 >  private:
551 >    /// Data structures holding primary simulation objects
552 >    map<int, Molecule*>  molecules_;  /**< map holding pointers to LOCAL molecules */
553  
554 <        double rcut_;       /**< cutoff radius*/
555 <        double rsw_;        /**< radius of switching function*/
554 >    /// Stamps are templates for objects that are then used to create
555 >    /// groups of objects.  For example, a molecule stamp contains
556 >    /// information on how to build that molecule (i.e. the topology,
557 >    /// the atoms, the bonds, etc.)  Once the system is built, the
558 >    /// stamps are no longer useful.
559 >    vector<int> molStampIds_;                /**< stamp id for molecules in the system */
560 >    vector<MoleculeStamp*> moleculeStamps_;  /**< molecule stamps array */        
561  
562 <        bool fortranInitialized_; /**< flag indicate whether fortran side is initialized */
562 >    /**
563 >     * A vector that maps between the global index of an atom, and the
564 >     * global index of cutoff group the atom belong to.  It is filled
565 >     * by SimCreator once and only once, since it never changed during
566 >     * the simulation.  It should be nGlobalAtoms_ in size.
567 >     */
568 >    vector<int> globalGroupMembership_;
569 >  public:
570 >    vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
571 >  private:
572  
573 <        SelectionManager* selectMan_;
574 < #ifdef IS_MPI
575 <    //in Parallel version, we need MolToProc
576 <    public:
577 <                
578 <        /**
579 <         * Finds the processor where a molecule resides
514 <         * @return the id of the processor which contains the molecule
515 <         * @param globalIndex global Index of the molecule
516 <         */
517 <        int getMolToProc(int globalIndex) {
518 <            //assert(globalIndex < molToProcMap_.size());
519 <            return molToProcMap_[globalIndex];
520 <        }
573 >    /**
574 >     * A vector that maps between the global index of an atom and the
575 >     * global index of the molecule the atom belongs to.  It is filled
576 >     * by SimCreator once and only once, since it is never changed
577 >     * during the simulation. It shoudl be nGlobalAtoms_ in size.
578 >     */
579 >    vector<int> globalMolMembership_;
580  
581 <        /**
582 <         * Set MolToProcMap array
583 <         * @see #SimCreator::divideMolecules
584 <         */
585 <        void setMolToProcMap(const std::vector<int>& molToProcMap) {
586 <            molToProcMap_ = molToProcMap;
587 <        }
581 >    /**
582 >     * A vector that maps between the local index of an atom and the
583 >     * index of the AtomType.
584 >     */
585 >    vector<int> identArray_;
586 >  public:
587 >    vector<int> getIdentArray() { return identArray_; }
588 >  private:
589 >              
590 >    /// lists to handle atoms needing special treatment in the non-bonded interactions
591 >    PairList excludedInteractions_;  /**< atoms excluded from interacting with each other */
592 >    PairList oneTwoInteractions_;    /**< atoms that are directly Bonded */
593 >    PairList oneThreeInteractions_;  /**< atoms sharing a Bend */    
594 >    PairList oneFourInteractions_;   /**< atoms sharing a Torsion */
595 >
596 >    PropertyMap properties_;       /**< Generic Properties can be added */
597 >    SnapshotManager* sman_;        /**< SnapshotManager (handles particle positions, etc.) */
598 >
599 >    /**
600 >     * The reason to have a local index manager is that when molecule
601 >     * is migrating to other processors, the atoms and the
602 >     * rigid-bodies will release their local indices to
603 >     * LocalIndexManager. Combining the information of molecule
604 >     * migrating to current processor, Migrator class can query the
605 >     * LocalIndexManager to make a efficient data moving plan.
606 >     */        
607 >    LocalIndexManager localIndexMan_;
608 >
609 >    // unparsed MetaData block for storing in Dump and EOR files:
610 >    string rawMetaData_;
611 >
612 >    // file names
613 >    string finalConfigFileName_;
614 >    string dumpFileName_;
615 >    string statFileName_;
616 >    string restFileName_;
617          
530    private:
618  
619 <        void setupFortranParallel();
619 >    bool fortranInitialized_; /** flag to indicate whether the fortran side is initialized */
620 >    
621 >    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
622 >                            the simulation box dipole moment */
623 >    
624 >    bool useAtomicVirial_; /**< flag to indicate whether or not we use
625 >                              Atomic Virials to calculate the pressure */
626 >    
627 >  public:
628 >    /**
629 >     * return an integral objects by its global index. In MPI
630 >     * version, if the StuntDouble with specified global index does
631 >      * not belong to local processor, a NULL will be return.
632 >      */
633 >    StuntDouble* getIOIndexToIntegrableObject(int index);
634 >    void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
635 >    
636 >  private:
637 >    vector<StuntDouble*> IOIndexToIntegrableObject;
638 >    
639 >  public:
640 >                
641 >    /**
642 >     * Finds the processor where a molecule resides
643 >     * @return the id of the processor which contains the molecule
644 >     * @param globalIndex global Index of the molecule
645 >     */
646 >    int getMolToProc(int globalIndex) {
647 >      //assert(globalIndex < molToProcMap_.size());
648 >      return molToProcMap_[globalIndex];
649 >    }
650 >    
651 >    /**
652 >     * Set MolToProcMap array
653 >     * @see #SimCreator::divideMolecules
654 >     */
655 >    void setMolToProcMap(const vector<int>& molToProcMap) {
656 >      molToProcMap_ = molToProcMap;
657 >    }
658          
659 <        /**
660 <         * The size of molToProcMap_ is equal to total number of molecules in the system.
661 <         *  It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
662 <         * once.
663 <         */        
664 <        std::vector<int> molToProcMap_;
659 >  private:
660 >        
661 >    /**
662 >     * The size of molToProcMap_ is equal to total number of molecules
663 >     * in the system.  It maps a molecule to the processor on which it
664 >     * resides. it is filled by SimCreator once and only once.
665 >     */        
666 >    vector<int> molToProcMap_;
667  
668 < #endif
668 >  };
669  
670 < };
544 <
545 < } //namespace oopse
670 > } //namespace OpenMD
671   #endif //BRAINS_SIMMODEL_HPP
672  

Comparing:
trunk/src/brains/SimInfo.hpp (property svn:keywords), Revision 384 by tim, Tue Mar 1 19:11:47 2005 UTC vs.
branches/development/src/brains/SimInfo.hpp (property svn:keywords), Revision 1553 by gezelter, Fri Apr 29 17:25:12 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines