ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.hpp (file contents), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/brains/SimInfo.hpp (file contents), Revision 1549 by gezelter, Wed Apr 27 18:38:15 2011 UTC

# Line 1 | Line 1
1 < #ifndef __SIMINFO_H__
2 < #define __SIMINFO_H__
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimInfo.hpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <map>
50 < #include <string>
49 > #ifndef BRAINS_SIMMODEL_HPP
50 > #define BRAINS_SIMMODEL_HPP
51 >
52 > #include <iostream>
53 > #include <set>
54 > #include <utility>
55   #include <vector>
56  
57 < #include "primitives/Atom.hpp"
58 < #include "primitives/RigidBody.hpp"
59 < #include "primitives/Molecule.hpp"
60 < #include "brains/Exclude.hpp"
61 < #include "brains/SkipList.hpp"
62 < #include "primitives/AbstractClasses.hpp"
63 < #include "types/MakeStamps.hpp"
64 < #include "brains/SimState.hpp"
65 < #include "restraints/Restraints.hpp"
57 > #include "brains/PairList.hpp"
58 > #include "io/Globals.hpp"
59 > #include "math/Vector3.hpp"
60 > #include "math/SquareMatrix3.hpp"
61 > #include "types/MoleculeStamp.hpp"
62 > #include "UseTheForce/ForceField.hpp"
63 > #include "utils/PropertyMap.hpp"
64 > #include "utils/LocalIndexManager.hpp"
65 > #include "nonbonded/SwitchingFunction.hpp"
66  
67 < #define __C
67 > //another nonsense macro declaration
68 > #define __OPENMD_C
69   #include "brains/fSimulation.h"
20 #include "UseTheForce/fortranWrapDefines.hpp"
21 #include "utils/GenericData.hpp"
70  
71 + using namespace std;
72 + namespace OpenMD{
73 +  //forward decalration
74 +  class SnapshotManager;
75 +  class Molecule;
76 +  class SelectionManager;
77 +  class StuntDouble;
78  
79 < //#include "Minimizer.hpp"
80 < //#include "minimizers/OOPSEMinimizer.hpp"
79 >  /**
80 >   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
81 >   *
82 >   * @brief One of the heavy-weight classes of OpenMD, SimInfo
83 >   * maintains objects and variables relating to the current
84 >   * simulation.  This includes the master list of Molecules.  The
85 >   * Molecule class maintains all of the concrete objects (Atoms,
86 >   * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
87 >   * Constraints). In both the single and parallel versions, Atoms and
88 >   * RigidBodies have both global and local indices.
89 >   */
90 >  class SimInfo {
91 >  public:
92 >    typedef map<int, Molecule*>::iterator  MoleculeIterator;
93 >    
94 >    /**
95 >     * Constructor of SimInfo
96 >     *
97 >     * @param molStampPairs MoleculeStamp Array. The first element of
98 >     * the pair is molecule stamp, the second element is the total
99 >     * number of molecules with the same molecule stamp in the system
100 >     *
101 >     * @param ff pointer of a concrete ForceField instance
102 >     *
103 >     * @param simParams
104 >     */
105 >    SimInfo(ForceField* ff, Globals* simParams);
106 >    virtual ~SimInfo();
107  
108 +    /**
109 +     * Adds a molecule
110 +     *
111 +     * @return return true if adding successfully, return false if the
112 +     * molecule is already in SimInfo
113 +     *
114 +     * @param mol molecule to be added
115 +     */
116 +    bool addMolecule(Molecule* mol);
117  
118 < double roundMe( double x );
119 < class OOPSEMinimizer;
120 < class SimInfo{
118 >    /**
119 >     * Removes a molecule from SimInfo
120 >     *
121 >     * @return true if removing successfully, return false if molecule
122 >     * is not in this SimInfo
123 >     */
124 >    bool removeMolecule(Molecule* mol);
125  
126 < public:
126 >    /** Returns the total number of molecules in the system. */
127 >    int getNGlobalMolecules() {
128 >      return nGlobalMols_;
129 >    }
130  
131 <  SimInfo();
132 <  ~SimInfo();
131 >    /** Returns the total number of atoms in the system. */
132 >    int getNGlobalAtoms() {
133 >      return nGlobalAtoms_;
134 >    }
135  
136 <  int n_atoms; // the number of atoms
137 <  Atom **atoms; // the array of atom objects
136 >    /** Returns the total number of cutoff groups in the system. */
137 >    int getNGlobalCutoffGroups() {
138 >      return nGlobalCutoffGroups_;
139 >    }
140  
141 <  vector<RigidBody*> rigidBodies;  // A vector of rigid bodies
142 <  vector<StuntDouble*> integrableObjects;
143 <  
144 <  double tau[9]; // the stress tensor
141 >    /**
142 >     * Returns the total number of integrable objects (total number of
143 >     * rigid bodies plus the total number of atoms which do not belong
144 >     * to the rigid bodies) in the system
145 >     */
146 >    int getNGlobalIntegrableObjects() {
147 >      return nGlobalIntegrableObjects_;
148 >    }
149  
150 <  int n_bonds;    // number of bends
151 <  int n_bends;    // number of bends
152 <  int n_torsions; // number of torsions
153 <  int n_oriented; // number of of atoms with orientation
154 <  int ndf;        // number of actual degrees of freedom
155 <  int ndfRaw;     // number of settable degrees of freedom
156 <  int ndfTrans;   // number of translational degrees of freedom
157 <  int nZconstraints; // the number of zConstraints
150 >    /**
151 >     * Returns the total number of integrable objects (total number of
152 >     * rigid bodies plus the total number of atoms which do not belong
153 >     * to the rigid bodies) in the system
154 >     */
155 >    int getNGlobalRigidBodies() {
156 >      return nGlobalRigidBodies_;
157 >    }
158  
159 <  int setTemp;   // boolean to set the temperature at each sampleTime
160 <  int resetIntegrator; // boolean to reset the integrator
159 >    int getNGlobalConstraints();
160 >    /**
161 >     * Returns the number of local molecules.
162 >     * @return the number of local molecules
163 >     */
164 >    int getNMolecules() {
165 >      return molecules_.size();
166 >    }
167  
168 <  int n_dipoles; // number of dipoles
168 >    /** Returns the number of local atoms */
169 >    unsigned int getNAtoms() {
170 >      return nAtoms_;
171 >    }
172  
173 <  int n_exclude;
174 <  Exclude* excludes;  // the exclude list for ignoring pairs in fortran
175 <  int nGlobalExcludes;
176 <  int* globalExcludes; // same as above, but these guys participate in
63 <                       // no long range forces.
173 >    /** Returns the number of local bonds */        
174 >    unsigned int getNBonds(){
175 >      return nBonds_;
176 >    }
177  
178 <  int* identArray;     // array of unique identifiers for the atoms
179 <  int* molMembershipArray;  // map of atom numbers onto molecule numbers
178 >    /** Returns the number of local bends */        
179 >    unsigned int getNBends() {
180 >      return nBends_;
181 >    }
182  
183 <  int n_constraints; // the number of constraints on the system
183 >    /** Returns the number of local torsions */        
184 >    unsigned int getNTorsions() {
185 >      return nTorsions_;
186 >    }
187  
188 <  int n_SRI;   // the number of short range interactions
188 >    /** Returns the number of local torsions */        
189 >    unsigned int getNInversions() {
190 >      return nInversions_;
191 >    }
192 >    /** Returns the number of local rigid bodies */        
193 >    unsigned int getNRigidBodies() {
194 >      return nRigidBodies_;
195 >    }
196  
197 <  double lrPot; // the potential energy from the long range calculations.
197 >    /** Returns the number of local integrable objects */
198 >    unsigned int getNIntegrableObjects() {
199 >      return nIntegrableObjects_;
200 >    }
201  
202 <  double Hmat[3][3];  // the periodic boundry conditions. The Hmat is the
203 <                      // column vectors of the x, y, and z box vectors.
204 <                      //   h1  h2  h3
205 <                      // [ Xx  Yx  Zx ]
78 <                      // [ Xy  Yy  Zy ]
79 <                      // [ Xz  Yz  Zz ]
80 <                      //  
81 <  double HmatInv[3][3];
202 >    /** Returns the number of local cutoff groups */
203 >    unsigned int getNCutoffGroups() {
204 >      return nCutoffGroups_;
205 >    }
206  
207 <  double boxL[3]; // The Lengths of the 3 column vectors of Hmat
208 <  double boxVol;
209 <  int orthoRhombic;
210 <  
207 >    /** Returns the total number of constraints in this SimInfo */
208 >    unsigned int getNConstraints() {
209 >      return nConstraints_;
210 >    }
211 >        
212 >    /**
213 >     * Returns the first molecule in this SimInfo and intialize the iterator.
214 >     * @return the first molecule, return NULL if there is not molecule in this SimInfo
215 >     * @param i the iterator of molecule array (user shouldn't change it)
216 >     */
217 >    Molecule* beginMolecule(MoleculeIterator& i);
218  
219 <  double dielectric;      // the dielectric of the medium for reaction field
219 >    /**
220 >     * Returns the next avaliable Molecule based on the iterator.
221 >     * @return the next avaliable molecule, return NULL if reaching the end of the array
222 >     * @param i the iterator of molecule array
223 >     */
224 >    Molecule* nextMolecule(MoleculeIterator& i);
225  
226 <  
227 <  int usePBC; // whether we use periodic boundry conditions.
228 <  int useLJ;
229 <  int useSticky;
94 <  int useCharges;
95 <  int useDipoles;
96 <  int useReactionField;
97 <  int useGB;
98 <  int useEAM;
99 <  bool haveCutoffGroups;
100 <  bool useInitXSstate;
101 <  double orthoTolerance;
226 >    /** Returns the number of degrees of freedom */
227 >    int getNdf() {
228 >      return ndf_ - getFdf();
229 >    }
230  
231 <  double dt, run_time;           // the time step and total time
232 <  double sampleTime, statusTime; // the position and energy dump frequencies
233 <  double target_temp;            // the target temperature of the system
234 <  double thermalTime;            // the temp kick interval
107 <  double currentTime;            // Used primarily for correlation Functions
108 <  double resetTime;              // Use to reset the integrator periodically
109 <  short int have_target_temp;
231 >    /** Returns the number of raw degrees of freedom */
232 >    int getNdfRaw() {
233 >      return ndfRaw_;
234 >    }
235  
236 <  int n_mol;           // n_molecules;
237 <  Molecule* molecules; // the array of molecules
238 <  
239 <  int nComponents;           // the number of components in the system
115 <  int* componentsNmol;       // the number of molecules of each component
116 <  MoleculeStamp** compStamps;// the stamps matching the components
117 <  LinkedMolStamp* headStamp; // list of stamps used in the simulation
118 <  
119 <  
120 <  char ensemble[100]; // the enesemble of the simulation (NVT, NVE, etc. )
121 <  char mixingRule[100]; // the mixing rules for Lennard jones/van der walls
122 <  BaseIntegrator *the_integrator; // the integrator of the simulation
236 >    /** Returns the number of translational degrees of freedom */
237 >    int getNdfTrans() {
238 >      return ndfTrans_;
239 >    }
240  
241 <  OOPSEMinimizer* the_minimizer; // the energy minimizer
242 <  Restraints* restraint;
243 <  bool has_minimizer;
241 >    /** sets the current number of frozen degrees of freedom */
242 >    void setFdf(int fdf) {
243 >      fdf_local = fdf;
244 >    }
245  
246 <  string finalName;  // the name of the eor file to be written
247 <  string sampleName; // the name of the dump file to be written
248 <  string statusName; // the name of the stat file to be written
246 >    int getFdf();
247 >    
248 >    //getNZconstraint and setNZconstraint ruin the coherence of
249 >    //SimInfo class, need refactoring
250 >        
251 >    /** Returns the total number of z-constraint molecules in the system */
252 >    int getNZconstraint() {
253 >      return nZconstraint_;
254 >    }
255  
256 <  int seed;                    //seed for random number generator
256 >    /**
257 >     * Sets the number of z-constraint molecules in the system.
258 >     */
259 >    void setNZconstraint(int nZconstraint) {
260 >      nZconstraint_ = nZconstraint;
261 >    }
262 >        
263 >    /** Returns the snapshot manager. */
264 >    SnapshotManager* getSnapshotManager() {
265 >      return sman_;
266 >    }
267  
268 <  int useSolidThermInt;  // is solid-state thermodynamic integration being used
269 <  int useLiquidThermInt; // is liquid thermodynamic integration being used
270 <  double thermIntLambda; // lambda for TI
271 <  double thermIntK;      // power of lambda for TI
272 <  double vRaw;           // unperturbed potential for TI
273 <  double vHarm;          // harmonic potential for TI
274 <  int i;                 // just an int
268 >    /** Sets the snapshot manager. */
269 >    void setSnapshotManager(SnapshotManager* sman);
270 >        
271 >    /** Returns the force field */
272 >    ForceField* getForceField() {
273 >      return forceField_;
274 >    }
275  
276 <  vector<double> mfact;
277 <  vector<int> FglobalGroupMembership;
278 <  int ngroup;
145 <  int* globalGroupMembership;
276 >    Globals* getSimParams() {
277 >      return simParams_;
278 >    }
279  
280 <  // refreshes the sim if things get changed (load balanceing, volume
281 <  // adjustment, etc.)
280 >    /** Returns the velocity of center of mass of the whole system.*/
281 >    Vector3d getComVel();
282  
283 <  void refreshSim( void );
284 <  
283 >    /** Returns the center of the mass of the whole system.*/
284 >    Vector3d getCom();
285 >    /** Returns the center of the mass and Center of Mass velocity of
286 >        the whole system.*/
287 >    void getComAll(Vector3d& com,Vector3d& comVel);
288  
289 <  // sets the internal function pointer to fortran.
289 >    /** Returns intertia tensor for the entire system and system
290 >        Angular Momentum.*/
291 >    void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
292 >    
293 >    /** Returns system angular momentum */
294 >    Vector3d getAngularMomentum();
295  
296 <  void setInternal( setFortranSim_TD fSetup,
297 <                    setFortranBox_TD fBox,
298 <                    notifyFortranCutOff_TD fCut){
299 <    setFsimulation = fSetup;
300 <    setFortranBoxSize = fBox;
301 <    notifyFortranCutOffs = fCut;
161 <  }
296 >    /** Returns volume of system as estimated by an ellipsoid defined
297 >        by the radii of gyration*/
298 >    void getGyrationalVolume(RealType &vol);
299 >    /** Overloaded version of gyrational volume that also returns
300 >        det(I) so dV/dr can be calculated*/
301 >    void getGyrationalVolume(RealType &vol, RealType &detI);
302  
303 <  int getNDF();
304 <  int getNDFraw();
305 <  int getNDFtranslational();
306 <  int getTotIntegrableObjects();
307 <  void setBox( double newBox[3] );
168 <  void setBoxM( double newBox[3][3] );
169 <  void getBoxM( double theBox[3][3] );
170 <  void scaleBox( double scale );
171 <  
172 <  void setDefaultRcut( double theRcut );
173 <  void setDefaultRcut( double theRcut, double theRsw );
174 <  void checkCutOffs( void );
303 >    void update();
304 >    /**
305 >     * Setup Fortran Simulation
306 >     */
307 >    void setupFortran();
308  
176  double getRcut( void )  { return rCut; }
177  double getRlist( void ) { return rList; }
178  double getRsw( void )   { return rSw; }
179  double getMaxCutoff( void ) { return maxCutoff; }
180  
181  void setTime( double theTime ) { currentTime = theTime; }
182  void incrTime( double the_dt ) { currentTime += the_dt; }
183  void decrTime( double the_dt ) { currentTime -= the_dt; }
184  double getTime( void ) { return currentTime; }
309  
310 <  void wrapVector( double thePos[3] );
310 >    /** Returns the local index manager */
311 >    LocalIndexManager* getLocalIndexManager() {
312 >      return &localIndexMan_;
313 >    }
314  
315 <  SimState* getConfiguration( void ) { return myConfiguration; }
316 <  
317 <  void addProperty(GenericData* prop);
318 <  GenericData* getProperty(const string& propName);
192 <  //vector<GenericData*>& getProperties()  {return properties;}    
315 >    int getMoleculeStampId(int globalIndex) {
316 >      //assert(globalIndex < molStampIds_.size())
317 >      return molStampIds_[globalIndex];
318 >    }
319  
320 <  int getSeed(void) {  return seed; }
321 <  void setSeed(int theSeed) {  seed = theSeed;}
320 >    /** Returns the molecule stamp */
321 >    MoleculeStamp* getMoleculeStamp(int id) {
322 >      return moleculeStamps_[id];
323 >    }
324  
325 < private:
325 >    /** Return the total number of the molecule stamps */
326 >    int getNMoleculeStamp() {
327 >      return moleculeStamps_.size();
328 >    }
329 >    /**
330 >     * Finds a molecule with a specified global index
331 >     * @return a pointer point to found molecule
332 >     * @param index
333 >     */
334 >    Molecule* getMoleculeByGlobalIndex(int index) {
335 >      MoleculeIterator i;
336 >      i = molecules_.find(index);
337  
338 <  SimState* myConfiguration;
338 >      return i != molecules_.end() ? i->second : NULL;
339 >    }
340  
341 <  int boxIsInit, haveRcut, haveRsw;
341 >    int getGlobalMolMembership(int id){
342 >      return globalMolMembership_[id];
343 >    }
344  
345 <  double rList, rCut; // variables for the neighborlist
346 <  double rSw;         // the switching radius
345 >    /**
346 >     * returns a vector which maps the local atom index on this
347 >     * processor to the global atom index.  With only one processor,
348 >     * these should be identical.
349 >     */
350 >    vector<int> getGlobalAtomIndices();
351  
352 <  double maxCutoff;
352 >    /**
353 >     * returns a vector which maps the local cutoff group index on
354 >     * this processor to the global cutoff group index.  With only one
355 >     * processor, these should be identical.
356 >     */
357 >    vector<int> getGlobalGroupIndices();
358 >        
359 >    string getFinalConfigFileName() {
360 >      return finalConfigFileName_;
361 >    }
362  
363 <  double distXY;
364 <  double distYZ;
365 <  double distZX;
211 <  
212 <  void calcHmatInv( void );
213 <  void calcBoxL();
214 <  double calcMaxCutOff();
363 >    void setFinalConfigFileName(const string& fileName) {
364 >      finalConfigFileName_ = fileName;
365 >    }
366  
367 <  // private function to initialize the fortran side of the simulation
368 <  setFortranSim_TD setFsimulation;
367 >    string getRawMetaData() {
368 >      return rawMetaData_;
369 >    }
370 >    void setRawMetaData(const string& rawMetaData) {
371 >      rawMetaData_ = rawMetaData;
372 >    }
373 >        
374 >    string getDumpFileName() {
375 >      return dumpFileName_;
376 >    }
377 >        
378 >    void setDumpFileName(const string& fileName) {
379 >      dumpFileName_ = fileName;
380 >    }
381  
382 <  setFortranBox_TD setFortranBoxSize;
383 <  
384 <  notifyFortranCutOff_TD notifyFortranCutOffs;
385 <  
386 <  //Addtional Properties of SimInfo
387 <  map<string, GenericData*> properties;
388 <  void getFortranGroupArrays(SimInfo* info,
389 <                             vector<int>& FglobalGroupMembership,
390 <                             vector<double>& mfact);
382 >    string getStatFileName() {
383 >      return statFileName_;
384 >    }
385 >        
386 >    void setStatFileName(const string& fileName) {
387 >      statFileName_ = fileName;
388 >    }
389 >        
390 >    string getRestFileName() {
391 >      return restFileName_;
392 >    }
393 >        
394 >    void setRestFileName(const string& fileName) {
395 >      restFileName_ = fileName;
396 >    }
397  
398 +    /**
399 +     * Sets GlobalGroupMembership
400 +     * @see #SimCreator::setGlobalIndex
401 +     */  
402 +    void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
403 +      assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
404 +      globalGroupMembership_ = globalGroupMembership;
405 +    }
406  
407 < };
407 >    /**
408 >     * Sets GlobalMolMembership
409 >     * @see #SimCreator::setGlobalIndex
410 >     */        
411 >    void setGlobalMolMembership(const vector<int>& globalMolMembership) {
412 >      assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
413 >      globalMolMembership_ = globalMolMembership;
414 >    }
415  
416  
417 < #endif
417 >    bool isFortranInitialized() {
418 >      return fortranInitialized_;
419 >    }
420 >        
421 >    bool getCalcBoxDipole() {
422 >      return calcBoxDipole_;
423 >    }
424 >
425 >    bool getUseAtomicVirial() {
426 >      return useAtomicVirial_;
427 >    }
428 >
429 >    /**
430 >     * Adds property into property map
431 >     * @param genData GenericData to be added into PropertyMap
432 >     */
433 >    void addProperty(GenericData* genData);
434 >
435 >    /**
436 >     * Removes property from PropertyMap by name
437 >     * @param propName the name of property to be removed
438 >     */
439 >    void removeProperty(const string& propName);
440 >
441 >    /**
442 >     * clear all of the properties
443 >     */
444 >    void clearProperties();
445 >
446 >    /**
447 >     * Returns all names of properties
448 >     * @return all names of properties
449 >     */
450 >    vector<string> getPropertyNames();
451 >
452 >    /**
453 >     * Returns all of the properties in PropertyMap
454 >     * @return all of the properties in PropertyMap
455 >     */      
456 >    vector<GenericData*> getProperties();
457 >
458 >    /**
459 >     * Returns property
460 >     * @param propName name of property
461 >     * @return a pointer point to property with propName. If no property named propName
462 >     * exists, return NULL
463 >     */      
464 >    GenericData* getPropertyByName(const string& propName);
465 >
466 >    /**
467 >     * add all special interaction pairs (including excluded
468 >     * interactions) in a molecule into the appropriate lists.
469 >     */
470 >    void addInteractionPairs(Molecule* mol);
471 >
472 >    /**
473 >     * remove all special interaction pairs which belong to a molecule
474 >     * from the appropriate lists.
475 >     */
476 >    void removeInteractionPairs(Molecule* mol);
477 >
478 >    /** Returns the set of atom types present in this simulation */
479 >    set<AtomType*> getSimulatedAtomTypes();
480 >        
481 >    friend ostream& operator <<(ostream& o, SimInfo& info);
482 >
483 >    void getCutoff(RealType& rcut, RealType& rsw);
484 >        
485 >  private:
486 >
487 >    /** fill up the simtype struct and other simulation-related variables */
488 >    void setupSimVariables();
489 >
490 >
491 >    /** Determine if we need to accumulate the simulation box dipole */
492 >    void setupAccumulateBoxDipole();
493 >
494 >    /** Calculates the number of degress of freedom in the whole system */
495 >    void calcNdf();
496 >    void calcNdfRaw();
497 >    void calcNdfTrans();
498 >
499 >    /**
500 >     * Adds molecule stamp and the total number of the molecule with
501 >     * same molecule stamp in the whole system.
502 >     */
503 >    void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
504 >
505 >    // Other classes holdingn important information
506 >    ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
507 >    Globals* simParams_;     /**< provides access to simulation parameters set by user */
508 >
509 >    ///  Counts of local objects
510 >    int nAtoms_;              /**< number of atoms in local processor */
511 >    int nBonds_;              /**< number of bonds in local processor */
512 >    int nBends_;              /**< number of bends in local processor */
513 >    int nTorsions_;           /**< number of torsions in local processor */
514 >    int nInversions_;         /**< number of inversions in local processor */
515 >    int nRigidBodies_;        /**< number of rigid bodies in local processor */
516 >    int nIntegrableObjects_;  /**< number of integrable objects in local processor */
517 >    int nCutoffGroups_;       /**< number of cutoff groups in local processor */
518 >    int nConstraints_;        /**< number of constraints in local processors */
519 >        
520 >    /// Counts of global objects
521 >    int nGlobalMols_;              /**< number of molecules in the system (GLOBAL) */
522 >    int nGlobalAtoms_;             /**< number of atoms in the system (GLOBAL) */
523 >    int nGlobalCutoffGroups_;      /**< number of cutoff groups in this system (GLOBAL) */
524 >    int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
525 >    int nGlobalRigidBodies_;       /**< number of rigid bodies in this system (GLOBAL) */
526 >      
527 >    /// Degress of freedom
528 >    int ndf_;          /**< number of degress of freedom (excludes constraints) (LOCAL) */
529 >    int fdf_local;     /**< number of frozen degrees of freedom (LOCAL) */
530 >    int fdf_;          /**< number of frozen degrees of freedom (GLOBAL) */
531 >    int ndfRaw_;       /**< number of degress of freedom (includes constraints),  (LOCAL) */
532 >    int ndfTrans_;     /**< number of translation degress of freedom, (LOCAL) */
533 >    int nZconstraint_; /**< number of  z-constraint molecules (GLOBAL) */
534 >
535 >    /// logicals
536 >    bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
537 >    bool usesDirectionalAtoms_;   /**< are there atoms with position AND orientation? */
538 >    bool usesMetallicAtoms_;      /**< are there transition metal atoms? */
539 >    bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
540 >    bool usesAtomicVirial_;       /**< are we computing atomic virials? */
541 >    bool requiresPrepair_;        /**< does this simulation require a pre-pair loop? */
542 >    bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
543 >    bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
544 >
545 >  public:
546 >    bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
547 >    bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
548 >    bool usesMetallicAtoms() { return usesMetallicAtoms_; }
549 >    bool usesAtomicVirial() { return usesAtomicVirial_; }
550 >    bool requiresPrepair() { return requiresPrepair_; }
551 >    bool requiresSkipCorrection() { return requiresSkipCorrection_;}
552 >    bool requiresSelfCorrection() { return requiresSelfCorrection_;}
553 >
554 >  private:
555 >    /// Data structures holding primary simulation objects
556 >    map<int, Molecule*>  molecules_;  /**< map holding pointers to LOCAL molecules */
557 >    simtype fInfo_;                   /**< A dual struct shared by C++
558 >                                         and Fortran to pass
559 >                                         information about what types
560 >                                         of calculation are
561 >                                         required */
562 >
563 >    /// Stamps are templates for objects that are then used to create
564 >    /// groups of objects.  For example, a molecule stamp contains
565 >    /// information on how to build that molecule (i.e. the topology,
566 >    /// the atoms, the bonds, etc.)  Once the system is built, the
567 >    /// stamps are no longer useful.
568 >    vector<int> molStampIds_;                /**< stamp id for molecules in the system */
569 >    vector<MoleculeStamp*> moleculeStamps_;  /**< molecule stamps array */        
570 >
571 >    /**
572 >     * A vector that maps between the global index of an atom, and the
573 >     * global index of cutoff group the atom belong to.  It is filled
574 >     * by SimCreator once and only once, since it never changed during
575 >     * the simulation.  It should be nGlobalAtoms_ in size.
576 >     */
577 >    vector<int> globalGroupMembership_;
578 >  public:
579 >    vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
580 >  private:
581 >
582 >    /**
583 >     * A vector that maps between the global index of an atom and the
584 >     * global index of the molecule the atom belongs to.  It is filled
585 >     * by SimCreator once and only once, since it is never changed
586 >     * during the simulation. It shoudl be nGlobalAtoms_ in size.
587 >     */
588 >    vector<int> globalMolMembership_;
589 >
590 >    /**
591 >     * A vector that maps between the local index of an atom and the
592 >     * index of the AtomType.
593 >     */
594 >    vector<int> identArray_;
595 >  public:
596 >    vector<int> getIdentArray() { return identArray_; }
597 >  private:
598 >              
599 >    /// lists to handle atoms needing special treatment in the non-bonded interactions
600 >    PairList excludedInteractions_;  /**< atoms excluded from interacting with each other */
601 >    PairList oneTwoInteractions_;    /**< atoms that are directly Bonded */
602 >    PairList oneThreeInteractions_;  /**< atoms sharing a Bend */    
603 >    PairList oneFourInteractions_;   /**< atoms sharing a Torsion */
604 >
605 >    PropertyMap properties_;       /**< Generic Properties can be added */
606 >    SnapshotManager* sman_;        /**< SnapshotManager (handles particle positions, etc.) */
607 >
608 >    /**
609 >     * The reason to have a local index manager is that when molecule
610 >     * is migrating to other processors, the atoms and the
611 >     * rigid-bodies will release their local indices to
612 >     * LocalIndexManager. Combining the information of molecule
613 >     * migrating to current processor, Migrator class can query the
614 >     * LocalIndexManager to make a efficient data moving plan.
615 >     */        
616 >    LocalIndexManager localIndexMan_;
617 >
618 >    // unparsed MetaData block for storing in Dump and EOR files:
619 >    string rawMetaData_;
620 >
621 >    // file names
622 >    string finalConfigFileName_;
623 >    string dumpFileName_;
624 >    string statFileName_;
625 >    string restFileName_;
626 >        
627 >
628 >    bool fortranInitialized_; /** flag to indicate whether the fortran side is initialized */
629 >    
630 >    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
631 >                            the simulation box dipole moment */
632 >    
633 >    bool useAtomicVirial_; /**< flag to indicate whether or not we use
634 >                              Atomic Virials to calculate the pressure */
635 >    
636 >  public:
637 >    /**
638 >     * return an integral objects by its global index. In MPI
639 >     * version, if the StuntDouble with specified global index does
640 >      * not belong to local processor, a NULL will be return.
641 >      */
642 >    StuntDouble* getIOIndexToIntegrableObject(int index);
643 >    void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
644 >    
645 >  private:
646 >    vector<StuntDouble*> IOIndexToIntegrableObject;
647 >    
648 >  public:
649 >                
650 >    /**
651 >     * Finds the processor where a molecule resides
652 >     * @return the id of the processor which contains the molecule
653 >     * @param globalIndex global Index of the molecule
654 >     */
655 >    int getMolToProc(int globalIndex) {
656 >      //assert(globalIndex < molToProcMap_.size());
657 >      return molToProcMap_[globalIndex];
658 >    }
659 >    
660 >    /**
661 >     * Set MolToProcMap array
662 >     * @see #SimCreator::divideMolecules
663 >     */
664 >    void setMolToProcMap(const vector<int>& molToProcMap) {
665 >      molToProcMap_ = molToProcMap;
666 >    }
667 >        
668 >  private:
669 >        
670 >    /**
671 >     * The size of molToProcMap_ is equal to total number of molecules
672 >     * in the system.  It maps a molecule to the processor on which it
673 >     * resides. it is filled by SimCreator once and only once.
674 >     */        
675 >    vector<int> molToProcMap_;
676 >
677 >  };
678 >
679 > } //namespace OpenMD
680 > #endif //BRAINS_SIMMODEL_HPP
681 >

Comparing:
trunk/src/brains/SimInfo.hpp (property svn:keywords), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/brains/SimInfo.hpp (property svn:keywords), Revision 1549 by gezelter, Wed Apr 27 18:38:15 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines