ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.hpp (file contents), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/SimInfo.hpp (file contents), Revision 1528 by gezelter, Fri Dec 17 20:11:05 2010 UTC

# Line 1 | Line 1
1 < #ifndef __SIMINFO_H__
2 < #define __SIMINFO_H__
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimInfo.hpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <map>
50 < #include <string>
49 > #ifndef BRAINS_SIMMODEL_HPP
50 > #define BRAINS_SIMMODEL_HPP
51 >
52 > #include <iostream>
53 > #include <set>
54 > #include <utility>
55   #include <vector>
56  
57 < #include "Atom.hpp"
58 < #include "RigidBody.hpp"
59 < #include "Molecule.hpp"
60 < #include "Exclude.hpp"
61 < #include "SkipList.hpp"
62 < #include "AbstractClasses.hpp"
63 < #include "MakeStamps.hpp"
64 < #include "SimState.hpp"
16 < #include "Restraints.hpp"
57 > #include "brains/PairList.hpp"
58 > #include "io/Globals.hpp"
59 > #include "math/Vector3.hpp"
60 > #include "math/SquareMatrix3.hpp"
61 > #include "types/MoleculeStamp.hpp"
62 > #include "UseTheForce/ForceField.hpp"
63 > #include "utils/PropertyMap.hpp"
64 > #include "utils/LocalIndexManager.hpp"
65  
66 < #define __C
67 < #include "fSimulation.h"
68 < #include "fortranWrapDefines.hpp"
21 < #include "GenericData.hpp"
66 > //another nonsense macro declaration
67 > #define __OPENMD_C
68 > #include "brains/fSimulation.h"
69  
70 + using namespace std;
71 + namespace OpenMD{
72  
73 < //#include "Minimizer.hpp"
74 < //#include "OOPSEMinimizer.hpp"
73 >  enum CutoffMethod {
74 >    HARD,
75 >    SWITCHING_FUNCTION,
76 >    SHIFTED_POTENTIAL,
77 >    SHIFTED_FORCE
78 >  };
79  
80 +  //forward decalration
81 +  class SnapshotManager;
82 +  class Molecule;
83 +  class SelectionManager;
84 +  class StuntDouble;
85  
86 < double roundMe( double x );
87 < class OOPSEMinimizer;
88 < class SimInfo{
86 >  /**
87 >   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
88 >   *
89 >   * @brief One of the heavy-weight classes of OpenMD, SimInfo
90 >   * maintains objects and variables relating to the current
91 >   * simulation.  This includes the master list of Molecules.  The
92 >   * Molecule class maintains all of the concrete objects (Atoms,
93 >   * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
94 >   * Constraints). In both the single and parallel versions, Atoms and
95 >   * RigidBodies have both global and local indices.
96 >   */
97 >  class SimInfo {
98 >  public:
99 >    typedef map<int, Molecule*>::iterator  MoleculeIterator;
100 >    
101 >    /**
102 >     * Constructor of SimInfo
103 >     *
104 >     * @param molStampPairs MoleculeStamp Array. The first element of
105 >     * the pair is molecule stamp, the second element is the total
106 >     * number of molecules with the same molecule stamp in the system
107 >     *
108 >     * @param ff pointer of a concrete ForceField instance
109 >     *
110 >     * @param simParams
111 >     */
112 >    SimInfo(ForceField* ff, Globals* simParams);
113 >    virtual ~SimInfo();
114  
115 < public:
115 >    /**
116 >     * Adds a molecule
117 >     *
118 >     * @return return true if adding successfully, return false if the
119 >     * molecule is already in SimInfo
120 >     *
121 >     * @param mol molecule to be added
122 >     */
123 >    bool addMolecule(Molecule* mol);
124  
125 <  SimInfo();
126 <  ~SimInfo();
125 >    /**
126 >     * Removes a molecule from SimInfo
127 >     *
128 >     * @return true if removing successfully, return false if molecule
129 >     * is not in this SimInfo
130 >     */
131 >    bool removeMolecule(Molecule* mol);
132  
133 <  int n_atoms; // the number of atoms
134 <  Atom **atoms; // the array of atom objects
133 >    /** Returns the total number of molecules in the system. */
134 >    int getNGlobalMolecules() {
135 >      return nGlobalMols_;
136 >    }
137  
138 <  vector<RigidBody*> rigidBodies;  // A vector of rigid bodies
139 <  vector<StuntDouble*> integrableObjects;
140 <  
141 <  double tau[9]; // the stress tensor
138 >    /** Returns the total number of atoms in the system. */
139 >    int getNGlobalAtoms() {
140 >      return nGlobalAtoms_;
141 >    }
142  
143 <  int n_bonds;    // number of bends
144 <  int n_bends;    // number of bends
145 <  int n_torsions; // number of torsions
146 <  int n_oriented; // number of of atoms with orientation
49 <  int ndf;        // number of actual degrees of freedom
50 <  int ndfRaw;     // number of settable degrees of freedom
51 <  int ndfTrans;   // number of translational degrees of freedom
52 <  int nZconstraints; // the number of zConstraints
143 >    /** Returns the total number of cutoff groups in the system. */
144 >    int getNGlobalCutoffGroups() {
145 >      return nGlobalCutoffGroups_;
146 >    }
147  
148 <  int setTemp;   // boolean to set the temperature at each sampleTime
149 <  int resetIntegrator; // boolean to reset the integrator
148 >    /**
149 >     * Returns the total number of integrable objects (total number of
150 >     * rigid bodies plus the total number of atoms which do not belong
151 >     * to the rigid bodies) in the system
152 >     */
153 >    int getNGlobalIntegrableObjects() {
154 >      return nGlobalIntegrableObjects_;
155 >    }
156  
157 <  int n_dipoles; // number of dipoles
157 >    /**
158 >     * Returns the total number of integrable objects (total number of
159 >     * rigid bodies plus the total number of atoms which do not belong
160 >     * to the rigid bodies) in the system
161 >     */
162 >    int getNGlobalRigidBodies() {
163 >      return nGlobalRigidBodies_;
164 >    }
165  
166 <  int n_exclude;
167 <  Exclude* excludes;  // the exclude list for ignoring pairs in fortran
168 <  int nGlobalExcludes;
169 <  int* globalExcludes; // same as above, but these guys participate in
170 <                       // no long range forces.
166 >    int getNGlobalConstraints();
167 >    /**
168 >     * Returns the number of local molecules.
169 >     * @return the number of local molecules
170 >     */
171 >    int getNMolecules() {
172 >      return molecules_.size();
173 >    }
174  
175 <  int* identArray;     // array of unique identifiers for the atoms
176 <  int* molMembershipArray;  // map of atom numbers onto molecule numbers
175 >    /** Returns the number of local atoms */
176 >    unsigned int getNAtoms() {
177 >      return nAtoms_;
178 >    }
179  
180 <  int n_constraints; // the number of constraints on the system
180 >    /** Returns the number of local bonds */        
181 >    unsigned int getNBonds(){
182 >      return nBonds_;
183 >    }
184  
185 <  int n_SRI;   // the number of short range interactions
185 >    /** Returns the number of local bends */        
186 >    unsigned int getNBends() {
187 >      return nBends_;
188 >    }
189  
190 <  double lrPot; // the potential energy from the long range calculations.
190 >    /** Returns the number of local torsions */        
191 >    unsigned int getNTorsions() {
192 >      return nTorsions_;
193 >    }
194  
195 <  double Hmat[3][3];  // the periodic boundry conditions. The Hmat is the
196 <                      // column vectors of the x, y, and z box vectors.
197 <                      //   h1  h2  h3
198 <                      // [ Xx  Yx  Zx ]
199 <                      // [ Xy  Yy  Zy ]
200 <                      // [ Xz  Yz  Zz ]
201 <                      //  
202 <  double HmatInv[3][3];
195 >    /** Returns the number of local torsions */        
196 >    unsigned int getNInversions() {
197 >      return nInversions_;
198 >    }
199 >    /** Returns the number of local rigid bodies */        
200 >    unsigned int getNRigidBodies() {
201 >      return nRigidBodies_;
202 >    }
203  
204 <  double boxL[3]; // The Lengths of the 3 column vectors of Hmat
205 <  double boxVol;
206 <  int orthoRhombic;
207 <  
204 >    /** Returns the number of local integrable objects */
205 >    unsigned int getNIntegrableObjects() {
206 >      return nIntegrableObjects_;
207 >    }
208  
209 <  double dielectric;      // the dielectric of the medium for reaction field
209 >    /** Returns the number of local cutoff groups */
210 >    unsigned int getNCutoffGroups() {
211 >      return nCutoffGroups_;
212 >    }
213  
214 <  
215 <  int usePBC; // whether we use periodic boundry conditions.
216 <  int useLJ;
217 <  int useSticky;
218 <  int useCharges;
219 <  int useDipoles;
220 <  int useReactionField;
221 <  int useGB;
222 <  int useEAM;
223 <  bool haveCutoffGroups;
224 <  bool useInitXSstate;
101 <  double orthoTolerance;
214 >    /** Returns the total number of constraints in this SimInfo */
215 >    unsigned int getNConstraints() {
216 >      return nConstraints_;
217 >    }
218 >        
219 >    /**
220 >     * Returns the first molecule in this SimInfo and intialize the iterator.
221 >     * @return the first molecule, return NULL if there is not molecule in this SimInfo
222 >     * @param i the iterator of molecule array (user shouldn't change it)
223 >     */
224 >    Molecule* beginMolecule(MoleculeIterator& i);
225  
226 <  double dt, run_time;           // the time step and total time
227 <  double sampleTime, statusTime; // the position and energy dump frequencies
228 <  double target_temp;            // the target temperature of the system
229 <  double thermalTime;            // the temp kick interval
230 <  double currentTime;            // Used primarily for correlation Functions
231 <  double resetTime;              // Use to reset the integrator periodically
109 <  short int have_target_temp;
226 >    /**
227 >     * Returns the next avaliable Molecule based on the iterator.
228 >     * @return the next avaliable molecule, return NULL if reaching the end of the array
229 >     * @param i the iterator of molecule array
230 >     */
231 >    Molecule* nextMolecule(MoleculeIterator& i);
232  
233 <  int n_mol;           // n_molecules;
234 <  Molecule* molecules; // the array of molecules
235 <  
236 <  int nComponents;           // the number of components in the system
115 <  int* componentsNmol;       // the number of molecules of each component
116 <  MoleculeStamp** compStamps;// the stamps matching the components
117 <  LinkedMolStamp* headStamp; // list of stamps used in the simulation
118 <  
119 <  
120 <  char ensemble[100]; // the enesemble of the simulation (NVT, NVE, etc. )
121 <  char mixingRule[100]; // the mixing rules for Lennard jones/van der walls
122 <  BaseIntegrator *the_integrator; // the integrator of the simulation
233 >    /** Returns the number of degrees of freedom */
234 >    int getNdf() {
235 >      return ndf_ - getFdf();
236 >    }
237  
238 <  OOPSEMinimizer* the_minimizer; // the energy minimizer
239 <  Restraints* restraint;
240 <  bool has_minimizer;
238 >    /** Returns the number of raw degrees of freedom */
239 >    int getNdfRaw() {
240 >      return ndfRaw_;
241 >    }
242  
243 <  string finalName;  // the name of the eor file to be written
244 <  string sampleName; // the name of the dump file to be written
245 <  string statusName; // the name of the stat file to be written
243 >    /** Returns the number of translational degrees of freedom */
244 >    int getNdfTrans() {
245 >      return ndfTrans_;
246 >    }
247  
248 <  int seed;                    //seed for random number generator
248 >    /** sets the current number of frozen degrees of freedom */
249 >    void setFdf(int fdf) {
250 >      fdf_local = fdf;
251 >    }
252  
253 <  int useSolidThermInt;  // is solid-state thermodynamic integration being used
254 <  int useLiquidThermInt; // is liquid thermodynamic integration being used
255 <  double thermIntLambda; // lambda for TI
256 <  double thermIntK;      // power of lambda for TI
257 <  double vRaw;           // unperturbed potential for TI
258 <  double vHarm;          // harmonic potential for TI
259 <  int i;                 // just an int
253 >    int getFdf();
254 >    
255 >    //getNZconstraint and setNZconstraint ruin the coherence of
256 >    //SimInfo class, need refactoring
257 >        
258 >    /** Returns the total number of z-constraint molecules in the system */
259 >    int getNZconstraint() {
260 >      return nZconstraint_;
261 >    }
262  
263 <  vector<double> mfact;
264 <  vector<int> FglobalGroupMembership;
265 <  int ngroup;
266 <  int* globalGroupMembership;
263 >    /**
264 >     * Sets the number of z-constraint molecules in the system.
265 >     */
266 >    void setNZconstraint(int nZconstraint) {
267 >      nZconstraint_ = nZconstraint;
268 >    }
269 >        
270 >    /** Returns the snapshot manager. */
271 >    SnapshotManager* getSnapshotManager() {
272 >      return sman_;
273 >    }
274  
275 <  // refreshes the sim if things get changed (load balanceing, volume
276 <  // adjustment, etc.)
275 >    /** Sets the snapshot manager. */
276 >    void setSnapshotManager(SnapshotManager* sman);
277 >        
278 >    /** Returns the force field */
279 >    ForceField* getForceField() {
280 >      return forceField_;
281 >    }
282  
283 <  void refreshSim( void );
284 <  
283 >    Globals* getSimParams() {
284 >      return simParams_;
285 >    }
286  
287 <  // sets the internal function pointer to fortran.
287 >    /** Returns the velocity of center of mass of the whole system.*/
288 >    Vector3d getComVel();
289  
290 <  void setInternal( setFortranSim_TD fSetup,
291 <                    setFortranBox_TD fBox,
292 <                    notifyFortranCutOff_TD fCut){
293 <    setFsimulation = fSetup;
294 <    setFortranBoxSize = fBox;
160 <    notifyFortranCutOffs = fCut;
161 <  }
290 >    /** Returns the center of the mass of the whole system.*/
291 >    Vector3d getCom();
292 >    /** Returns the center of the mass and Center of Mass velocity of
293 >        the whole system.*/
294 >    void getComAll(Vector3d& com,Vector3d& comVel);
295  
296 <  int getNDF();
297 <  int getNDFraw();
298 <  int getNDFtranslational();
299 <  int getTotIntegrableObjects();
300 <  void setBox( double newBox[3] );
301 <  void setBoxM( double newBox[3][3] );
169 <  void getBoxM( double theBox[3][3] );
170 <  void scaleBox( double scale );
171 <  
172 <  void setDefaultRcut( double theRcut );
173 <  void setDefaultRcut( double theRcut, double theRsw );
174 <  void checkCutOffs( void );
296 >    /** Returns intertia tensor for the entire system and system
297 >        Angular Momentum.*/
298 >    void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
299 >    
300 >    /** Returns system angular momentum */
301 >    Vector3d getAngularMomentum();
302  
303 <  double getRcut( void )  { return rCut; }
304 <  double getRlist( void ) { return rList; }
305 <  double getRsw( void )   { return rSw; }
306 <  double getMaxCutoff( void ) { return maxCutoff; }
307 <  
308 <  void setTime( double theTime ) { currentTime = theTime; }
309 <  void incrTime( double the_dt ) { currentTime += the_dt; }
310 <  void decrTime( double the_dt ) { currentTime -= the_dt; }
311 <  double getTime( void ) { return currentTime; }
185 <
186 <  void wrapVector( double thePos[3] );
187 <
188 <  SimState* getConfiguration( void ) { return myConfiguration; }
189 <  
190 <  void addProperty(GenericData* prop);
191 <  GenericData* getProperty(const string& propName);
192 <  //vector<GenericData*>& getProperties()  {return properties;}    
303 >    /** Returns volume of system as estimated by an ellipsoid defined
304 >        by the radii of gyration*/
305 >    void getGyrationalVolume(RealType &vol);
306 >    /** Overloaded version of gyrational volume that also returns
307 >        det(I) so dV/dr can be calculated*/
308 >    void getGyrationalVolume(RealType &vol, RealType &detI);
309 >    /** main driver function to interact with fortran during the
310 >        initialization and molecule migration */
311 >    void update();
312  
313 <  int getSeed(void) {  return seed; }
314 <  void setSeed(int theSeed) {  seed = theSeed;}
313 >    /** Returns the local index manager */
314 >    LocalIndexManager* getLocalIndexManager() {
315 >      return &localIndexMan_;
316 >    }
317  
318 < private:
318 >    int getMoleculeStampId(int globalIndex) {
319 >      //assert(globalIndex < molStampIds_.size())
320 >      return molStampIds_[globalIndex];
321 >    }
322  
323 <  SimState* myConfiguration;
323 >    /** Returns the molecule stamp */
324 >    MoleculeStamp* getMoleculeStamp(int id) {
325 >      return moleculeStamps_[id];
326 >    }
327  
328 <  int boxIsInit, haveRcut, haveRsw;
328 >    /** Return the total number of the molecule stamps */
329 >    int getNMoleculeStamp() {
330 >      return moleculeStamps_.size();
331 >    }
332 >    /**
333 >     * Finds a molecule with a specified global index
334 >     * @return a pointer point to found molecule
335 >     * @param index
336 >     */
337 >    Molecule* getMoleculeByGlobalIndex(int index) {
338 >      MoleculeIterator i;
339 >      i = molecules_.find(index);
340  
341 <  double rList, rCut; // variables for the neighborlist
342 <  double rSw;         // the switching radius
341 >      return i != molecules_.end() ? i->second : NULL;
342 >    }
343  
344 <  double maxCutoff;
344 >    int getGlobalMolMembership(int id){
345 >      return globalMolMembership_[id];
346 >    }
347  
348 <  double distXY;
349 <  double distYZ;
350 <  double distZX;
211 <  
212 <  void calcHmatInv( void );
213 <  void calcBoxL();
214 <  double calcMaxCutOff();
348 >    RealType getCutoffRadius() {
349 >      return cutoffRadius_;
350 >    }
351  
352 <  // private function to initialize the fortran side of the simulation
353 <  setFortranSim_TD setFsimulation;
352 >    RealType getSwitchingRadius() {
353 >      return switchingRadius_;
354 >    }
355  
356 <  setFortranBox_TD setFortranBoxSize;
357 <  
358 <  notifyFortranCutOff_TD notifyFortranCutOffs;
359 <  
360 <  //Addtional Properties of SimInfo
361 <  map<string, GenericData*> properties;
362 <  void getFortranGroupArrays(SimInfo* info,
226 <                             vector<int>& FglobalGroupMembership,
227 <                             vector<double>& mfact);
356 >    RealType getListRadius() {
357 >      return listRadius_;
358 >    }
359 >        
360 >    string getFinalConfigFileName() {
361 >      return finalConfigFileName_;
362 >    }
363  
364 +    void setFinalConfigFileName(const string& fileName) {
365 +      finalConfigFileName_ = fileName;
366 +    }
367  
368 < };
368 >    string getRawMetaData() {
369 >      return rawMetaData_;
370 >    }
371 >    void setRawMetaData(const string& rawMetaData) {
372 >      rawMetaData_ = rawMetaData;
373 >    }
374 >        
375 >    string getDumpFileName() {
376 >      return dumpFileName_;
377 >    }
378 >        
379 >    void setDumpFileName(const string& fileName) {
380 >      dumpFileName_ = fileName;
381 >    }
382  
383 +    string getStatFileName() {
384 +      return statFileName_;
385 +    }
386 +        
387 +    void setStatFileName(const string& fileName) {
388 +      statFileName_ = fileName;
389 +    }
390 +        
391 +    string getRestFileName() {
392 +      return restFileName_;
393 +    }
394 +        
395 +    void setRestFileName(const string& fileName) {
396 +      restFileName_ = fileName;
397 +    }
398  
399 < #endif
399 >    /**
400 >     * Sets GlobalGroupMembership
401 >     * @see #SimCreator::setGlobalIndex
402 >     */  
403 >    void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
404 >      assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
405 >      globalGroupMembership_ = globalGroupMembership;
406 >    }
407 >
408 >    /**
409 >     * Sets GlobalMolMembership
410 >     * @see #SimCreator::setGlobalIndex
411 >     */        
412 >    void setGlobalMolMembership(const vector<int>& globalMolMembership) {
413 >      assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
414 >      globalMolMembership_ = globalMolMembership;
415 >    }
416 >
417 >
418 >    bool isFortranInitialized() {
419 >      return fortranInitialized_;
420 >    }
421 >        
422 >    bool getCalcBoxDipole() {
423 >      return calcBoxDipole_;
424 >    }
425 >
426 >    bool getUseAtomicVirial() {
427 >      return useAtomicVirial_;
428 >    }
429 >
430 >    /**
431 >     * Adds property into property map
432 >     * @param genData GenericData to be added into PropertyMap
433 >     */
434 >    void addProperty(GenericData* genData);
435 >
436 >    /**
437 >     * Removes property from PropertyMap by name
438 >     * @param propName the name of property to be removed
439 >     */
440 >    void removeProperty(const string& propName);
441 >
442 >    /**
443 >     * clear all of the properties
444 >     */
445 >    void clearProperties();
446 >
447 >    /**
448 >     * Returns all names of properties
449 >     * @return all names of properties
450 >     */
451 >    vector<string> getPropertyNames();
452 >
453 >    /**
454 >     * Returns all of the properties in PropertyMap
455 >     * @return all of the properties in PropertyMap
456 >     */      
457 >    vector<GenericData*> getProperties();
458 >
459 >    /**
460 >     * Returns property
461 >     * @param propName name of property
462 >     * @return a pointer point to property with propName. If no property named propName
463 >     * exists, return NULL
464 >     */      
465 >    GenericData* getPropertyByName(const string& propName);
466 >
467 >    /**
468 >     * add all special interaction pairs (including excluded
469 >     * interactions) in a molecule into the appropriate lists.
470 >     */
471 >    void addInteractionPairs(Molecule* mol);
472 >
473 >    /**
474 >     * remove all special interaction pairs which belong to a molecule
475 >     * from the appropriate lists.
476 >     */
477 >    void removeInteractionPairs(Molecule* mol);
478 >
479 >
480 >    /** Returns the unique atom types of local processor in an array */
481 >    set<AtomType*> getUniqueAtomTypes();
482 >
483 >    /** Returns the set of atom types present in this simulation */
484 >    set<AtomType*> getSimulatedAtomTypes();
485 >        
486 >    friend ostream& operator <<(ostream& o, SimInfo& info);
487 >
488 >    void getCutoff(RealType& rcut, RealType& rsw);
489 >        
490 >  private:
491 >
492 >    /** fill up the simtype struct*/
493 >    void setupSimType();
494 >
495 >    /**
496 >     * Setup Fortran Simulation
497 >     * @see #setupFortranParallel
498 >     */
499 >    void setupFortranSim();
500 >
501 >    /** Figure out the cutoff radius */
502 >    void setupCutoffRadius();
503 >    /** Figure out the cutoff method */
504 >    void setupCutoffMethod();
505 >    /** Figure out the switching radius */
506 >    void setupSwitchingRadius();
507 >    /** Figure out the neighbor list skin thickness */
508 >    void setupSkinThickness();
509 >    /** Figure out which polynomial type to use for the switching function */
510 >    void setupSwitchingFunction();
511 >
512 >    /** Determine if we need to accumulate the simulation box dipole */
513 >    void setupAccumulateBoxDipole();
514 >
515 >    /** Calculates the number of degress of freedom in the whole system */
516 >    void calcNdf();
517 >    void calcNdfRaw();
518 >    void calcNdfTrans();
519 >
520 >    /**
521 >     * Adds molecule stamp and the total number of the molecule with
522 >     * same molecule stamp in the whole system.
523 >     */
524 >    void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
525 >
526 >    // Other classes holdingn important information
527 >    ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
528 >    Globals* simParams_;     /**< provides access to simulation parameters set by user */
529 >
530 >    ///  Counts of local objects
531 >    int nAtoms_;              /**< number of atoms in local processor */
532 >    int nBonds_;              /**< number of bonds in local processor */
533 >    int nBends_;              /**< number of bends in local processor */
534 >    int nTorsions_;           /**< number of torsions in local processor */
535 >    int nInversions_;         /**< number of inversions in local processor */
536 >    int nRigidBodies_;        /**< number of rigid bodies in local processor */
537 >    int nIntegrableObjects_;  /**< number of integrable objects in local processor */
538 >    int nCutoffGroups_;       /**< number of cutoff groups in local processor */
539 >    int nConstraints_;        /**< number of constraints in local processors */
540 >        
541 >    /// Counts of global objects
542 >    int nGlobalMols_;              /**< number of molecules in the system (GLOBAL) */
543 >    int nGlobalAtoms_;             /**< number of atoms in the system (GLOBAL) */
544 >    int nGlobalCutoffGroups_;      /**< number of cutoff groups in this system (GLOBAL) */
545 >    int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
546 >    int nGlobalRigidBodies_;       /**< number of rigid bodies in this system (GLOBAL) */
547 >      
548 >    /// Degress of freedom
549 >    int ndf_;          /**< number of degress of freedom (excludes constraints) (LOCAL) */
550 >    int fdf_local;     /**< number of frozen degrees of freedom (LOCAL) */
551 >    int fdf_;          /**< number of frozen degrees of freedom (GLOBAL) */
552 >    int ndfRaw_;       /**< number of degress of freedom (includes constraints),  (LOCAL) */
553 >    int ndfTrans_;     /**< number of translation degress of freedom, (LOCAL) */
554 >    int nZconstraint_; /**< number of  z-constraint molecules (GLOBAL) */
555 >
556 >    /// logicals
557 >    bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
558 >    bool usesDirectionalAtoms_;   /**< are there atoms with position AND orientation? */
559 >    bool usesMetallicAtoms_;      /**< are there transition metal atoms? */
560 >    bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
561 >    bool usesAtomicVirial_;       /**< are we computing atomic virials? */
562 >    bool requiresPrepair_;        /**< does this simulation require a pre-pair loop? */
563 >    bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
564 >    bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
565 >
566 >    /// Data structures holding primary simulation objects
567 >    map<int, Molecule*>  molecules_;  /**< map holding pointers to LOCAL molecules */
568 >    simtype fInfo_;                   /**< A dual struct shared by C++
569 >                                         and Fortran to pass
570 >                                         information about what types
571 >                                         of calculation are
572 >                                         required */
573 >    
574 >    /// Stamps are templates for objects that are then used to create
575 >    /// groups of objects.  For example, a molecule stamp contains
576 >    /// information on how to build that molecule (i.e. the topology,
577 >    /// the atoms, the bonds, etc.)  Once the system is built, the
578 >    /// stamps are no longer useful.
579 >    vector<int> molStampIds_;                /**< stamp id for molecules in the system */
580 >    vector<MoleculeStamp*> moleculeStamps_;  /**< molecule stamps array */        
581 >
582 >    /**
583 >     * A vector that maps between the global index of an atom, and the
584 >     * global index of cutoff group the atom belong to.  It is filled
585 >     * by SimCreator once and only once, since it never changed during
586 >     * the simulation.  It should be nGlobalAtoms_ in size.
587 >     */
588 >    vector<int> globalGroupMembership_;
589 >
590 >    /**
591 >     * A vector that maps between the global index of an atom and the
592 >     * global index of the molecule the atom belongs to.  It is filled
593 >     * by SimCreator once and only once, since it is never changed
594 >     * during the simulation. It shoudl be nGlobalAtoms_ in size.
595 >     */
596 >    vector<int> globalMolMembership_;        
597 >              
598 >    /// lists to handle atoms needing special treatment in the non-bonded interactions
599 >    PairList excludedInteractions_;  /**< atoms excluded from interacting with each other */
600 >    PairList oneTwoInteractions_;    /**< atoms that are directly Bonded */
601 >    PairList oneThreeInteractions_;  /**< atoms sharing a Bend */    
602 >    PairList oneFourInteractions_;   /**< atoms sharing a Torsion */
603 >
604 >    PropertyMap properties_;       /**< Generic Properties can be added */
605 >    SnapshotManager* sman_;        /**< SnapshotManager (handles particle positions, etc.) */
606 >
607 >    /**
608 >     * The reason to have a local index manager is that when molecule
609 >     * is migrating to other processors, the atoms and the
610 >     * rigid-bodies will release their local indices to
611 >     * LocalIndexManager. Combining the information of molecule
612 >     * migrating to current processor, Migrator class can query the
613 >     * LocalIndexManager to make a efficient data moving plan.
614 >     */        
615 >    LocalIndexManager localIndexMan_;
616 >
617 >    // unparsed MetaData block for storing in Dump and EOR files:
618 >    string rawMetaData_;
619 >
620 >    // file names
621 >    string finalConfigFileName_;
622 >    string dumpFileName_;
623 >    string statFileName_;
624 >    string restFileName_;
625 >        
626 >    RealType cutoffRadius_;         /**< cutoff radius for non-bonded interactions */
627 >    RealType switchingRadius_;      /**< inner radius of switching function */
628 >    RealType listRadius_;           /**< Verlet neighbor list radius */
629 >    RealType skinThickness_;        /**< Verlet neighbor list skin thickness */    
630 >    CutoffMethod cutoffMethod_;     /**< Cutoff Method for most non-bonded interactions */
631 >
632 >    bool fortranInitialized_; /** flag to indicate whether the fortran side is initialized */
633 >    
634 >    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
635 >                            the simulation box dipole moment */
636 >    
637 >    bool useAtomicVirial_; /**< flag to indicate whether or not we use
638 >                              Atomic Virials to calculate the pressure */
639 >    
640 >  public:
641 >    /**
642 >     * return an integral objects by its global index. In MPI
643 >     * version, if the StuntDouble with specified global index does
644 >      * not belong to local processor, a NULL will be return.
645 >      */
646 >    StuntDouble* getIOIndexToIntegrableObject(int index);
647 >    void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
648 >    
649 >  private:
650 >    vector<StuntDouble*> IOIndexToIntegrableObject;
651 >    
652 >  public:
653 >                
654 >    /**
655 >     * Finds the processor where a molecule resides
656 >     * @return the id of the processor which contains the molecule
657 >     * @param globalIndex global Index of the molecule
658 >     */
659 >    int getMolToProc(int globalIndex) {
660 >      //assert(globalIndex < molToProcMap_.size());
661 >      return molToProcMap_[globalIndex];
662 >    }
663 >    
664 >    /**
665 >     * Set MolToProcMap array
666 >     * @see #SimCreator::divideMolecules
667 >     */
668 >    void setMolToProcMap(const vector<int>& molToProcMap) {
669 >      molToProcMap_ = molToProcMap;
670 >    }
671 >        
672 >  private:
673 >
674 >    void setupFortranParallel();
675 >        
676 >    /**
677 >     * The size of molToProcMap_ is equal to total number of molecules
678 >     * in the system.  It maps a molecule to the processor on which it
679 >     * resides. it is filled by SimCreator once and only once.
680 >     */        
681 >    vector<int> molToProcMap_;
682 >
683 >  };
684 >
685 > } //namespace OpenMD
686 > #endif //BRAINS_SIMMODEL_HPP
687 >

Comparing:
trunk/src/brains/SimInfo.hpp (property svn:keywords), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/SimInfo.hpp (property svn:keywords), Revision 1528 by gezelter, Fri Dec 17 20:11:05 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines