ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.hpp (file contents), Revision 143 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
branches/development/src/brains/SimInfo.hpp (file contents), Revision 1534 by gezelter, Wed Dec 29 21:53:28 2010 UTC

# Line 1 | Line 1
1 < #ifndef __SIMINFO_H__
2 < #define __SIMINFO_H__
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimInfo.hpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <map>
50 < #include <string>
49 > #ifndef BRAINS_SIMMODEL_HPP
50 > #define BRAINS_SIMMODEL_HPP
51 >
52 > #include <iostream>
53 > #include <set>
54 > #include <utility>
55   #include <vector>
56  
57 < #include "primitives/Atom.hpp"
58 < #include "primitives/RigidBody.hpp"
59 < #include "primitives/Molecule.hpp"
60 < #include "brains/Exclude.hpp"
61 < #include "brains/SkipList.hpp"
62 < #include "primitives/AbstractClasses.hpp"
63 < #include "types/MakeStamps.hpp"
64 < #include "brains/SimState.hpp"
65 < #include "restraints/Restraints.hpp"
57 > #include "brains/PairList.hpp"
58 > #include "io/Globals.hpp"
59 > #include "math/Vector3.hpp"
60 > #include "math/SquareMatrix3.hpp"
61 > #include "types/MoleculeStamp.hpp"
62 > #include "UseTheForce/ForceField.hpp"
63 > #include "utils/PropertyMap.hpp"
64 > #include "utils/LocalIndexManager.hpp"
65 > #include "nonbonded/SwitchingFunction.hpp"
66  
67 < #define __C
67 > //another nonsense macro declaration
68 > #define __OPENMD_C
69   #include "brains/fSimulation.h"
20 #include "utils/GenericData.hpp"
70  
71 + using namespace std;
72 + namespace OpenMD{
73 +  enum CutoffMethod {
74 +    HARD,
75 +    SWITCHING_FUNCTION,
76 +    SHIFTED_POTENTIAL,
77 +    SHIFTED_FORCE
78 +  };
79  
80 < //#include "Minimizer.hpp"
81 < //#include "minimizers/OOPSEMinimizer.hpp"
80 >  //forward decalration
81 >  class SnapshotManager;
82 >  class Molecule;
83 >  class SelectionManager;
84 >  class StuntDouble;
85  
86 +  /**
87 +   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
88 +   *
89 +   * @brief One of the heavy-weight classes of OpenMD, SimInfo
90 +   * maintains objects and variables relating to the current
91 +   * simulation.  This includes the master list of Molecules.  The
92 +   * Molecule class maintains all of the concrete objects (Atoms,
93 +   * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
94 +   * Constraints). In both the single and parallel versions, Atoms and
95 +   * RigidBodies have both global and local indices.
96 +   */
97 +  class SimInfo {
98 +  public:
99 +    typedef map<int, Molecule*>::iterator  MoleculeIterator;
100 +    
101 +    /**
102 +     * Constructor of SimInfo
103 +     *
104 +     * @param molStampPairs MoleculeStamp Array. The first element of
105 +     * the pair is molecule stamp, the second element is the total
106 +     * number of molecules with the same molecule stamp in the system
107 +     *
108 +     * @param ff pointer of a concrete ForceField instance
109 +     *
110 +     * @param simParams
111 +     */
112 +    SimInfo(ForceField* ff, Globals* simParams);
113 +    virtual ~SimInfo();
114  
115 < double roundMe( double x );
116 < class OOPSEMinimizer;
117 < class SimInfo{
115 >    /**
116 >     * Adds a molecule
117 >     *
118 >     * @return return true if adding successfully, return false if the
119 >     * molecule is already in SimInfo
120 >     *
121 >     * @param mol molecule to be added
122 >     */
123 >    bool addMolecule(Molecule* mol);
124  
125 < public:
125 >    /**
126 >     * Removes a molecule from SimInfo
127 >     *
128 >     * @return true if removing successfully, return false if molecule
129 >     * is not in this SimInfo
130 >     */
131 >    bool removeMolecule(Molecule* mol);
132  
133 <  SimInfo();
134 <  ~SimInfo();
133 >    /** Returns the total number of molecules in the system. */
134 >    int getNGlobalMolecules() {
135 >      return nGlobalMols_;
136 >    }
137  
138 <  int n_atoms; // the number of atoms
139 <  Atom **atoms; // the array of atom objects
138 >    /** Returns the total number of atoms in the system. */
139 >    int getNGlobalAtoms() {
140 >      return nGlobalAtoms_;
141 >    }
142  
143 <  vector<RigidBody*> rigidBodies;  // A vector of rigid bodies
144 <  vector<StuntDouble*> integrableObjects;
145 <  
146 <  double tau[9]; // the stress tensor
143 >    /** Returns the total number of cutoff groups in the system. */
144 >    int getNGlobalCutoffGroups() {
145 >      return nGlobalCutoffGroups_;
146 >    }
147  
148 <  int n_bonds;    // number of bends
149 <  int n_bends;    // number of bends
150 <  int n_torsions; // number of torsions
151 <  int n_oriented; // number of of atoms with orientation
152 <  int ndf;        // number of actual degrees of freedom
153 <  int ndfRaw;     // number of settable degrees of freedom
154 <  int ndfTrans;   // number of translational degrees of freedom
155 <  int nZconstraints; // the number of zConstraints
148 >    /**
149 >     * Returns the total number of integrable objects (total number of
150 >     * rigid bodies plus the total number of atoms which do not belong
151 >     * to the rigid bodies) in the system
152 >     */
153 >    int getNGlobalIntegrableObjects() {
154 >      return nGlobalIntegrableObjects_;
155 >    }
156  
157 <  int setTemp;   // boolean to set the temperature at each sampleTime
158 <  int resetIntegrator; // boolean to reset the integrator
157 >    /**
158 >     * Returns the total number of integrable objects (total number of
159 >     * rigid bodies plus the total number of atoms which do not belong
160 >     * to the rigid bodies) in the system
161 >     */
162 >    int getNGlobalRigidBodies() {
163 >      return nGlobalRigidBodies_;
164 >    }
165  
166 <  int n_dipoles; // number of dipoles
166 >    int getNGlobalConstraints();
167 >    /**
168 >     * Returns the number of local molecules.
169 >     * @return the number of local molecules
170 >     */
171 >    int getNMolecules() {
172 >      return molecules_.size();
173 >    }
174  
175 <  int n_exclude;
176 <  Exclude* excludes;  // the exclude list for ignoring pairs in fortran
177 <  int nGlobalExcludes;
178 <  int* globalExcludes; // same as above, but these guys participate in
62 <                       // no long range forces.
175 >    /** Returns the number of local atoms */
176 >    unsigned int getNAtoms() {
177 >      return nAtoms_;
178 >    }
179  
180 <  int* identArray;     // array of unique identifiers for the atoms
181 <  int* molMembershipArray;  // map of atom numbers onto molecule numbers
180 >    /** Returns the number of local bonds */        
181 >    unsigned int getNBonds(){
182 >      return nBonds_;
183 >    }
184  
185 <  int n_constraints; // the number of constraints on the system
185 >    /** Returns the number of local bends */        
186 >    unsigned int getNBends() {
187 >      return nBends_;
188 >    }
189  
190 <  int n_SRI;   // the number of short range interactions
190 >    /** Returns the number of local torsions */        
191 >    unsigned int getNTorsions() {
192 >      return nTorsions_;
193 >    }
194  
195 <  double lrPot; // the potential energy from the long range calculations.
195 >    /** Returns the number of local torsions */        
196 >    unsigned int getNInversions() {
197 >      return nInversions_;
198 >    }
199 >    /** Returns the number of local rigid bodies */        
200 >    unsigned int getNRigidBodies() {
201 >      return nRigidBodies_;
202 >    }
203  
204 <  double Hmat[3][3];  // the periodic boundry conditions. The Hmat is the
205 <                      // column vectors of the x, y, and z box vectors.
206 <                      //   h1  h2  h3
207 <                      // [ Xx  Yx  Zx ]
77 <                      // [ Xy  Yy  Zy ]
78 <                      // [ Xz  Yz  Zz ]
79 <                      //  
80 <  double HmatInv[3][3];
204 >    /** Returns the number of local integrable objects */
205 >    unsigned int getNIntegrableObjects() {
206 >      return nIntegrableObjects_;
207 >    }
208  
209 <  double boxL[3]; // The Lengths of the 3 column vectors of Hmat
210 <  double boxVol;
211 <  int orthoRhombic;
212 <  
209 >    /** Returns the number of local cutoff groups */
210 >    unsigned int getNCutoffGroups() {
211 >      return nCutoffGroups_;
212 >    }
213  
214 <  double dielectric;      // the dielectric of the medium for reaction field
214 >    /** Returns the total number of constraints in this SimInfo */
215 >    unsigned int getNConstraints() {
216 >      return nConstraints_;
217 >    }
218 >        
219 >    /**
220 >     * Returns the first molecule in this SimInfo and intialize the iterator.
221 >     * @return the first molecule, return NULL if there is not molecule in this SimInfo
222 >     * @param i the iterator of molecule array (user shouldn't change it)
223 >     */
224 >    Molecule* beginMolecule(MoleculeIterator& i);
225  
226 <  
227 <  int usePBC; // whether we use periodic boundry conditions.
228 <  int useDirectionalAtoms;
229 <  int useLennardJones;
230 <  int useElectrostatics;
231 <  int useCharges;
95 <  int useDipoles;
96 <  int useSticky;
97 <  int useGayBerne;
98 <  int useEAM;
99 <  int useShapes;
100 <  int useFLARB;
101 <  int useReactionField;
102 <  bool haveCutoffGroups;
103 <  bool useInitXSstate;
104 <  double orthoTolerance;
226 >    /**
227 >     * Returns the next avaliable Molecule based on the iterator.
228 >     * @return the next avaliable molecule, return NULL if reaching the end of the array
229 >     * @param i the iterator of molecule array
230 >     */
231 >    Molecule* nextMolecule(MoleculeIterator& i);
232  
233 <  double dt, run_time;           // the time step and total time
234 <  double sampleTime, statusTime; // the position and energy dump frequencies
235 <  double target_temp;            // the target temperature of the system
236 <  double thermalTime;            // the temp kick interval
110 <  double currentTime;            // Used primarily for correlation Functions
111 <  double resetTime;              // Use to reset the integrator periodically
112 <  short int have_target_temp;
233 >    /** Returns the number of degrees of freedom */
234 >    int getNdf() {
235 >      return ndf_ - getFdf();
236 >    }
237  
238 <  int n_mol;           // n_molecules;
239 <  Molecule* molecules; // the array of molecules
240 <  
241 <  int nComponents;           // the number of components in the system
118 <  int* componentsNmol;       // the number of molecules of each component
119 <  MoleculeStamp** compStamps;// the stamps matching the components
120 <  LinkedMolStamp* headStamp; // list of stamps used in the simulation
121 <  
122 <  
123 <  char ensemble[100]; // the enesemble of the simulation (NVT, NVE, etc. )
124 <  char mixingRule[100]; // the mixing rules for Lennard jones/van der walls
125 <  BaseIntegrator *the_integrator; // the integrator of the simulation
238 >    /** Returns the number of raw degrees of freedom */
239 >    int getNdfRaw() {
240 >      return ndfRaw_;
241 >    }
242  
243 <  OOPSEMinimizer* the_minimizer; // the energy minimizer
244 <  Restraints* restraint;
245 <  bool has_minimizer;
243 >    /** Returns the number of translational degrees of freedom */
244 >    int getNdfTrans() {
245 >      return ndfTrans_;
246 >    }
247  
248 <  string finalName;  // the name of the eor file to be written
249 <  string sampleName; // the name of the dump file to be written
250 <  string statusName; // the name of the stat file to be written
248 >    /** sets the current number of frozen degrees of freedom */
249 >    void setFdf(int fdf) {
250 >      fdf_local = fdf;
251 >    }
252  
253 <  int seed;                    //seed for random number generator
253 >    int getFdf();
254 >    
255 >    //getNZconstraint and setNZconstraint ruin the coherence of
256 >    //SimInfo class, need refactoring
257 >        
258 >    /** Returns the total number of z-constraint molecules in the system */
259 >    int getNZconstraint() {
260 >      return nZconstraint_;
261 >    }
262  
263 <  int useSolidThermInt;  // is solid-state thermodynamic integration being used
264 <  int useLiquidThermInt; // is liquid thermodynamic integration being used
265 <  double thermIntLambda; // lambda for TI
266 <  double thermIntK;      // power of lambda for TI
267 <  double vRaw;           // unperturbed potential for TI
268 <  double vHarm;          // harmonic potential for TI
269 <  int i;                 // just an int
263 >    /**
264 >     * Sets the number of z-constraint molecules in the system.
265 >     */
266 >    void setNZconstraint(int nZconstraint) {
267 >      nZconstraint_ = nZconstraint;
268 >    }
269 >        
270 >    /** Returns the snapshot manager. */
271 >    SnapshotManager* getSnapshotManager() {
272 >      return sman_;
273 >    }
274  
275 <  vector<double> mfact;
276 <  vector<int> FglobalGroupMembership;
277 <  int ngroup;
278 <  int* globalGroupMembership;
275 >    /** Sets the snapshot manager. */
276 >    void setSnapshotManager(SnapshotManager* sman);
277 >        
278 >    /** Returns the force field */
279 >    ForceField* getForceField() {
280 >      return forceField_;
281 >    }
282  
283 <  // refreshes the sim if things get changed (load balanceing, volume
284 <  // adjustment, etc.)
283 >    Globals* getSimParams() {
284 >      return simParams_;
285 >    }
286  
287 <  void refreshSim( void );
288 <  
287 >    /** Returns the velocity of center of mass of the whole system.*/
288 >    Vector3d getComVel();
289  
290 <  // sets the internal function pointer to fortran.
290 >    /** Returns the center of the mass of the whole system.*/
291 >    Vector3d getCom();
292 >    /** Returns the center of the mass and Center of Mass velocity of
293 >        the whole system.*/
294 >    void getComAll(Vector3d& com,Vector3d& comVel);
295  
296 +    /** Returns intertia tensor for the entire system and system
297 +        Angular Momentum.*/
298 +    void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
299 +    
300 +    /** Returns system angular momentum */
301 +    Vector3d getAngularMomentum();
302  
303 <  int getNDF();
304 <  int getNDFraw();
305 <  int getNDFtranslational();
306 <  int getTotIntegrableObjects();
307 <  void setBox( double newBox[3] );
308 <  void setBoxM( double newBox[3][3] );
309 <  void getBoxM( double theBox[3][3] );
310 <  void scaleBox( double scale );
311 <  
168 <  void setDefaultRcut( double theRcut );
169 <  void setDefaultRcut( double theRcut, double theRsw );
170 <  void checkCutOffs( void );
171 <
172 <  double getRcut( void )  { return rCut; }
173 <  double getRlist( void ) { return rList; }
174 <  double getRsw( void )   { return rSw; }
175 <  double getMaxCutoff( void ) { return maxCutoff; }
176 <  
177 <  void setTime( double theTime ) { currentTime = theTime; }
178 <  void incrTime( double the_dt ) { currentTime += the_dt; }
179 <  void decrTime( double the_dt ) { currentTime -= the_dt; }
180 <  double getTime( void ) { return currentTime; }
181 <
182 <  void wrapVector( double thePos[3] );
183 <
184 <  SimState* getConfiguration( void ) { return myConfiguration; }
185 <  
186 <  void addProperty(GenericData* prop);
187 <  GenericData* getProperty(const string& propName);
188 <  //vector<GenericData*>& getProperties()  {return properties;}    
303 >    /** Returns volume of system as estimated by an ellipsoid defined
304 >        by the radii of gyration*/
305 >    void getGyrationalVolume(RealType &vol);
306 >    /** Overloaded version of gyrational volume that also returns
307 >        det(I) so dV/dr can be calculated*/
308 >    void getGyrationalVolume(RealType &vol, RealType &detI);
309 >    /** main driver function to interact with fortran during the
310 >        initialization and molecule migration */
311 >    void update();
312  
313 <  int getSeed(void) {  return seed; }
314 <  void setSeed(int theSeed) {  seed = theSeed;}
313 >    /** Returns the local index manager */
314 >    LocalIndexManager* getLocalIndexManager() {
315 >      return &localIndexMan_;
316 >    }
317  
318 < private:
318 >    int getMoleculeStampId(int globalIndex) {
319 >      //assert(globalIndex < molStampIds_.size())
320 >      return molStampIds_[globalIndex];
321 >    }
322  
323 <  SimState* myConfiguration;
323 >    /** Returns the molecule stamp */
324 >    MoleculeStamp* getMoleculeStamp(int id) {
325 >      return moleculeStamps_[id];
326 >    }
327  
328 <  int boxIsInit, haveRcut, haveRsw;
328 >    /** Return the total number of the molecule stamps */
329 >    int getNMoleculeStamp() {
330 >      return moleculeStamps_.size();
331 >    }
332 >    /**
333 >     * Finds a molecule with a specified global index
334 >     * @return a pointer point to found molecule
335 >     * @param index
336 >     */
337 >    Molecule* getMoleculeByGlobalIndex(int index) {
338 >      MoleculeIterator i;
339 >      i = molecules_.find(index);
340  
341 <  double rList, rCut; // variables for the neighborlist
342 <  double rSw;         // the switching radius
341 >      return i != molecules_.end() ? i->second : NULL;
342 >    }
343  
344 <  double maxCutoff;
344 >    int getGlobalMolMembership(int id){
345 >      return globalMolMembership_[id];
346 >    }
347  
348 <  double distXY;
349 <  double distYZ;
350 <  double distZX;
207 <  
208 <  void calcHmatInv( void );
209 <  void calcBoxL();
210 <  double calcMaxCutOff();
348 >    RealType getCutoffRadius() {
349 >      return cutoffRadius_;
350 >    }
351  
352 <  
353 <  //Addtional Properties of SimInfo
354 <  map<string, GenericData*> properties;
215 <  void getFortranGroupArrays(SimInfo* info,
216 <                             vector<int>& FglobalGroupMembership,
217 <                             vector<double>& mfact);
352 >    RealType getSwitchingRadius() {
353 >      return switchingRadius_;
354 >    }
355  
356 +    RealType getListRadius() {
357 +      return listRadius_;
358 +    }
359 +        
360 +    string getFinalConfigFileName() {
361 +      return finalConfigFileName_;
362 +    }
363  
364 < };
364 >    void setFinalConfigFileName(const string& fileName) {
365 >      finalConfigFileName_ = fileName;
366 >    }
367  
368 +    string getRawMetaData() {
369 +      return rawMetaData_;
370 +    }
371 +    void setRawMetaData(const string& rawMetaData) {
372 +      rawMetaData_ = rawMetaData;
373 +    }
374 +        
375 +    string getDumpFileName() {
376 +      return dumpFileName_;
377 +    }
378 +        
379 +    void setDumpFileName(const string& fileName) {
380 +      dumpFileName_ = fileName;
381 +    }
382  
383 < #endif
383 >    string getStatFileName() {
384 >      return statFileName_;
385 >    }
386 >        
387 >    void setStatFileName(const string& fileName) {
388 >      statFileName_ = fileName;
389 >    }
390 >        
391 >    string getRestFileName() {
392 >      return restFileName_;
393 >    }
394 >        
395 >    void setRestFileName(const string& fileName) {
396 >      restFileName_ = fileName;
397 >    }
398 >
399 >    /**
400 >     * Sets GlobalGroupMembership
401 >     * @see #SimCreator::setGlobalIndex
402 >     */  
403 >    void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
404 >      assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
405 >      globalGroupMembership_ = globalGroupMembership;
406 >    }
407 >
408 >    /**
409 >     * Sets GlobalMolMembership
410 >     * @see #SimCreator::setGlobalIndex
411 >     */        
412 >    void setGlobalMolMembership(const vector<int>& globalMolMembership) {
413 >      assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
414 >      globalMolMembership_ = globalMolMembership;
415 >    }
416 >
417 >
418 >    bool isFortranInitialized() {
419 >      return fortranInitialized_;
420 >    }
421 >        
422 >    bool getCalcBoxDipole() {
423 >      return calcBoxDipole_;
424 >    }
425 >
426 >    bool getUseAtomicVirial() {
427 >      return useAtomicVirial_;
428 >    }
429 >
430 >    /**
431 >     * Adds property into property map
432 >     * @param genData GenericData to be added into PropertyMap
433 >     */
434 >    void addProperty(GenericData* genData);
435 >
436 >    /**
437 >     * Removes property from PropertyMap by name
438 >     * @param propName the name of property to be removed
439 >     */
440 >    void removeProperty(const string& propName);
441 >
442 >    /**
443 >     * clear all of the properties
444 >     */
445 >    void clearProperties();
446 >
447 >    /**
448 >     * Returns all names of properties
449 >     * @return all names of properties
450 >     */
451 >    vector<string> getPropertyNames();
452 >
453 >    /**
454 >     * Returns all of the properties in PropertyMap
455 >     * @return all of the properties in PropertyMap
456 >     */      
457 >    vector<GenericData*> getProperties();
458 >
459 >    /**
460 >     * Returns property
461 >     * @param propName name of property
462 >     * @return a pointer point to property with propName. If no property named propName
463 >     * exists, return NULL
464 >     */      
465 >    GenericData* getPropertyByName(const string& propName);
466 >
467 >    /**
468 >     * add all special interaction pairs (including excluded
469 >     * interactions) in a molecule into the appropriate lists.
470 >     */
471 >    void addInteractionPairs(Molecule* mol);
472 >
473 >    /**
474 >     * remove all special interaction pairs which belong to a molecule
475 >     * from the appropriate lists.
476 >     */
477 >    void removeInteractionPairs(Molecule* mol);
478 >
479 >
480 >    /** Returns the unique atom types of local processor in an array */
481 >    set<AtomType*> getUniqueAtomTypes();
482 >
483 >    /** Returns the set of atom types present in this simulation */
484 >    set<AtomType*> getSimulatedAtomTypes();
485 >        
486 >    friend ostream& operator <<(ostream& o, SimInfo& info);
487 >
488 >    void getCutoff(RealType& rcut, RealType& rsw);
489 >        
490 >  private:
491 >
492 >    /** fill up the simtype struct and other simulation-related variables */
493 >    void setupSimVariables();
494 >
495 >    /**
496 >     * Setup Fortran Simulation
497 >     * @see #setupFortranParallel
498 >     */
499 >    void setupFortranSim();
500 >
501 >    /** Figure out the cutoff radius and cutoff method */
502 >    void setupCutoffs();
503 >    /** Figure out the switching radius and polynomial type for the switching function */
504 >    void setupSwitching();
505 >    /** Figure out the simulation variables associated with electrostatics */
506 >    void setupElectrostatics();  
507 >    /** Figure out the neighbor list skin thickness */
508 >    void setupNeighborlists();
509 >
510 >    /** Determine if we need to accumulate the simulation box dipole */
511 >    void setupAccumulateBoxDipole();
512 >
513 >    /** Calculates the number of degress of freedom in the whole system */
514 >    void calcNdf();
515 >    void calcNdfRaw();
516 >    void calcNdfTrans();
517 >
518 >    /**
519 >     * Adds molecule stamp and the total number of the molecule with
520 >     * same molecule stamp in the whole system.
521 >     */
522 >    void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
523 >
524 >    // Other classes holdingn important information
525 >    ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
526 >    Globals* simParams_;     /**< provides access to simulation parameters set by user */
527 >
528 >    ///  Counts of local objects
529 >    int nAtoms_;              /**< number of atoms in local processor */
530 >    int nBonds_;              /**< number of bonds in local processor */
531 >    int nBends_;              /**< number of bends in local processor */
532 >    int nTorsions_;           /**< number of torsions in local processor */
533 >    int nInversions_;         /**< number of inversions in local processor */
534 >    int nRigidBodies_;        /**< number of rigid bodies in local processor */
535 >    int nIntegrableObjects_;  /**< number of integrable objects in local processor */
536 >    int nCutoffGroups_;       /**< number of cutoff groups in local processor */
537 >    int nConstraints_;        /**< number of constraints in local processors */
538 >        
539 >    /// Counts of global objects
540 >    int nGlobalMols_;              /**< number of molecules in the system (GLOBAL) */
541 >    int nGlobalAtoms_;             /**< number of atoms in the system (GLOBAL) */
542 >    int nGlobalCutoffGroups_;      /**< number of cutoff groups in this system (GLOBAL) */
543 >    int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
544 >    int nGlobalRigidBodies_;       /**< number of rigid bodies in this system (GLOBAL) */
545 >      
546 >    /// Degress of freedom
547 >    int ndf_;          /**< number of degress of freedom (excludes constraints) (LOCAL) */
548 >    int fdf_local;     /**< number of frozen degrees of freedom (LOCAL) */
549 >    int fdf_;          /**< number of frozen degrees of freedom (GLOBAL) */
550 >    int ndfRaw_;       /**< number of degress of freedom (includes constraints),  (LOCAL) */
551 >    int ndfTrans_;     /**< number of translation degress of freedom, (LOCAL) */
552 >    int nZconstraint_; /**< number of  z-constraint molecules (GLOBAL) */
553 >
554 >    /// logicals
555 >    bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
556 >    bool usesDirectionalAtoms_;   /**< are there atoms with position AND orientation? */
557 >    bool usesMetallicAtoms_;      /**< are there transition metal atoms? */
558 >    bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
559 >    bool usesAtomicVirial_;       /**< are we computing atomic virials? */
560 >    bool requiresPrepair_;        /**< does this simulation require a pre-pair loop? */
561 >    bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
562 >    bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
563 >
564 >    /// Data structures holding primary simulation objects
565 >    map<int, Molecule*>  molecules_;  /**< map holding pointers to LOCAL molecules */
566 >    simtype fInfo_;                   /**< A dual struct shared by C++
567 >                                         and Fortran to pass
568 >                                         information about what types
569 >                                         of calculation are
570 >                                         required */
571 >    
572 >    /// Stamps are templates for objects that are then used to create
573 >    /// groups of objects.  For example, a molecule stamp contains
574 >    /// information on how to build that molecule (i.e. the topology,
575 >    /// the atoms, the bonds, etc.)  Once the system is built, the
576 >    /// stamps are no longer useful.
577 >    vector<int> molStampIds_;                /**< stamp id for molecules in the system */
578 >    vector<MoleculeStamp*> moleculeStamps_;  /**< molecule stamps array */        
579 >
580 >    /**
581 >     * A vector that maps between the global index of an atom, and the
582 >     * global index of cutoff group the atom belong to.  It is filled
583 >     * by SimCreator once and only once, since it never changed during
584 >     * the simulation.  It should be nGlobalAtoms_ in size.
585 >     */
586 >    vector<int> globalGroupMembership_;
587 >
588 >    /**
589 >     * A vector that maps between the global index of an atom and the
590 >     * global index of the molecule the atom belongs to.  It is filled
591 >     * by SimCreator once and only once, since it is never changed
592 >     * during the simulation. It shoudl be nGlobalAtoms_ in size.
593 >     */
594 >    vector<int> globalMolMembership_;        
595 >              
596 >    /// lists to handle atoms needing special treatment in the non-bonded interactions
597 >    PairList excludedInteractions_;  /**< atoms excluded from interacting with each other */
598 >    PairList oneTwoInteractions_;    /**< atoms that are directly Bonded */
599 >    PairList oneThreeInteractions_;  /**< atoms sharing a Bend */    
600 >    PairList oneFourInteractions_;   /**< atoms sharing a Torsion */
601 >
602 >    PropertyMap properties_;       /**< Generic Properties can be added */
603 >    SnapshotManager* sman_;        /**< SnapshotManager (handles particle positions, etc.) */
604 >
605 >    /**
606 >     * The reason to have a local index manager is that when molecule
607 >     * is migrating to other processors, the atoms and the
608 >     * rigid-bodies will release their local indices to
609 >     * LocalIndexManager. Combining the information of molecule
610 >     * migrating to current processor, Migrator class can query the
611 >     * LocalIndexManager to make a efficient data moving plan.
612 >     */        
613 >    LocalIndexManager localIndexMan_;
614 >
615 >    // unparsed MetaData block for storing in Dump and EOR files:
616 >    string rawMetaData_;
617 >
618 >    // file names
619 >    string finalConfigFileName_;
620 >    string dumpFileName_;
621 >    string statFileName_;
622 >    string restFileName_;
623 >        
624 >    RealType cutoffRadius_;         /**< cutoff radius for non-bonded interactions */
625 >    RealType switchingRadius_;      /**< inner radius of switching function */
626 >    RealType listRadius_;           /**< Verlet neighbor list radius */
627 >    RealType skinThickness_;        /**< Verlet neighbor list skin thickness */    
628 >    CutoffMethod cutoffMethod_;     /**< Cutoff Method for most non-bonded interactions */
629 >    SwitchingFunctionType sft_;     /**< Type of switching function in use */
630 >
631 >    bool fortranInitialized_; /** flag to indicate whether the fortran side is initialized */
632 >    
633 >    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
634 >                            the simulation box dipole moment */
635 >    
636 >    bool useAtomicVirial_; /**< flag to indicate whether or not we use
637 >                              Atomic Virials to calculate the pressure */
638 >    
639 >  public:
640 >    /**
641 >     * return an integral objects by its global index. In MPI
642 >     * version, if the StuntDouble with specified global index does
643 >      * not belong to local processor, a NULL will be return.
644 >      */
645 >    StuntDouble* getIOIndexToIntegrableObject(int index);
646 >    void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
647 >    
648 >  private:
649 >    vector<StuntDouble*> IOIndexToIntegrableObject;
650 >    
651 >  public:
652 >                
653 >    /**
654 >     * Finds the processor where a molecule resides
655 >     * @return the id of the processor which contains the molecule
656 >     * @param globalIndex global Index of the molecule
657 >     */
658 >    int getMolToProc(int globalIndex) {
659 >      //assert(globalIndex < molToProcMap_.size());
660 >      return molToProcMap_[globalIndex];
661 >    }
662 >    
663 >    /**
664 >     * Set MolToProcMap array
665 >     * @see #SimCreator::divideMolecules
666 >     */
667 >    void setMolToProcMap(const vector<int>& molToProcMap) {
668 >      molToProcMap_ = molToProcMap;
669 >    }
670 >        
671 >  private:
672 >
673 >    void setupFortranParallel();
674 >        
675 >    /**
676 >     * The size of molToProcMap_ is equal to total number of molecules
677 >     * in the system.  It maps a molecule to the processor on which it
678 >     * resides. it is filled by SimCreator once and only once.
679 >     */        
680 >    vector<int> molToProcMap_;
681 >
682 >  };
683 >
684 > } //namespace OpenMD
685 > #endif //BRAINS_SIMMODEL_HPP
686 >

Comparing:
trunk/src/brains/SimInfo.hpp (property svn:keywords), Revision 143 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
branches/development/src/brains/SimInfo.hpp (property svn:keywords), Revision 1534 by gezelter, Wed Dec 29 21:53:28 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines