ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.hpp (file contents), Revision 384 by tim, Tue Mar 1 19:11:47 2005 UTC vs.
branches/development/src/brains/SimInfo.hpp (file contents), Revision 1544 by gezelter, Fri Mar 18 19:31:52 2011 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 54 | Line 54
54   #include <utility>
55   #include <vector>
56  
57 < #include "brains/Exclude.hpp"
57 > #include "brains/PairList.hpp"
58   #include "io/Globals.hpp"
59   #include "math/Vector3.hpp"
60 + #include "math/SquareMatrix3.hpp"
61   #include "types/MoleculeStamp.hpp"
62   #include "UseTheForce/ForceField.hpp"
63   #include "utils/PropertyMap.hpp"
64   #include "utils/LocalIndexManager.hpp"
65 + #include "nonbonded/SwitchingFunction.hpp"
66  
67   //another nonsense macro declaration
68 < #define __C
68 > #define __OPENMD_C
69   #include "brains/fSimulation.h"
70  
71 < namespace oopse{
71 > using namespace std;
72 > namespace OpenMD{
73 >  //forward decalration
74 >  class SnapshotManager;
75 >  class Molecule;
76 >  class SelectionManager;
77 >  class StuntDouble;
78  
79 < //forward decalration
80 < class SnapshotManager;
81 < class Molecule;
82 < class SelectionManager;
83 < /**
84 < * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
85 < * @brief As one of the heavy weight class of OOPSE, SimInfo
86 < * One of the major changes in SimInfo class is the data struct. It only maintains a list of molecules.
87 < * And the Molecule class will maintain all of the concrete objects (atoms, bond, bend, torsions, rigid bodies,
88 < * cutoff groups, constrains).
89 < * Another major change is the index. No matter single version or parallel version,  atoms and
90 < * rigid bodies have both global index and local index. Local index is not important to molecule as well as
91 < * cutoff group.
92 < */
93 < class SimInfo {
94 <    public:
95 <        typedef std::map<int, Molecule*>::iterator  MoleculeIterator;
79 >  /**
80 >   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
81 >   *
82 >   * @brief One of the heavy-weight classes of OpenMD, SimInfo
83 >   * maintains objects and variables relating to the current
84 >   * simulation.  This includes the master list of Molecules.  The
85 >   * Molecule class maintains all of the concrete objects (Atoms,
86 >   * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
87 >   * Constraints). In both the single and parallel versions, Atoms and
88 >   * RigidBodies have both global and local indices.
89 >   */
90 >  class SimInfo {
91 >  public:
92 >    typedef map<int, Molecule*>::iterator  MoleculeIterator;
93 >    
94 >    /**
95 >     * Constructor of SimInfo
96 >     *
97 >     * @param molStampPairs MoleculeStamp Array. The first element of
98 >     * the pair is molecule stamp, the second element is the total
99 >     * number of molecules with the same molecule stamp in the system
100 >     *
101 >     * @param ff pointer of a concrete ForceField instance
102 >     *
103 >     * @param simParams
104 >     */
105 >    SimInfo(ForceField* ff, Globals* simParams);
106 >    virtual ~SimInfo();
107  
108 <        /**
109 <         * Constructor of SimInfo
110 <         * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
111 <         * second element is the total number of molecules with the same molecule stamp in the system
112 <         * @param ff pointer of a concrete ForceField instance
113 <         * @param simParams
114 <         * @note
115 <         */
116 <        SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, ForceField* ff, Globals* simParams);
98 <        virtual ~SimInfo();
108 >    /**
109 >     * Adds a molecule
110 >     *
111 >     * @return return true if adding successfully, return false if the
112 >     * molecule is already in SimInfo
113 >     *
114 >     * @param mol molecule to be added
115 >     */
116 >    bool addMolecule(Molecule* mol);
117  
118 <        /**
119 <         * Adds a molecule
120 <         * @return return true if adding successfully, return false if the molecule is already in SimInfo
121 <         * @param mol molecule to be added
122 <         */
123 <        bool addMolecule(Molecule* mol);
118 >    /**
119 >     * Removes a molecule from SimInfo
120 >     *
121 >     * @return true if removing successfully, return false if molecule
122 >     * is not in this SimInfo
123 >     */
124 >    bool removeMolecule(Molecule* mol);
125  
126 <        /**
127 <         * Removes a molecule from SimInfo
128 <         * @return true if removing successfully, return false if molecule is not in this SimInfo
129 <         */
111 <        bool removeMolecule(Molecule* mol);
126 >    /** Returns the total number of molecules in the system. */
127 >    int getNGlobalMolecules() {
128 >      return nGlobalMols_;
129 >    }
130  
131 <        /** Returns the total number of molecules in the system. */
132 <        int getNGlobalMolecules() {
133 <            return nGlobalMols_;
134 <        }
131 >    /** Returns the total number of atoms in the system. */
132 >    int getNGlobalAtoms() {
133 >      return nGlobalAtoms_;
134 >    }
135  
136 <        /** Returns the total number of atoms in the system. */
137 <        int getNGlobalAtoms() {
138 <            return nGlobalAtoms_;
139 <        }
136 >    /** Returns the total number of cutoff groups in the system. */
137 >    int getNGlobalCutoffGroups() {
138 >      return nGlobalCutoffGroups_;
139 >    }
140  
141 <        /** Returns the total number of cutoff groups in the system. */
142 <        int getNGlobalCutoffGroups() {
143 <            return nGlobalCutoffGroups_;
144 <        }
141 >    /**
142 >     * Returns the total number of integrable objects (total number of
143 >     * rigid bodies plus the total number of atoms which do not belong
144 >     * to the rigid bodies) in the system
145 >     */
146 >    int getNGlobalIntegrableObjects() {
147 >      return nGlobalIntegrableObjects_;
148 >    }
149  
150 <        /**
151 <         * Returns the total number of integrable objects (total number of rigid bodies plus the total number
152 <         * of atoms which do not belong to the rigid bodies) in the system
153 <         */
154 <        int getNGlobalIntegrableObjects() {
155 <            return nGlobalIntegrableObjects_;
156 <        }
150 >    /**
151 >     * Returns the total number of integrable objects (total number of
152 >     * rigid bodies plus the total number of atoms which do not belong
153 >     * to the rigid bodies) in the system
154 >     */
155 >    int getNGlobalRigidBodies() {
156 >      return nGlobalRigidBodies_;
157 >    }
158  
159 <        /**
160 <         * Returns the total number of integrable objects (total number of rigid bodies plus the total number
161 <         * of atoms which do not belong to the rigid bodies) in the system
162 <         */
163 <        int getNGlobalRigidBodies() {
164 <            return nGlobalRigidBodies_;
165 <        }
159 >    int getNGlobalConstraints();
160 >    /**
161 >     * Returns the number of local molecules.
162 >     * @return the number of local molecules
163 >     */
164 >    int getNMolecules() {
165 >      return molecules_.size();
166 >    }
167  
168 <        int getNGlobalConstraints();
169 <        /**
170 <         * Returns the number of local molecules.
171 <         * @return the number of local molecules
148 <         */
149 <        int getNMolecules() {
150 <            return molecules_.size();
151 <        }
168 >    /** Returns the number of local atoms */
169 >    unsigned int getNAtoms() {
170 >      return nAtoms_;
171 >    }
172  
173 <        /** Returns the number of local atoms */
174 <        unsigned int getNAtoms() {
175 <            return nAtoms_;
176 <        }
173 >    /** Returns the number of local bonds */        
174 >    unsigned int getNBonds(){
175 >      return nBonds_;
176 >    }
177  
178 <        /** Returns the number of local bonds */        
179 <        unsigned int getNBonds(){
180 <            return nBonds_;
181 <        }
178 >    /** Returns the number of local bends */        
179 >    unsigned int getNBends() {
180 >      return nBends_;
181 >    }
182  
183 <        /** Returns the number of local bends */        
184 <        unsigned int getNBends() {
185 <            return nBends_;
186 <        }
183 >    /** Returns the number of local torsions */        
184 >    unsigned int getNTorsions() {
185 >      return nTorsions_;
186 >    }
187  
188 <        /** Returns the number of local torsions */        
189 <        unsigned int getNTorsions() {
190 <            return nTorsions_;
191 <        }
188 >    /** Returns the number of local torsions */        
189 >    unsigned int getNInversions() {
190 >      return nInversions_;
191 >    }
192 >    /** Returns the number of local rigid bodies */        
193 >    unsigned int getNRigidBodies() {
194 >      return nRigidBodies_;
195 >    }
196  
197 <        /** Returns the number of local rigid bodies */        
198 <        unsigned int getNRigidBodies() {
199 <            return nRigidBodies_;
200 <        }
197 >    /** Returns the number of local integrable objects */
198 >    unsigned int getNIntegrableObjects() {
199 >      return nIntegrableObjects_;
200 >    }
201  
202 <        /** Returns the number of local integrable objects */
203 <        unsigned int getNIntegrableObjects() {
204 <            return nIntegrableObjects_;
205 <        }
202 >    /** Returns the number of local cutoff groups */
203 >    unsigned int getNCutoffGroups() {
204 >      return nCutoffGroups_;
205 >    }
206  
207 <        /** Returns the number of local cutoff groups */
208 <        unsigned int getNCutoffGroups() {
209 <            return nCutoffGroups_;
210 <        }
187 <
188 <        /** Returns the total number of constraints in this SimInfo */
189 <        unsigned int getNConstraints() {
190 <            return nConstraints_;
191 <        }
207 >    /** Returns the total number of constraints in this SimInfo */
208 >    unsigned int getNConstraints() {
209 >      return nConstraints_;
210 >    }
211          
212 <        /**
213 <         * Returns the first molecule in this SimInfo and intialize the iterator.
214 <         * @return the first molecule, return NULL if there is not molecule in this SimInfo
215 <         * @param i the iterator of molecule array (user shouldn't change it)
216 <         */
217 <        Molecule* beginMolecule(MoleculeIterator& i);
199 <
200 <        /**
201 <          * Returns the next avaliable Molecule based on the iterator.
202 <          * @return the next avaliable molecule, return NULL if reaching the end of the array
203 <          * @param i the iterator of molecule array
204 <          */
205 <        Molecule* nextMolecule(MoleculeIterator& i);
212 >    /**
213 >     * Returns the first molecule in this SimInfo and intialize the iterator.
214 >     * @return the first molecule, return NULL if there is not molecule in this SimInfo
215 >     * @param i the iterator of molecule array (user shouldn't change it)
216 >     */
217 >    Molecule* beginMolecule(MoleculeIterator& i);
218  
219 <        /** Returns the number of degrees of freedom */
220 <        int getNdf() {
221 <            return ndf_;
222 <        }
219 >    /**
220 >     * Returns the next avaliable Molecule based on the iterator.
221 >     * @return the next avaliable molecule, return NULL if reaching the end of the array
222 >     * @param i the iterator of molecule array
223 >     */
224 >    Molecule* nextMolecule(MoleculeIterator& i);
225  
226 <        /** Returns the number of raw degrees of freedom */
227 <        int getNdfRaw() {
228 <            return ndfRaw_;
229 <        }
226 >    /** Returns the number of degrees of freedom */
227 >    int getNdf() {
228 >      return ndf_ - getFdf();
229 >    }
230  
231 <        /** Returns the number of translational degrees of freedom */
232 <        int getNdfTrans() {
233 <            return ndfTrans_;
234 <        }
231 >    /** Returns the number of raw degrees of freedom */
232 >    int getNdfRaw() {
233 >      return ndfRaw_;
234 >    }
235  
236 <        //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
236 >    /** Returns the number of translational degrees of freedom */
237 >    int getNdfTrans() {
238 >      return ndfTrans_;
239 >    }
240 >
241 >    /** sets the current number of frozen degrees of freedom */
242 >    void setFdf(int fdf) {
243 >      fdf_local = fdf;
244 >    }
245 >
246 >    int getFdf();
247 >    
248 >    //getNZconstraint and setNZconstraint ruin the coherence of
249 >    //SimInfo class, need refactoring
250          
251 <        /** Returns the total number of z-constraint molecules in the system */
252 <        int getNZconstraint() {
253 <            return nZconstraint_;
254 <        }
251 >    /** Returns the total number of z-constraint molecules in the system */
252 >    int getNZconstraint() {
253 >      return nZconstraint_;
254 >    }
255  
256 <        /**
257 <         * Sets the number of z-constraint molecules in the system.
258 <         */
259 <        void setNZconstraint(int nZconstraint) {
260 <            nZconstraint_ = nZconstraint;
261 <        }
256 >    /**
257 >     * Sets the number of z-constraint molecules in the system.
258 >     */
259 >    void setNZconstraint(int nZconstraint) {
260 >      nZconstraint_ = nZconstraint;
261 >    }
262          
263 <        /** Returns the snapshot manager. */
264 <        SnapshotManager* getSnapshotManager() {
265 <            return sman_;
266 <        }
263 >    /** Returns the snapshot manager. */
264 >    SnapshotManager* getSnapshotManager() {
265 >      return sman_;
266 >    }
267  
268 <        /** Sets the snapshot manager. */
269 <        void setSnapshotManager(SnapshotManager* sman);
268 >    /** Sets the snapshot manager. */
269 >    void setSnapshotManager(SnapshotManager* sman);
270          
271 <        /** Returns the force field */
272 <        ForceField* getForceField() {
273 <            return forceField_;
274 <        }
271 >    /** Returns the force field */
272 >    ForceField* getForceField() {
273 >      return forceField_;
274 >    }
275  
276 <        Globals* getSimParams() {
277 <            return simParams_;
278 <        }
276 >    Globals* getSimParams() {
277 >      return simParams_;
278 >    }
279  
280 <        /** Returns the velocity of center of mass of the whole system.*/
281 <        Vector3d getComVel();
280 >    /** Returns the velocity of center of mass of the whole system.*/
281 >    Vector3d getComVel();
282  
283 <        /** Returns the center of the mass of the whole system.*/
284 <        Vector3d getCom();
283 >    /** Returns the center of the mass of the whole system.*/
284 >    Vector3d getCom();
285 >    /** Returns the center of the mass and Center of Mass velocity of
286 >        the whole system.*/
287 >    void getComAll(Vector3d& com,Vector3d& comVel);
288  
289 <        /** main driver function to interact with fortran during the initialization and molecule migration */
290 <        void update();
289 >    /** Returns intertia tensor for the entire system and system
290 >        Angular Momentum.*/
291 >    void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
292 >    
293 >    /** Returns system angular momentum */
294 >    Vector3d getAngularMomentum();
295  
296 <        /** Returns the local index manager */
297 <        LocalIndexManager* getLocalIndexManager() {
298 <            return &localIndexMan_;
299 <        }
296 >    /** Returns volume of system as estimated by an ellipsoid defined
297 >        by the radii of gyration*/
298 >    void getGyrationalVolume(RealType &vol);
299 >    /** Overloaded version of gyrational volume that also returns
300 >        det(I) so dV/dr can be calculated*/
301 >    void getGyrationalVolume(RealType &vol, RealType &detI);
302  
303 <        int getMoleculeStampId(int globalIndex) {
304 <            //assert(globalIndex < molStampIds_.size())
305 <            return molStampIds_[globalIndex];
306 <        }
303 >    void update();
304 >    /**
305 >     * Setup Fortran Simulation
306 >     */
307 >    void setupFortran();
308  
272        /** Returns the molecule stamp */
273        MoleculeStamp* getMoleculeStamp(int id) {
274            return moleculeStamps_[id];
275        }
309  
310 <        /** Return the total number of the molecule stamps */
311 <        int getNMoleculeStamp() {
312 <            return moleculeStamps_.size();
313 <        }
281 <        /**
282 <         * Finds a molecule with a specified global index
283 <         * @return a pointer point to found molecule
284 <         * @param index
285 <         */
286 <        Molecule* getMoleculeByGlobalIndex(int index) {
287 <            MoleculeIterator i;
288 <            i = molecules_.find(index);
310 >    /** Returns the local index manager */
311 >    LocalIndexManager* getLocalIndexManager() {
312 >      return &localIndexMan_;
313 >    }
314  
315 <            return i != molecules_.end() ? i->second : NULL;
316 <        }
315 >    int getMoleculeStampId(int globalIndex) {
316 >      //assert(globalIndex < molStampIds_.size())
317 >      return molStampIds_[globalIndex];
318 >    }
319  
320 <        /** Calculate the maximum cutoff radius based on the atom types */
321 <        double calcMaxCutoffRadius();
320 >    /** Returns the molecule stamp */
321 >    MoleculeStamp* getMoleculeStamp(int id) {
322 >      return moleculeStamps_[id];
323 >    }
324  
325 <        double getRcut() {
326 <            return rcut_;
327 <        }
325 >    /** Return the total number of the molecule stamps */
326 >    int getNMoleculeStamp() {
327 >      return moleculeStamps_.size();
328 >    }
329 >    /**
330 >     * Finds a molecule with a specified global index
331 >     * @return a pointer point to found molecule
332 >     * @param index
333 >     */
334 >    Molecule* getMoleculeByGlobalIndex(int index) {
335 >      MoleculeIterator i;
336 >      i = molecules_.find(index);
337  
338 <        double getRsw() {
339 <            return rsw_;
302 <        }
303 <        
304 <        std::string getFinalConfigFileName() {
305 <            return finalConfigFileName_;
306 <        }
307 <        
308 <        void setFinalConfigFileName(const std::string& fileName) {
309 <            finalConfigFileName_ = fileName;
310 <        }
338 >      return i != molecules_.end() ? i->second : NULL;
339 >    }
340  
341 <        std::string getDumpFileName() {
342 <            return dumpFileName_;
343 <        }
341 >    int getGlobalMolMembership(int id){
342 >      return globalMolMembership_[id];
343 >    }
344          
345 <        void setDumpFileName(const std::string& fileName) {
346 <            dumpFileName_ = fileName;
347 <        }
345 >    string getFinalConfigFileName() {
346 >      return finalConfigFileName_;
347 >    }
348  
349 <        std::string getStatFileName() {
350 <            return statFileName_;
351 <        }
323 <        
324 <        void setStatFileName(const std::string& fileName) {
325 <            statFileName_ = fileName;
326 <        }
349 >    void setFinalConfigFileName(const string& fileName) {
350 >      finalConfigFileName_ = fileName;
351 >    }
352  
353 <        /**
354 <         * Sets GlobalGroupMembership
355 <         * @see #SimCreator::setGlobalIndex
356 <         */  
357 <        void setGlobalGroupMembership(const std::vector<int>& globalGroupMembership) {
358 <            assert(globalGroupMembership.size() == nGlobalAtoms_);
359 <            globalGroupMembership_ = globalGroupMembership;
360 <        }
361 <
362 <        /**
363 <         * Sets GlobalMolMembership
364 <         * @see #SimCreator::setGlobalIndex
365 <         */        
366 <        void setGlobalMolMembership(const std::vector<int>& globalMolMembership) {
342 <            assert(globalMolMembership.size() == nGlobalAtoms_);
343 <            globalMolMembership_ = globalMolMembership;
344 <        }
353 >    string getRawMetaData() {
354 >      return rawMetaData_;
355 >    }
356 >    void setRawMetaData(const string& rawMetaData) {
357 >      rawMetaData_ = rawMetaData;
358 >    }
359 >        
360 >    string getDumpFileName() {
361 >      return dumpFileName_;
362 >    }
363 >        
364 >    void setDumpFileName(const string& fileName) {
365 >      dumpFileName_ = fileName;
366 >    }
367  
368 <
369 <        bool isFortranInitialized() {
370 <            return fortranInitialized_;
349 <        }
368 >    string getStatFileName() {
369 >      return statFileName_;
370 >    }
371          
372 <        //below functions are just forward functions
373 <        //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
374 <        //the other hand, has-a relation need composing.
375 <        /**
376 <         * Adds property into property map
377 <         * @param genData GenericData to be added into PropertyMap
378 <         */
379 <        void addProperty(GenericData* genData);
372 >    void setStatFileName(const string& fileName) {
373 >      statFileName_ = fileName;
374 >    }
375 >        
376 >    string getRestFileName() {
377 >      return restFileName_;
378 >    }
379 >        
380 >    void setRestFileName(const string& fileName) {
381 >      restFileName_ = fileName;
382 >    }
383  
384 <        /**
385 <         * Removes property from PropertyMap by name
386 <         * @param propName the name of property to be removed
387 <         */
388 <        void removeProperty(const std::string& propName);
384 >    /**
385 >     * Sets GlobalGroupMembership
386 >     * @see #SimCreator::setGlobalIndex
387 >     */  
388 >    void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
389 >      assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
390 >      globalGroupMembership_ = globalGroupMembership;
391 >    }
392  
393 <        /**
394 <         * clear all of the properties
395 <         */
396 <        void clearProperties();
393 >    /**
394 >     * Sets GlobalMolMembership
395 >     * @see #SimCreator::setGlobalIndex
396 >     */        
397 >    void setGlobalMolMembership(const vector<int>& globalMolMembership) {
398 >      assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
399 >      globalMolMembership_ = globalMolMembership;
400 >    }
401  
371        /**
372         * Returns all names of properties
373         * @return all names of properties
374         */
375        std::vector<std::string> getPropertyNames();
402  
403 <        /**
404 <         * Returns all of the properties in PropertyMap
405 <         * @return all of the properties in PropertyMap
406 <         */      
407 <        std::vector<GenericData*> getProperties();
403 >    bool isFortranInitialized() {
404 >      return fortranInitialized_;
405 >    }
406 >        
407 >    bool getCalcBoxDipole() {
408 >      return calcBoxDipole_;
409 >    }
410  
411 <        /**
412 <         * Returns property
413 <         * @param propName name of property
386 <         * @return a pointer point to property with propName. If no property named propName
387 <         * exists, return NULL
388 <         */      
389 <        GenericData* getPropertyByName(const std::string& propName);
411 >    bool getUseAtomicVirial() {
412 >      return useAtomicVirial_;
413 >    }
414  
415 <        /**
416 <         * add all exclude pairs of a molecule into exclude list.
417 <         */
418 <        void addExcludePairs(Molecule* mol);
415 >    /**
416 >     * Adds property into property map
417 >     * @param genData GenericData to be added into PropertyMap
418 >     */
419 >    void addProperty(GenericData* genData);
420  
421 <        /**
422 <         * remove all exclude pairs which belong to a molecule from exclude list
423 <         */
421 >    /**
422 >     * Removes property from PropertyMap by name
423 >     * @param propName the name of property to be removed
424 >     */
425 >    void removeProperty(const string& propName);
426  
427 <        void removeExcludePairs(Molecule* mol);
427 >    /**
428 >     * clear all of the properties
429 >     */
430 >    void clearProperties();
431  
432 +    /**
433 +     * Returns all names of properties
434 +     * @return all names of properties
435 +     */
436 +    vector<string> getPropertyNames();
437  
438 <        SelectionManager* getSelectionManager() {
439 <            return selectMan_;
440 <        }
438 >    /**
439 >     * Returns all of the properties in PropertyMap
440 >     * @return all of the properties in PropertyMap
441 >     */      
442 >    vector<GenericData*> getProperties();
443  
444 <        /** Returns the unique atom types of local processor in an array */
445 <        std::set<AtomType*> getUniqueAtomTypes();
444 >    /**
445 >     * Returns property
446 >     * @param propName name of property
447 >     * @return a pointer point to property with propName. If no property named propName
448 >     * exists, return NULL
449 >     */      
450 >    GenericData* getPropertyByName(const string& propName);
451 >
452 >    /**
453 >     * add all special interaction pairs (including excluded
454 >     * interactions) in a molecule into the appropriate lists.
455 >     */
456 >    void addInteractionPairs(Molecule* mol);
457 >
458 >    /**
459 >     * remove all special interaction pairs which belong to a molecule
460 >     * from the appropriate lists.
461 >     */
462 >    void removeInteractionPairs(Molecule* mol);
463 >
464 >    /** Returns the set of atom types present in this simulation */
465 >    set<AtomType*> getSimulatedAtomTypes();
466          
467 <        friend std::ostream& operator <<(std::ostream& o, SimInfo& info);
467 >    friend ostream& operator <<(ostream& o, SimInfo& info);
468  
469 <        void getCutoff(double& rcut, double& rsw);
469 >    void getCutoff(RealType& rcut, RealType& rsw);
470          
471 <    private:
471 >  private:
472  
473 <        /** fill up the simtype struct*/
474 <        void setupSimType();
473 >    /** fill up the simtype struct and other simulation-related variables */
474 >    void setupSimVariables();
475  
419        /**
420         * Setup Fortran Simulation
421         * @see #setupFortranParallel
422         */
423        void setupFortranSim();
476  
477 <        /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
478 <        void setupCutoff();
477 >    /** Determine if we need to accumulate the simulation box dipole */
478 >    void setupAccumulateBoxDipole();
479  
480 <        /** Calculates the number of degress of freedom in the whole system */
481 <        void calcNdf();
482 <        void calcNdfRaw();
483 <        void calcNdfTrans();
480 >    /** Calculates the number of degress of freedom in the whole system */
481 >    void calcNdf();
482 >    void calcNdfRaw();
483 >    void calcNdfTrans();
484  
485 <        /**
486 <         * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
487 <         * system.
488 <         */
489 <        void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
485 >    /**
486 >     * Adds molecule stamp and the total number of the molecule with
487 >     * same molecule stamp in the whole system.
488 >     */
489 >    void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
490  
491 <        ForceField* forceField_;      
492 <        Globals* simParams_;
491 >    // Other classes holdingn important information
492 >    ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
493 >    Globals* simParams_;     /**< provides access to simulation parameters set by user */
494  
495 <        std::map<int, Molecule*>  molecules_; /**< Molecule array */
495 >    ///  Counts of local objects
496 >    int nAtoms_;              /**< number of atoms in local processor */
497 >    int nBonds_;              /**< number of bonds in local processor */
498 >    int nBends_;              /**< number of bends in local processor */
499 >    int nTorsions_;           /**< number of torsions in local processor */
500 >    int nInversions_;         /**< number of inversions in local processor */
501 >    int nRigidBodies_;        /**< number of rigid bodies in local processor */
502 >    int nIntegrableObjects_;  /**< number of integrable objects in local processor */
503 >    int nCutoffGroups_;       /**< number of cutoff groups in local processor */
504 >    int nConstraints_;        /**< number of constraints in local processors */
505          
506 <        //degress of freedom
507 <        int ndf_;           /**< number of degress of freedom (excludes constraints),  ndf_ is local */
508 <        int ndfRaw_;    /**< number of degress of freedom (includes constraints),  ndfRaw_ is local */
509 <        int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
510 <        int nZconstraint_; /** number of  z-constraint molecules, nZconstraint_ is global */
511 <        
512 <        //number of global objects
513 <        int nGlobalMols_;       /**< number of molecules in the system */
514 <        int nGlobalAtoms_;   /**< number of atoms in the system */
515 <        int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
516 <        int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
517 <        int nGlobalRigidBodies_; /**< number of rigid bodies in this system */
518 <        /**
519 <         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
458 <         * corresponding content is the global index of cutoff group this atom belong to.
459 <         * It is filled by SimCreator once and only once, since it never changed during the simulation.
460 <         */
461 <        std::vector<int> globalGroupMembership_;
506 >    /// Counts of global objects
507 >    int nGlobalMols_;              /**< number of molecules in the system (GLOBAL) */
508 >    int nGlobalAtoms_;             /**< number of atoms in the system (GLOBAL) */
509 >    int nGlobalCutoffGroups_;      /**< number of cutoff groups in this system (GLOBAL) */
510 >    int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
511 >    int nGlobalRigidBodies_;       /**< number of rigid bodies in this system (GLOBAL) */
512 >      
513 >    /// Degress of freedom
514 >    int ndf_;          /**< number of degress of freedom (excludes constraints) (LOCAL) */
515 >    int fdf_local;     /**< number of frozen degrees of freedom (LOCAL) */
516 >    int fdf_;          /**< number of frozen degrees of freedom (GLOBAL) */
517 >    int ndfRaw_;       /**< number of degress of freedom (includes constraints),  (LOCAL) */
518 >    int ndfTrans_;     /**< number of translation degress of freedom, (LOCAL) */
519 >    int nZconstraint_; /**< number of  z-constraint molecules (GLOBAL) */
520  
521 <        /**
522 <         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
523 <         * corresponding content is the global index of molecule this atom belong to.
524 <         * It is filled by SimCreator once and only once, since it is never changed during the simulation.
525 <         */
526 <        std::vector<int> globalMolMembership_;        
521 >    /// logicals
522 >    bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
523 >    bool usesDirectionalAtoms_;   /**< are there atoms with position AND orientation? */
524 >    bool usesMetallicAtoms_;      /**< are there transition metal atoms? */
525 >    bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
526 >    bool usesAtomicVirial_;       /**< are we computing atomic virials? */
527 >    bool requiresPrepair_;        /**< does this simulation require a pre-pair loop? */
528 >    bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
529 >    bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
530  
531 <        
532 <        std::vector<int> molStampIds_;                                /**< stamp id array of all molecules in the system */
533 <        std::vector<MoleculeStamp*> moleculeStamps_;      /**< molecule stamps array */        
534 <        
474 <        //number of local objects
475 <        int nAtoms_;                        /**< number of atoms in local processor */
476 <        int nBonds_;                        /**< number of bonds in local processor */
477 <        int nBends_;                        /**< number of bends in local processor */
478 <        int nTorsions_;                    /**< number of torsions in local processor */
479 <        int nRigidBodies_;              /**< number of rigid bodies in local processor */
480 <        int nIntegrableObjects_;    /**< number of integrable objects in local processor */
481 <        int nCutoffGroups_;             /**< number of cutoff groups in local processor */
482 <        int nConstraints_;              /**< number of constraints in local processors */
531 >  public:
532 >    bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
533 >    bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
534 >    bool usesMetallicAtoms() { return usesMetallicAtoms_; }
535  
536 <        simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
537 <        Exclude exclude_;      
538 <        PropertyMap properties_;                  /**< Generic Property */
539 <        SnapshotManager* sman_;               /**< SnapshotManager */
536 >  private:
537 >    /// Data structures holding primary simulation objects
538 >    map<int, Molecule*>  molecules_;  /**< map holding pointers to LOCAL molecules */
539 >    simtype fInfo_;                   /**< A dual struct shared by C++
540 >                                         and Fortran to pass
541 >                                         information about what types
542 >                                         of calculation are
543 >                                         required */
544  
545 <        /**
546 <         * The reason to have a local index manager is that when molecule is migrating to other processors,
547 <         * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
548 <         * information of molecule migrating to current processor, Migrator class can query  the LocalIndexManager
549 <         * to make a efficient data moving plan.
550 <         */        
551 <        LocalIndexManager localIndexMan_;
545 >    /// Stamps are templates for objects that are then used to create
546 >    /// groups of objects.  For example, a molecule stamp contains
547 >    /// information on how to build that molecule (i.e. the topology,
548 >    /// the atoms, the bonds, etc.)  Once the system is built, the
549 >    /// stamps are no longer useful.
550 >    vector<int> molStampIds_;                /**< stamp id for molecules in the system */
551 >    vector<MoleculeStamp*> moleculeStamps_;  /**< molecule stamps array */        
552  
553 <        //file names
554 <        std::string finalConfigFileName_;
555 <        std::string dumpFileName_;
556 <        std::string statFileName_;
553 >    /**
554 >     * A vector that maps between the global index of an atom, and the
555 >     * global index of cutoff group the atom belong to.  It is filled
556 >     * by SimCreator once and only once, since it never changed during
557 >     * the simulation.  It should be nGlobalAtoms_ in size.
558 >     */
559 >    vector<int> globalGroupMembership_;
560  
561 <        double rcut_;       /**< cutoff radius*/
562 <        double rsw_;        /**< radius of switching function*/
561 >    /**
562 >     * A vector that maps between the global index of an atom and the
563 >     * global index of the molecule the atom belongs to.  It is filled
564 >     * by SimCreator once and only once, since it is never changed
565 >     * during the simulation. It shoudl be nGlobalAtoms_ in size.
566 >     */
567 >    vector<int> globalMolMembership_;
568  
569 <        bool fortranInitialized_; /**< flag indicate whether fortran side is initialized */
569 >    /**
570 >     * A vector that maps between the local index of an atom and the
571 >     * index of the AtomType.
572 >     */
573 >    vector<int> identArray_;
574 >    vector<int> getIdentArray() { return identArray_; }
575 >    
576 >              
577 >    /// lists to handle atoms needing special treatment in the non-bonded interactions
578 >    PairList excludedInteractions_;  /**< atoms excluded from interacting with each other */
579 >    PairList oneTwoInteractions_;    /**< atoms that are directly Bonded */
580 >    PairList oneThreeInteractions_;  /**< atoms sharing a Bend */    
581 >    PairList oneFourInteractions_;   /**< atoms sharing a Torsion */
582  
583 <        SelectionManager* selectMan_;
584 < #ifdef IS_MPI
509 <    //in Parallel version, we need MolToProc
510 <    public:
511 <                
512 <        /**
513 <         * Finds the processor where a molecule resides
514 <         * @return the id of the processor which contains the molecule
515 <         * @param globalIndex global Index of the molecule
516 <         */
517 <        int getMolToProc(int globalIndex) {
518 <            //assert(globalIndex < molToProcMap_.size());
519 <            return molToProcMap_[globalIndex];
520 <        }
583 >    PropertyMap properties_;       /**< Generic Properties can be added */
584 >    SnapshotManager* sman_;        /**< SnapshotManager (handles particle positions, etc.) */
585  
586 <        /**
587 <         * Set MolToProcMap array
588 <         * @see #SimCreator::divideMolecules
589 <         */
590 <        void setMolToProcMap(const std::vector<int>& molToProcMap) {
591 <            molToProcMap_ = molToProcMap;
592 <        }
586 >    /**
587 >     * The reason to have a local index manager is that when molecule
588 >     * is migrating to other processors, the atoms and the
589 >     * rigid-bodies will release their local indices to
590 >     * LocalIndexManager. Combining the information of molecule
591 >     * migrating to current processor, Migrator class can query the
592 >     * LocalIndexManager to make a efficient data moving plan.
593 >     */        
594 >    LocalIndexManager localIndexMan_;
595 >
596 >    // unparsed MetaData block for storing in Dump and EOR files:
597 >    string rawMetaData_;
598 >
599 >    // file names
600 >    string finalConfigFileName_;
601 >    string dumpFileName_;
602 >    string statFileName_;
603 >    string restFileName_;
604          
530    private:
605  
606 <        void setupFortranParallel();
606 >    bool fortranInitialized_; /** flag to indicate whether the fortran side is initialized */
607 >    
608 >    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
609 >                            the simulation box dipole moment */
610 >    
611 >    bool useAtomicVirial_; /**< flag to indicate whether or not we use
612 >                              Atomic Virials to calculate the pressure */
613 >    
614 >  public:
615 >    /**
616 >     * return an integral objects by its global index. In MPI
617 >     * version, if the StuntDouble with specified global index does
618 >      * not belong to local processor, a NULL will be return.
619 >      */
620 >    StuntDouble* getIOIndexToIntegrableObject(int index);
621 >    void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
622 >    
623 >  private:
624 >    vector<StuntDouble*> IOIndexToIntegrableObject;
625 >    
626 >  public:
627 >                
628 >    /**
629 >     * Finds the processor where a molecule resides
630 >     * @return the id of the processor which contains the molecule
631 >     * @param globalIndex global Index of the molecule
632 >     */
633 >    int getMolToProc(int globalIndex) {
634 >      //assert(globalIndex < molToProcMap_.size());
635 >      return molToProcMap_[globalIndex];
636 >    }
637 >    
638 >    /**
639 >     * Set MolToProcMap array
640 >     * @see #SimCreator::divideMolecules
641 >     */
642 >    void setMolToProcMap(const vector<int>& molToProcMap) {
643 >      molToProcMap_ = molToProcMap;
644 >    }
645          
646 <        /**
647 <         * The size of molToProcMap_ is equal to total number of molecules in the system.
648 <         *  It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
649 <         * once.
650 <         */        
651 <        std::vector<int> molToProcMap_;
646 >  private:
647 >        
648 >    /**
649 >     * The size of molToProcMap_ is equal to total number of molecules
650 >     * in the system.  It maps a molecule to the processor on which it
651 >     * resides. it is filled by SimCreator once and only once.
652 >     */        
653 >    vector<int> molToProcMap_;
654  
655 < #endif
655 >  };
656  
657 < };
544 <
545 < } //namespace oopse
657 > } //namespace OpenMD
658   #endif //BRAINS_SIMMODEL_HPP
659  

Comparing:
trunk/src/brains/SimInfo.hpp (property svn:keywords), Revision 384 by tim, Tue Mar 1 19:11:47 2005 UTC vs.
branches/development/src/brains/SimInfo.hpp (property svn:keywords), Revision 1544 by gezelter, Fri Mar 18 19:31:52 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines