ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.hpp (file contents):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC

# Line 1 | Line 1
1 < #ifndef __SIMINFO_H__
2 < #define __SIMINFO_H__
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimInfo.hpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <map>
50 < #include <string>
49 > #ifndef BRAINS_SIMMODEL_HPP
50 > #define BRAINS_SIMMODEL_HPP
51 >
52 > #include <iostream>
53 > #include <set>
54 > #include <utility>
55   #include <vector>
56  
57 < #include "Atom.hpp"
58 < #include "RigidBody.hpp"
59 < #include "Molecule.hpp"
60 < #include "Exclude.hpp"
61 < #include "SkipList.hpp"
62 < #include "AbstractClasses.hpp"
63 < #include "MakeStamps.hpp"
64 < #include "SimState.hpp"
16 < #include "Restraints.hpp"
57 > #include "brains/PairList.hpp"
58 > #include "io/Globals.hpp"
59 > #include "math/Vector3.hpp"
60 > #include "math/SquareMatrix3.hpp"
61 > #include "types/MoleculeStamp.hpp"
62 > #include "UseTheForce/ForceField.hpp"
63 > #include "utils/PropertyMap.hpp"
64 > #include "utils/LocalIndexManager.hpp"
65  
66 < #define __C
67 < #include "fSimulation.h"
68 < #include "fortranWrapDefines.hpp"
21 < #include "GenericData.hpp"
66 > //another nonsense macro declaration
67 > #define __OPENMD_C
68 > #include "brains/fSimulation.h"
69  
70 + namespace OpenMD{
71  
72 < //#include "Minimizer.hpp"
73 < //#include "OOPSEMinimizer.hpp"
72 >  //forward decalration
73 >  class SnapshotManager;
74 >  class Molecule;
75 >  class SelectionManager;
76 >  class StuntDouble;
77 >  /**
78 >   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
79 >   * @brief One of the heavy weight classes of OpenMD, SimInfo maintains a list of molecules.
80 >    * The Molecule class maintains all of the concrete objects
81 >    * (atoms, bond, bend, torsions, inversions, rigid bodies, cutoff groups,
82 >    * constraints). In both the single and parallel versions, atoms and
83 >    * rigid bodies have both global and local indices.  The local index is
84 >    * not relevant to molecules or cutoff groups.
85 >    */
86 >  class SimInfo {
87 >  public:
88 >    typedef std::map<int, Molecule*>::iterator  MoleculeIterator;
89  
90 +    /**
91 +     * Constructor of SimInfo
92 +     * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
93 +     * second element is the total number of molecules with the same molecule stamp in the system
94 +     * @param ff pointer of a concrete ForceField instance
95 +     * @param simParams
96 +     * @note
97 +     */
98 +    SimInfo(ForceField* ff, Globals* simParams);
99 +    virtual ~SimInfo();
100  
101 < double roundMe( double x );
102 < class OOPSEMinimizer;
103 < class SimInfo{
101 >    /**
102 >     * Adds a molecule
103 >     * @return return true if adding successfully, return false if the molecule is already in SimInfo
104 >     * @param mol molecule to be added
105 >     */
106 >    bool addMolecule(Molecule* mol);
107  
108 < public:
108 >    /**
109 >     * Removes a molecule from SimInfo
110 >     * @return true if removing successfully, return false if molecule is not in this SimInfo
111 >     */
112 >    bool removeMolecule(Molecule* mol);
113  
114 <  SimInfo();
115 <  ~SimInfo();
114 >    /** Returns the total number of molecules in the system. */
115 >    int getNGlobalMolecules() {
116 >      return nGlobalMols_;
117 >    }
118  
119 <  int n_atoms; // the number of atoms
120 <  Atom **atoms; // the array of atom objects
119 >    /** Returns the total number of atoms in the system. */
120 >    int getNGlobalAtoms() {
121 >      return nGlobalAtoms_;
122 >    }
123  
124 <  vector<RigidBody*> rigidBodies;  // A vector of rigid bodies
125 <  vector<StuntDouble*> integrableObjects;
126 <  
127 <  double tau[9]; // the stress tensor
124 >    /** Returns the total number of cutoff groups in the system. */
125 >    int getNGlobalCutoffGroups() {
126 >      return nGlobalCutoffGroups_;
127 >    }
128  
129 <  int n_bonds;    // number of bends
130 <  int n_bends;    // number of bends
131 <  int n_torsions; // number of torsions
132 <  int n_oriented; // number of of atoms with orientation
133 <  int ndf;        // number of actual degrees of freedom
134 <  int ndfRaw;     // number of settable degrees of freedom
135 <  int ndfTrans;   // number of translational degrees of freedom
52 <  int nZconstraints; // the number of zConstraints
129 >    /**
130 >     * Returns the total number of integrable objects (total number of rigid bodies plus the total number
131 >     * of atoms which do not belong to the rigid bodies) in the system
132 >     */
133 >    int getNGlobalIntegrableObjects() {
134 >      return nGlobalIntegrableObjects_;
135 >    }
136  
137 <  int setTemp;   // boolean to set the temperature at each sampleTime
138 <  int resetIntegrator; // boolean to reset the integrator
137 >    /**
138 >     * Returns the total number of integrable objects (total number of rigid bodies plus the total number
139 >     * of atoms which do not belong to the rigid bodies) in the system
140 >     */
141 >    int getNGlobalRigidBodies() {
142 >      return nGlobalRigidBodies_;
143 >    }
144  
145 <  int n_dipoles; // number of dipoles
145 >    int getNGlobalConstraints();
146 >    /**
147 >     * Returns the number of local molecules.
148 >     * @return the number of local molecules
149 >     */
150 >    int getNMolecules() {
151 >      return molecules_.size();
152 >    }
153  
154 <  int n_exclude;
155 <  Exclude* excludes;  // the exclude list for ignoring pairs in fortran
156 <  int nGlobalExcludes;
157 <  int* globalExcludes; // same as above, but these guys participate in
63 <                       // no long range forces.
154 >    /** Returns the number of local atoms */
155 >    unsigned int getNAtoms() {
156 >      return nAtoms_;
157 >    }
158  
159 <  int* identArray;     // array of unique identifiers for the atoms
160 <  int* molMembershipArray;  // map of atom numbers onto molecule numbers
159 >    /** Returns the number of local bonds */        
160 >    unsigned int getNBonds(){
161 >      return nBonds_;
162 >    }
163  
164 <  int n_constraints; // the number of constraints on the system
164 >    /** Returns the number of local bends */        
165 >    unsigned int getNBends() {
166 >      return nBends_;
167 >    }
168  
169 <  int n_SRI;   // the number of short range interactions
169 >    /** Returns the number of local torsions */        
170 >    unsigned int getNTorsions() {
171 >      return nTorsions_;
172 >    }
173  
174 <  double lrPot; // the potential energy from the long range calculations.
174 >    /** Returns the number of local torsions */        
175 >    unsigned int getNInversions() {
176 >      return nInversions_;
177 >    }
178 >    /** Returns the number of local rigid bodies */        
179 >    unsigned int getNRigidBodies() {
180 >      return nRigidBodies_;
181 >    }
182  
183 <  double Hmat[3][3];  // the periodic boundry conditions. The Hmat is the
184 <                      // column vectors of the x, y, and z box vectors.
185 <                      //   h1  h2  h3
186 <                      // [ Xx  Yx  Zx ]
78 <                      // [ Xy  Yy  Zy ]
79 <                      // [ Xz  Yz  Zz ]
80 <                      //  
81 <  double HmatInv[3][3];
183 >    /** Returns the number of local integrable objects */
184 >    unsigned int getNIntegrableObjects() {
185 >      return nIntegrableObjects_;
186 >    }
187  
188 <  double boxL[3]; // The Lengths of the 3 column vectors of Hmat
189 <  double boxVol;
190 <  int orthoRhombic;
191 <  
188 >    /** Returns the number of local cutoff groups */
189 >    unsigned int getNCutoffGroups() {
190 >      return nCutoffGroups_;
191 >    }
192  
193 <  double dielectric;      // the dielectric of the medium for reaction field
193 >    /** Returns the total number of constraints in this SimInfo */
194 >    unsigned int getNConstraints() {
195 >      return nConstraints_;
196 >    }
197 >        
198 >    /**
199 >     * Returns the first molecule in this SimInfo and intialize the iterator.
200 >     * @return the first molecule, return NULL if there is not molecule in this SimInfo
201 >     * @param i the iterator of molecule array (user shouldn't change it)
202 >     */
203 >    Molecule* beginMolecule(MoleculeIterator& i);
204  
205 <  
206 <  int usePBC; // whether we use periodic boundry conditions.
207 <  int useLJ;
208 <  int useSticky;
209 <  int useCharges;
210 <  int useDipoles;
96 <  int useReactionField;
97 <  int useGB;
98 <  int useEAM;
99 <  bool haveCutoffGroups;
100 <  bool useInitXSstate;
101 <  double orthoTolerance;
205 >    /**
206 >     * Returns the next avaliable Molecule based on the iterator.
207 >     * @return the next avaliable molecule, return NULL if reaching the end of the array
208 >     * @param i the iterator of molecule array
209 >     */
210 >    Molecule* nextMolecule(MoleculeIterator& i);
211  
212 <  double dt, run_time;           // the time step and total time
213 <  double sampleTime, statusTime; // the position and energy dump frequencies
214 <  double target_temp;            // the target temperature of the system
215 <  double thermalTime;            // the temp kick interval
107 <  double currentTime;            // Used primarily for correlation Functions
108 <  double resetTime;              // Use to reset the integrator periodically
109 <  short int have_target_temp;
212 >    /** Returns the number of degrees of freedom */
213 >    int getNdf() {
214 >      return ndf_ - getFdf();
215 >    }
216  
217 <  int n_mol;           // n_molecules;
218 <  Molecule* molecules; // the array of molecules
219 <  
220 <  int nComponents;           // the number of components in the system
115 <  int* componentsNmol;       // the number of molecules of each component
116 <  MoleculeStamp** compStamps;// the stamps matching the components
117 <  LinkedMolStamp* headStamp; // list of stamps used in the simulation
118 <  
119 <  
120 <  char ensemble[100]; // the enesemble of the simulation (NVT, NVE, etc. )
121 <  char mixingRule[100]; // the mixing rules for Lennard jones/van der walls
122 <  BaseIntegrator *the_integrator; // the integrator of the simulation
217 >    /** Returns the number of raw degrees of freedom */
218 >    int getNdfRaw() {
219 >      return ndfRaw_;
220 >    }
221  
222 <  OOPSEMinimizer* the_minimizer; // the energy minimizer
223 <  Restraints* restraint;
224 <  bool has_minimizer;
222 >    /** Returns the number of translational degrees of freedom */
223 >    int getNdfTrans() {
224 >      return ndfTrans_;
225 >    }
226  
227 <  string finalName;  // the name of the eor file to be written
228 <  string sampleName; // the name of the dump file to be written
229 <  string statusName; // the name of the stat file to be written
227 >    /** sets the current number of frozen degrees of freedom */
228 >    void setFdf(int fdf) {
229 >      fdf_local = fdf;
230 >    }
231  
232 <  int seed;                    //seed for random number generator
232 >    int getFdf();
233 >    
234 >    //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
235 >        
236 >    /** Returns the total number of z-constraint molecules in the system */
237 >    int getNZconstraint() {
238 >      return nZconstraint_;
239 >    }
240  
241 <  int useSolidThermInt;  // is solid-state thermodynamic integration being used
242 <  int useLiquidThermInt; // is liquid thermodynamic integration being used
243 <  double thermIntLambda; // lambda for TI
244 <  double thermIntK;      // power of lambda for TI
245 <  double vRaw;           // unperturbed potential for TI
246 <  double vHarm;          // harmonic potential for TI
247 <  int i;                 // just an int
241 >    /**
242 >     * Sets the number of z-constraint molecules in the system.
243 >     */
244 >    void setNZconstraint(int nZconstraint) {
245 >      nZconstraint_ = nZconstraint;
246 >    }
247 >        
248 >    /** Returns the snapshot manager. */
249 >    SnapshotManager* getSnapshotManager() {
250 >      return sman_;
251 >    }
252  
253 <  vector<double> mfact;
254 <  vector<int> FglobalGroupMembership;
255 <  int ngroup;
256 <  int* globalGroupMembership;
253 >    /** Sets the snapshot manager. */
254 >    void setSnapshotManager(SnapshotManager* sman);
255 >        
256 >    /** Returns the force field */
257 >    ForceField* getForceField() {
258 >      return forceField_;
259 >    }
260  
261 <  // refreshes the sim if things get changed (load balanceing, volume
262 <  // adjustment, etc.)
261 >    Globals* getSimParams() {
262 >      return simParams_;
263 >    }
264  
265 <  void refreshSim( void );
266 <  
265 >    /** Returns the velocity of center of mass of the whole system.*/
266 >    Vector3d getComVel();
267  
268 <  // sets the internal function pointer to fortran.
268 >    /** Returns the center of the mass of the whole system.*/
269 >    Vector3d getCom();
270 >   /** Returns the center of the mass and Center of Mass velocity of the whole system.*/
271 >    void getComAll(Vector3d& com,Vector3d& comVel);
272  
273 <  void setInternal( setFortranSim_TD fSetup,
274 <                    setFortranBox_TD fBox,
275 <                    notifyFortranCutOff_TD fCut){
276 <    setFsimulation = fSetup;
277 <    setFortranBoxSize = fBox;
160 <    notifyFortranCutOffs = fCut;
161 <  }
273 >    /** Returns intertia tensor for the entire system and system Angular Momentum.*/
274 >    void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
275 >    
276 >    /** Returns system angular momentum */
277 >    Vector3d getAngularMomentum();
278  
279 <  int getNDF();
280 <  int getNDFraw();
281 <  int getNDFtranslational();
282 <  int getTotIntegrableObjects();
283 <  void setBox( double newBox[3] );
284 <  void setBoxM( double newBox[3][3] );
169 <  void getBoxM( double theBox[3][3] );
170 <  void scaleBox( double scale );
171 <  
172 <  void setDefaultRcut( double theRcut );
173 <  void setDefaultRcut( double theRcut, double theRsw );
174 <  void checkCutOffs( void );
279 >    /** Returns volume of system as estimated by an ellipsoid defined by the radii of gyration*/
280 >    void getGyrationalVolume(RealType &vol);
281 >    /** Overloaded version of gyrational volume that also returns det(I) so dV/dr can be calculated*/
282 >    void getGyrationalVolume(RealType &vol, RealType &detI);
283 >    /** main driver function to interact with fortran during the initialization and molecule migration */
284 >    void update();
285  
286 <  double getRcut( void )  { return rCut; }
287 <  double getRlist( void ) { return rList; }
288 <  double getRsw( void )   { return rSw; }
289 <  double getMaxCutoff( void ) { return maxCutoff; }
180 <  
181 <  void setTime( double theTime ) { currentTime = theTime; }
182 <  void incrTime( double the_dt ) { currentTime += the_dt; }
183 <  void decrTime( double the_dt ) { currentTime -= the_dt; }
184 <  double getTime( void ) { return currentTime; }
185 <
186 <  void wrapVector( double thePos[3] );
286 >    /** Returns the local index manager */
287 >    LocalIndexManager* getLocalIndexManager() {
288 >      return &localIndexMan_;
289 >    }
290  
291 <  SimState* getConfiguration( void ) { return myConfiguration; }
292 <  
293 <  void addProperty(GenericData* prop);
294 <  GenericData* getProperty(const string& propName);
192 <  //vector<GenericData*>& getProperties()  {return properties;}    
291 >    int getMoleculeStampId(int globalIndex) {
292 >      //assert(globalIndex < molStampIds_.size())
293 >      return molStampIds_[globalIndex];
294 >    }
295  
296 <  int getSeed(void) {  return seed; }
297 <  void setSeed(int theSeed) {  seed = theSeed;}
296 >    /** Returns the molecule stamp */
297 >    MoleculeStamp* getMoleculeStamp(int id) {
298 >      return moleculeStamps_[id];
299 >    }
300  
301 < private:
301 >    /** Return the total number of the molecule stamps */
302 >    int getNMoleculeStamp() {
303 >      return moleculeStamps_.size();
304 >    }
305 >    /**
306 >     * Finds a molecule with a specified global index
307 >     * @return a pointer point to found molecule
308 >     * @param index
309 >     */
310 >    Molecule* getMoleculeByGlobalIndex(int index) {
311 >      MoleculeIterator i;
312 >      i = molecules_.find(index);
313  
314 <  SimState* myConfiguration;
314 >      return i != molecules_.end() ? i->second : NULL;
315 >    }
316  
317 <  int boxIsInit, haveRcut, haveRsw;
317 >    int getGlobalMolMembership(int id){
318 >      return globalMolMembership_[id];
319 >    }
320  
321 <  double rList, rCut; // variables for the neighborlist
322 <  double rSw;         // the switching radius
321 >    RealType getRcut() {
322 >      return rcut_;
323 >    }
324  
325 <  double maxCutoff;
325 >    RealType getRsw() {
326 >      return rsw_;
327 >    }
328  
329 <  double distXY;
330 <  double distYZ;
331 <  double distZX;
332 <  
333 <  void calcHmatInv( void );
334 <  void calcBoxL();
335 <  double calcMaxCutOff();
329 >    RealType getList() {
330 >      return rlist_;
331 >    }
332 >        
333 >    std::string getFinalConfigFileName() {
334 >      return finalConfigFileName_;
335 >    }
336  
337 <  // private function to initialize the fortran side of the simulation
338 <  setFortranSim_TD setFsimulation;
337 >    void setFinalConfigFileName(const std::string& fileName) {
338 >      finalConfigFileName_ = fileName;
339 >    }
340  
341 <  setFortranBox_TD setFortranBoxSize;
342 <  
343 <  notifyFortranCutOff_TD notifyFortranCutOffs;
344 <  
345 <  //Addtional Properties of SimInfo
346 <  map<string, GenericData*> properties;
347 <  void getFortranGroupArrays(SimInfo* info,
348 <                             vector<int>& FglobalGroupMembership,
349 <                             vector<double>& mfact);
341 >    std::string getRawMetaData() {
342 >      return rawMetaData_;
343 >    }
344 >    void setRawMetaData(const std::string& rawMetaData) {
345 >      rawMetaData_ = rawMetaData;
346 >    }
347 >        
348 >    std::string getDumpFileName() {
349 >      return dumpFileName_;
350 >    }
351 >        
352 >    void setDumpFileName(const std::string& fileName) {
353 >      dumpFileName_ = fileName;
354 >    }
355  
356 +    std::string getStatFileName() {
357 +      return statFileName_;
358 +    }
359 +        
360 +    void setStatFileName(const std::string& fileName) {
361 +      statFileName_ = fileName;
362 +    }
363 +        
364 +    std::string getRestFileName() {
365 +      return restFileName_;
366 +    }
367 +        
368 +    void setRestFileName(const std::string& fileName) {
369 +      restFileName_ = fileName;
370 +    }
371  
372 < };
372 >    /**
373 >     * Sets GlobalGroupMembership
374 >     * @see #SimCreator::setGlobalIndex
375 >     */  
376 >    void setGlobalGroupMembership(const std::vector<int>& globalGroupMembership) {
377 >      assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
378 >      globalGroupMembership_ = globalGroupMembership;
379 >    }
380  
381 +    /**
382 +     * Sets GlobalMolMembership
383 +     * @see #SimCreator::setGlobalIndex
384 +     */        
385 +    void setGlobalMolMembership(const std::vector<int>& globalMolMembership) {
386 +      assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
387 +      globalMolMembership_ = globalMolMembership;
388 +    }
389  
390 < #endif
390 >
391 >    bool isFortranInitialized() {
392 >      return fortranInitialized_;
393 >    }
394 >        
395 >    bool getCalcBoxDipole() {
396 >      return calcBoxDipole_;
397 >    }
398 >
399 >    bool getUseAtomicVirial() {
400 >      return useAtomicVirial_;
401 >    }
402 >
403 >    //below functions are just forward functions
404 >    //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
405 >    //the other hand, has-a relation need composing.
406 >    /**
407 >     * Adds property into property map
408 >     * @param genData GenericData to be added into PropertyMap
409 >     */
410 >    void addProperty(GenericData* genData);
411 >
412 >    /**
413 >     * Removes property from PropertyMap by name
414 >     * @param propName the name of property to be removed
415 >     */
416 >    void removeProperty(const std::string& propName);
417 >
418 >    /**
419 >     * clear all of the properties
420 >     */
421 >    void clearProperties();
422 >
423 >    /**
424 >     * Returns all names of properties
425 >     * @return all names of properties
426 >     */
427 >    std::vector<std::string> getPropertyNames();
428 >
429 >    /**
430 >     * Returns all of the properties in PropertyMap
431 >     * @return all of the properties in PropertyMap
432 >     */      
433 >    std::vector<GenericData*> getProperties();
434 >
435 >    /**
436 >     * Returns property
437 >     * @param propName name of property
438 >     * @return a pointer point to property with propName. If no property named propName
439 >     * exists, return NULL
440 >     */      
441 >    GenericData* getPropertyByName(const std::string& propName);
442 >
443 >    /**
444 >     * add all special interaction pairs (including excluded
445 >     * interactions) in a molecule into the appropriate lists.
446 >     */
447 >    void addInteractionPairs(Molecule* mol);
448 >
449 >    /**
450 >     * remove all special interaction pairs which belong to a molecule
451 >     * from the appropriate lists.
452 >     */
453 >    void removeInteractionPairs(Molecule* mol);
454 >
455 >
456 >    /** Returns the unique atom types of local processor in an array */
457 >    std::set<AtomType*> getUniqueAtomTypes();
458 >        
459 >    friend std::ostream& operator <<(std::ostream& o, SimInfo& info);
460 >
461 >    void getCutoff(RealType& rcut, RealType& rsw);
462 >        
463 >  private:
464 >
465 >    /** fill up the simtype struct*/
466 >    void setupSimType();
467 >
468 >    /**
469 >     * Setup Fortran Simulation
470 >     * @see #setupFortranParallel
471 >     */
472 >    void setupFortranSim();
473 >
474 >    /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
475 >    void setupCutoff();
476 >
477 >    /** Figure out which coulombic correction method to use and pass to fortran */
478 >    void setupElectrostaticSummationMethod( int isError );
479 >
480 >    /** Figure out which polynomial type to use for the switching function */
481 >    void setupSwitchingFunction();
482 >
483 >    /** Determine if we need to accumulate the simulation box dipole */
484 >    void setupAccumulateBoxDipole();
485 >
486 >    /** Calculates the number of degress of freedom in the whole system */
487 >    void calcNdf();
488 >    void calcNdfRaw();
489 >    void calcNdfTrans();
490 >
491 >    ForceField* forceField_;      
492 >    Globals* simParams_;
493 >
494 >    std::map<int, Molecule*>  molecules_; /**< Molecule array */
495 >
496 >    /**
497 >     * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
498 >     * system.
499 >     */
500 >    void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
501 >        
502 >    //degress of freedom
503 >    int ndf_;           /**< number of degress of freedom (excludes constraints),  ndf_ is local */
504 >    int fdf_local;       /**< number of frozen degrees of freedom */
505 >    int fdf_;            /**< number of frozen degrees of freedom */
506 >    int ndfRaw_;    /**< number of degress of freedom (includes constraints),  ndfRaw_ is local */
507 >    int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
508 >    int nZconstraint_; /** number of  z-constraint molecules, nZconstraint_ is global */
509 >        
510 >    //number of global objects
511 >    int nGlobalMols_;       /**< number of molecules in the system */
512 >    int nGlobalAtoms_;   /**< number of atoms in the system */
513 >    int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
514 >    int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
515 >    int nGlobalRigidBodies_; /**< number of rigid bodies in this system */
516 >    /**
517 >     * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
518 >     * corresponding content is the global index of cutoff group this atom belong to.
519 >     * It is filled by SimCreator once and only once, since it never changed during the simulation.
520 >     */
521 >    std::vector<int> globalGroupMembership_;
522 >
523 >    /**
524 >     * the size of globalMolMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
525 >     * corresponding content is the global index of molecule this atom belong to.
526 >     * It is filled by SimCreator once and only once, since it is never changed during the simulation.
527 >     */
528 >    std::vector<int> globalMolMembership_;        
529 >
530 >        
531 >    std::vector<int> molStampIds_;                                /**< stamp id array of all molecules in the system */
532 >    std::vector<MoleculeStamp*> moleculeStamps_;      /**< molecule stamps array */        
533 >        
534 >    //number of local objects
535 >    int nAtoms_;              /**< number of atoms in local processor */
536 >    int nBonds_;              /**< number of bonds in local processor */
537 >    int nBends_;              /**< number of bends in local processor */
538 >    int nTorsions_;           /**< number of torsions in local processor */
539 >    int nInversions_;         /**< number of inversions in local processor */
540 >    int nRigidBodies_;        /**< number of rigid bodies in local processor */
541 >    int nIntegrableObjects_;  /**< number of integrable objects in local processor */
542 >    int nCutoffGroups_;       /**< number of cutoff groups in local processor */
543 >    int nConstraints_;        /**< number of constraints in local processors */
544 >
545 >    simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
546 >    PairList excludedInteractions_;      
547 >    PairList oneTwoInteractions_;      
548 >    PairList oneThreeInteractions_;      
549 >    PairList oneFourInteractions_;      
550 >    PropertyMap properties_;                  /**< Generic Property */
551 >    SnapshotManager* sman_;               /**< SnapshotManager */
552 >
553 >    /**
554 >     * The reason to have a local index manager is that when molecule is migrating to other processors,
555 >     * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
556 >     * information of molecule migrating to current processor, Migrator class can query  the LocalIndexManager
557 >     * to make a efficient data moving plan.
558 >     */        
559 >    LocalIndexManager localIndexMan_;
560 >
561 >    // unparsed MetaData block for storing in Dump and EOR files:
562 >    std::string rawMetaData_;
563 >
564 >    //file names
565 >    std::string finalConfigFileName_;
566 >    std::string dumpFileName_;
567 >    std::string statFileName_;
568 >    std::string restFileName_;
569 >        
570 >    RealType rcut_;       /**< cutoff radius*/
571 >    RealType rsw_;        /**< radius of switching function*/
572 >    RealType rlist_;      /**< neighbor list radius */
573 >
574 >    int ljsp_; /**< use shifted potential for LJ*/
575 >    int ljsf_; /**< use shifted force for LJ*/
576 >
577 >    bool fortranInitialized_; /**< flag indicate whether fortran side
578 >                                 is initialized */
579 >    
580 >    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
581 >                            the simulation box dipole moment */
582 >    
583 >    bool useAtomicVirial_; /**< flag to indicate whether or not we use
584 >                              Atomic Virials to calculate the pressure */
585 >
586 >    public:
587 >     /**
588 >      * return an integral objects by its global index. In MPI version, if the StuntDouble with specified
589 >      * global index does not belong to local processor, a NULL will be return.
590 >      */
591 >      StuntDouble* getIOIndexToIntegrableObject(int index);
592 >      void setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v);
593 >    private:
594 >      std::vector<StuntDouble*> IOIndexToIntegrableObject;
595 >  //public:
596 >    //void setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v);
597 >    /**
598 >     * return a StuntDouble by its global index. In MPI version, if the StuntDouble with specified
599 >     * global index does not belong to local processor, a NULL will be return.
600 >     */
601 >    //StuntDouble* getStuntDoubleFromGlobalIndex(int index);
602 >  //private:
603 >    //std::vector<StuntDouble*> sdByGlobalIndex_;
604 >    
605 >    //in Parallel version, we need MolToProc
606 >  public:
607 >                
608 >    /**
609 >     * Finds the processor where a molecule resides
610 >     * @return the id of the processor which contains the molecule
611 >     * @param globalIndex global Index of the molecule
612 >     */
613 >    int getMolToProc(int globalIndex) {
614 >      //assert(globalIndex < molToProcMap_.size());
615 >      return molToProcMap_[globalIndex];
616 >    }
617 >
618 >    /**
619 >     * Set MolToProcMap array
620 >     * @see #SimCreator::divideMolecules
621 >     */
622 >    void setMolToProcMap(const std::vector<int>& molToProcMap) {
623 >      molToProcMap_ = molToProcMap;
624 >    }
625 >        
626 >  private:
627 >
628 >    void setupFortranParallel();
629 >        
630 >    /**
631 >     * The size of molToProcMap_ is equal to total number of molecules
632 >     * in the system.  It maps a molecule to the processor on which it
633 >     * resides. it is filled by SimCreator once and only once.
634 >     */        
635 >    std::vector<int> molToProcMap_;
636 >
637 >
638 >  };
639 >
640 > } //namespace OpenMD
641 > #endif //BRAINS_SIMMODEL_HPP
642 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines