ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.hpp (file contents):
Revision 143 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
Revision 1103 by chuckv, Fri Dec 29 20:21:53 2006 UTC

# Line 1 | Line 1
1 < #ifndef __SIMINFO_H__
2 < #define __SIMINFO_H__
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.hpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <map>
50 < #include <string>
49 > #ifndef BRAINS_SIMMODEL_HPP
50 > #define BRAINS_SIMMODEL_HPP
51 >
52 > #include <iostream>
53 > #include <set>
54 > #include <utility>
55   #include <vector>
56  
8 #include "primitives/Atom.hpp"
9 #include "primitives/RigidBody.hpp"
10 #include "primitives/Molecule.hpp"
57   #include "brains/Exclude.hpp"
58 < #include "brains/SkipList.hpp"
59 < #include "primitives/AbstractClasses.hpp"
60 < #include "types/MakeStamps.hpp"
61 < #include "brains/SimState.hpp"
62 < #include "restraints/Restraints.hpp"
58 > #include "io/Globals.hpp"
59 > #include "math/Vector3.hpp"
60 > #include "math/SquareMatrix3.hpp"
61 > #include "types/MoleculeStamp.hpp"
62 > #include "UseTheForce/ForceField.hpp"
63 > #include "utils/PropertyMap.hpp"
64 > #include "utils/LocalIndexManager.hpp"
65  
66 + //another nonsense macro declaration
67   #define __C
68   #include "brains/fSimulation.h"
20 #include "utils/GenericData.hpp"
69  
70 + namespace oopse{
71  
72 < //#include "Minimizer.hpp"
73 < //#include "minimizers/OOPSEMinimizer.hpp"
72 >  //forward decalration
73 >  class SnapshotManager;
74 >  class Molecule;
75 >  class SelectionManager;
76 >  class StuntDouble;
77 >  /**
78 >   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
79 >   * @brief One of the heavy weight classes of OOPSE, SimInfo maintains a list of molecules.
80 >   * The Molecule class maintains all of the concrete objects
81 >   * (atoms, bond, bend, torsions, rigid bodies, cutoff groups, constrains).
82 >   * In both the  single and parallel versions,  atoms and
83 >   * rigid bodies have both global and local indices.  The local index is
84 >   * not relevant to molecules or cutoff groups.
85 >   */
86 >  class SimInfo {
87 >  public:
88 >    typedef std::map<int, Molecule*>::iterator  MoleculeIterator;
89  
90 +    /**
91 +     * Constructor of SimInfo
92 +     * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
93 +     * second element is the total number of molecules with the same molecule stamp in the system
94 +     * @param ff pointer of a concrete ForceField instance
95 +     * @param simParams
96 +     * @note
97 +     */
98 +    SimInfo(ForceField* ff, Globals* simParams);
99 +    virtual ~SimInfo();
100  
101 < double roundMe( double x );
102 < class OOPSEMinimizer;
103 < class SimInfo{
101 >    /**
102 >     * Adds a molecule
103 >     * @return return true if adding successfully, return false if the molecule is already in SimInfo
104 >     * @param mol molecule to be added
105 >     */
106 >    bool addMolecule(Molecule* mol);
107  
108 < public:
108 >    /**
109 >     * Removes a molecule from SimInfo
110 >     * @return true if removing successfully, return false if molecule is not in this SimInfo
111 >     */
112 >    bool removeMolecule(Molecule* mol);
113  
114 <  SimInfo();
115 <  ~SimInfo();
114 >    /** Returns the total number of molecules in the system. */
115 >    int getNGlobalMolecules() {
116 >      return nGlobalMols_;
117 >    }
118  
119 <  int n_atoms; // the number of atoms
120 <  Atom **atoms; // the array of atom objects
119 >    /** Returns the total number of atoms in the system. */
120 >    int getNGlobalAtoms() {
121 >      return nGlobalAtoms_;
122 >    }
123  
124 <  vector<RigidBody*> rigidBodies;  // A vector of rigid bodies
125 <  vector<StuntDouble*> integrableObjects;
126 <  
127 <  double tau[9]; // the stress tensor
124 >    /** Returns the total number of cutoff groups in the system. */
125 >    int getNGlobalCutoffGroups() {
126 >      return nGlobalCutoffGroups_;
127 >    }
128  
129 <  int n_bonds;    // number of bends
130 <  int n_bends;    // number of bends
131 <  int n_torsions; // number of torsions
132 <  int n_oriented; // number of of atoms with orientation
133 <  int ndf;        // number of actual degrees of freedom
134 <  int ndfRaw;     // number of settable degrees of freedom
135 <  int ndfTrans;   // number of translational degrees of freedom
51 <  int nZconstraints; // the number of zConstraints
129 >    /**
130 >     * Returns the total number of integrable objects (total number of rigid bodies plus the total number
131 >     * of atoms which do not belong to the rigid bodies) in the system
132 >     */
133 >    int getNGlobalIntegrableObjects() {
134 >      return nGlobalIntegrableObjects_;
135 >    }
136  
137 <  int setTemp;   // boolean to set the temperature at each sampleTime
138 <  int resetIntegrator; // boolean to reset the integrator
137 >    /**
138 >     * Returns the total number of integrable objects (total number of rigid bodies plus the total number
139 >     * of atoms which do not belong to the rigid bodies) in the system
140 >     */
141 >    int getNGlobalRigidBodies() {
142 >      return nGlobalRigidBodies_;
143 >    }
144  
145 <  int n_dipoles; // number of dipoles
145 >    int getNGlobalConstraints();
146 >    /**
147 >     * Returns the number of local molecules.
148 >     * @return the number of local molecules
149 >     */
150 >    int getNMolecules() {
151 >      return molecules_.size();
152 >    }
153  
154 <  int n_exclude;
155 <  Exclude* excludes;  // the exclude list for ignoring pairs in fortran
156 <  int nGlobalExcludes;
157 <  int* globalExcludes; // same as above, but these guys participate in
62 <                       // no long range forces.
154 >    /** Returns the number of local atoms */
155 >    unsigned int getNAtoms() {
156 >      return nAtoms_;
157 >    }
158  
159 <  int* identArray;     // array of unique identifiers for the atoms
160 <  int* molMembershipArray;  // map of atom numbers onto molecule numbers
159 >    /** Returns the number of local bonds */        
160 >    unsigned int getNBonds(){
161 >      return nBonds_;
162 >    }
163  
164 <  int n_constraints; // the number of constraints on the system
164 >    /** Returns the number of local bends */        
165 >    unsigned int getNBends() {
166 >      return nBends_;
167 >    }
168  
169 <  int n_SRI;   // the number of short range interactions
169 >    /** Returns the number of local torsions */        
170 >    unsigned int getNTorsions() {
171 >      return nTorsions_;
172 >    }
173  
174 <  double lrPot; // the potential energy from the long range calculations.
174 >    /** Returns the number of local rigid bodies */        
175 >    unsigned int getNRigidBodies() {
176 >      return nRigidBodies_;
177 >    }
178  
179 <  double Hmat[3][3];  // the periodic boundry conditions. The Hmat is the
180 <                      // column vectors of the x, y, and z box vectors.
181 <                      //   h1  h2  h3
182 <                      // [ Xx  Yx  Zx ]
77 <                      // [ Xy  Yy  Zy ]
78 <                      // [ Xz  Yz  Zz ]
79 <                      //  
80 <  double HmatInv[3][3];
179 >    /** Returns the number of local integrable objects */
180 >    unsigned int getNIntegrableObjects() {
181 >      return nIntegrableObjects_;
182 >    }
183  
184 <  double boxL[3]; // The Lengths of the 3 column vectors of Hmat
185 <  double boxVol;
186 <  int orthoRhombic;
187 <  
184 >    /** Returns the number of local cutoff groups */
185 >    unsigned int getNCutoffGroups() {
186 >      return nCutoffGroups_;
187 >    }
188  
189 <  double dielectric;      // the dielectric of the medium for reaction field
189 >    /** Returns the total number of constraints in this SimInfo */
190 >    unsigned int getNConstraints() {
191 >      return nConstraints_;
192 >    }
193 >        
194 >    /**
195 >     * Returns the first molecule in this SimInfo and intialize the iterator.
196 >     * @return the first molecule, return NULL if there is not molecule in this SimInfo
197 >     * @param i the iterator of molecule array (user shouldn't change it)
198 >     */
199 >    Molecule* beginMolecule(MoleculeIterator& i);
200  
201 <  
202 <  int usePBC; // whether we use periodic boundry conditions.
203 <  int useDirectionalAtoms;
204 <  int useLennardJones;
205 <  int useElectrostatics;
206 <  int useCharges;
95 <  int useDipoles;
96 <  int useSticky;
97 <  int useGayBerne;
98 <  int useEAM;
99 <  int useShapes;
100 <  int useFLARB;
101 <  int useReactionField;
102 <  bool haveCutoffGroups;
103 <  bool useInitXSstate;
104 <  double orthoTolerance;
201 >    /**
202 >     * Returns the next avaliable Molecule based on the iterator.
203 >     * @return the next avaliable molecule, return NULL if reaching the end of the array
204 >     * @param i the iterator of molecule array
205 >     */
206 >    Molecule* nextMolecule(MoleculeIterator& i);
207  
208 <  double dt, run_time;           // the time step and total time
209 <  double sampleTime, statusTime; // the position and energy dump frequencies
210 <  double target_temp;            // the target temperature of the system
211 <  double thermalTime;            // the temp kick interval
110 <  double currentTime;            // Used primarily for correlation Functions
111 <  double resetTime;              // Use to reset the integrator periodically
112 <  short int have_target_temp;
208 >    /** Returns the number of degrees of freedom */
209 >    int getNdf() {
210 >      return ndf_ - getFdf();
211 >    }
212  
213 <  int n_mol;           // n_molecules;
214 <  Molecule* molecules; // the array of molecules
215 <  
216 <  int nComponents;           // the number of components in the system
118 <  int* componentsNmol;       // the number of molecules of each component
119 <  MoleculeStamp** compStamps;// the stamps matching the components
120 <  LinkedMolStamp* headStamp; // list of stamps used in the simulation
121 <  
122 <  
123 <  char ensemble[100]; // the enesemble of the simulation (NVT, NVE, etc. )
124 <  char mixingRule[100]; // the mixing rules for Lennard jones/van der walls
125 <  BaseIntegrator *the_integrator; // the integrator of the simulation
213 >    /** Returns the number of raw degrees of freedom */
214 >    int getNdfRaw() {
215 >      return ndfRaw_;
216 >    }
217  
218 <  OOPSEMinimizer* the_minimizer; // the energy minimizer
219 <  Restraints* restraint;
220 <  bool has_minimizer;
218 >    /** Returns the number of translational degrees of freedom */
219 >    int getNdfTrans() {
220 >      return ndfTrans_;
221 >    }
222  
223 <  string finalName;  // the name of the eor file to be written
224 <  string sampleName; // the name of the dump file to be written
225 <  string statusName; // the name of the stat file to be written
223 >    /** sets the current number of frozen degrees of freedom */
224 >    void setFdf(int fdf) {
225 >      fdf_local = fdf;
226 >    }
227  
228 <  int seed;                    //seed for random number generator
228 >    int getFdf();
229 >    
230 >    //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
231 >        
232 >    /** Returns the total number of z-constraint molecules in the system */
233 >    int getNZconstraint() {
234 >      return nZconstraint_;
235 >    }
236  
237 <  int useSolidThermInt;  // is solid-state thermodynamic integration being used
238 <  int useLiquidThermInt; // is liquid thermodynamic integration being used
239 <  double thermIntLambda; // lambda for TI
240 <  double thermIntK;      // power of lambda for TI
241 <  double vRaw;           // unperturbed potential for TI
242 <  double vHarm;          // harmonic potential for TI
243 <  int i;                 // just an int
237 >    /**
238 >     * Sets the number of z-constraint molecules in the system.
239 >     */
240 >    void setNZconstraint(int nZconstraint) {
241 >      nZconstraint_ = nZconstraint;
242 >    }
243 >        
244 >    /** Returns the snapshot manager. */
245 >    SnapshotManager* getSnapshotManager() {
246 >      return sman_;
247 >    }
248  
249 <  vector<double> mfact;
250 <  vector<int> FglobalGroupMembership;
251 <  int ngroup;
252 <  int* globalGroupMembership;
249 >    /** Sets the snapshot manager. */
250 >    void setSnapshotManager(SnapshotManager* sman);
251 >        
252 >    /** Returns the force field */
253 >    ForceField* getForceField() {
254 >      return forceField_;
255 >    }
256  
257 <  // refreshes the sim if things get changed (load balanceing, volume
258 <  // adjustment, etc.)
257 >    Globals* getSimParams() {
258 >      return simParams_;
259 >    }
260  
261 <  void refreshSim( void );
262 <  
261 >    /** Returns the velocity of center of mass of the whole system.*/
262 >    Vector3d getComVel();
263  
264 <  // sets the internal function pointer to fortran.
264 >    /** Returns the center of the mass of the whole system.*/
265 >    Vector3d getCom();
266 >   /** Returns the center of the mass and Center of Mass velocity of the whole system.*/
267 >    void getComAll(Vector3d& com,Vector3d& comVel);
268  
269 +    /** Returns intertia tensor for the entire system and system Angular Momentum.*/
270 +    void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
271 +    
272 +    /** Returns system angular momentum */
273 +    Vector3d getAngularMomentum();
274  
275 <  int getNDF();
276 <  int getNDFraw();
277 <  int getNDFtranslational();
278 <  int getTotIntegrableObjects();
279 <  void setBox( double newBox[3] );
280 <  void setBoxM( double newBox[3][3] );
165 <  void getBoxM( double theBox[3][3] );
166 <  void scaleBox( double scale );
167 <  
168 <  void setDefaultRcut( double theRcut );
169 <  void setDefaultRcut( double theRcut, double theRsw );
170 <  void checkCutOffs( void );
171 <
172 <  double getRcut( void )  { return rCut; }
173 <  double getRlist( void ) { return rList; }
174 <  double getRsw( void )   { return rSw; }
175 <  double getMaxCutoff( void ) { return maxCutoff; }
176 <  
177 <  void setTime( double theTime ) { currentTime = theTime; }
178 <  void incrTime( double the_dt ) { currentTime += the_dt; }
179 <  void decrTime( double the_dt ) { currentTime -= the_dt; }
180 <  double getTime( void ) { return currentTime; }
181 <
182 <  void wrapVector( double thePos[3] );
275 >    /** Returns volume of system as estimated by an ellipsoid defined by the radii of gyration*/
276 >    void getGyrationalVolume(RealType &vol);
277 >    /** Overloaded version of gyrational volume that also returns det(I) so dV/dr can be calculated*/
278 >    void getGyrationalVolume(RealType &vol, RealType &detI);
279 >    /** main driver function to interact with fortran during the initialization and molecule migration */
280 >    void update();
281  
282 <  SimState* getConfiguration( void ) { return myConfiguration; }
283 <  
284 <  void addProperty(GenericData* prop);
285 <  GenericData* getProperty(const string& propName);
188 <  //vector<GenericData*>& getProperties()  {return properties;}    
282 >    /** Returns the local index manager */
283 >    LocalIndexManager* getLocalIndexManager() {
284 >      return &localIndexMan_;
285 >    }
286  
287 <  int getSeed(void) {  return seed; }
288 <  void setSeed(int theSeed) {  seed = theSeed;}
287 >    int getMoleculeStampId(int globalIndex) {
288 >      //assert(globalIndex < molStampIds_.size())
289 >      return molStampIds_[globalIndex];
290 >    }
291  
292 < private:
292 >    /** Returns the molecule stamp */
293 >    MoleculeStamp* getMoleculeStamp(int id) {
294 >      return moleculeStamps_[id];
295 >    }
296  
297 <  SimState* myConfiguration;
297 >    /** Return the total number of the molecule stamps */
298 >    int getNMoleculeStamp() {
299 >      return moleculeStamps_.size();
300 >    }
301 >    /**
302 >     * Finds a molecule with a specified global index
303 >     * @return a pointer point to found molecule
304 >     * @param index
305 >     */
306 >    Molecule* getMoleculeByGlobalIndex(int index) {
307 >      MoleculeIterator i;
308 >      i = molecules_.find(index);
309  
310 <  int boxIsInit, haveRcut, haveRsw;
310 >      return i != molecules_.end() ? i->second : NULL;
311 >    }
312  
313 <  double rList, rCut; // variables for the neighborlist
314 <  double rSw;         // the switching radius
313 >    RealType getRcut() {
314 >      return rcut_;
315 >    }
316  
317 <  double maxCutoff;
317 >    RealType getRsw() {
318 >      return rsw_;
319 >    }
320  
321 <  double distXY;
322 <  double distYZ;
323 <  double distZX;
324 <  
325 <  void calcHmatInv( void );
326 <  void calcBoxL();
327 <  double calcMaxCutOff();
321 >    RealType getList() {
322 >      return rlist_;
323 >    }
324 >        
325 >    std::string getFinalConfigFileName() {
326 >      return finalConfigFileName_;
327 >    }
328  
329 <  
330 <  //Addtional Properties of SimInfo
331 <  map<string, GenericData*> properties;
215 <  void getFortranGroupArrays(SimInfo* info,
216 <                             vector<int>& FglobalGroupMembership,
217 <                             vector<double>& mfact);
329 >    void setFinalConfigFileName(const std::string& fileName) {
330 >      finalConfigFileName_ = fileName;
331 >    }
332  
333 +    std::string getRawMetaData() {
334 +      return rawMetaData_;
335 +    }
336 +    void setRawMetaData(const std::string& rawMetaData) {
337 +      rawMetaData_ = rawMetaData;
338 +    }
339 +        
340 +    std::string getDumpFileName() {
341 +      return dumpFileName_;
342 +    }
343 +        
344 +    void setDumpFileName(const std::string& fileName) {
345 +      dumpFileName_ = fileName;
346 +    }
347  
348 < };
348 >    std::string getStatFileName() {
349 >      return statFileName_;
350 >    }
351 >        
352 >    void setStatFileName(const std::string& fileName) {
353 >      statFileName_ = fileName;
354 >    }
355 >        
356 >    std::string getRestFileName() {
357 >      return restFileName_;
358 >    }
359 >        
360 >    void setRestFileName(const std::string& fileName) {
361 >      restFileName_ = fileName;
362 >    }
363  
364 +    /**
365 +     * Sets GlobalGroupMembership
366 +     * @see #SimCreator::setGlobalIndex
367 +     */  
368 +    void setGlobalGroupMembership(const std::vector<int>& globalGroupMembership) {
369 +      assert(globalGroupMembership.size() == nGlobalAtoms_);
370 +      globalGroupMembership_ = globalGroupMembership;
371 +    }
372  
373 +    /**
374 +     * Sets GlobalMolMembership
375 +     * @see #SimCreator::setGlobalIndex
376 +     */        
377 +    void setGlobalMolMembership(const std::vector<int>& globalMolMembership) {
378 +      assert(globalMolMembership.size() == nGlobalAtoms_);
379 +      globalMolMembership_ = globalMolMembership;
380 +    }
381 +
382 +
383 +    bool isFortranInitialized() {
384 +      return fortranInitialized_;
385 +    }
386 +        
387 +    bool getCalcBoxDipole() {
388 +      return calcBoxDipole_;
389 +    }
390 +
391 +    //below functions are just forward functions
392 +    //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
393 +    //the other hand, has-a relation need composing.
394 +    /**
395 +     * Adds property into property map
396 +     * @param genData GenericData to be added into PropertyMap
397 +     */
398 +    void addProperty(GenericData* genData);
399 +
400 +    /**
401 +     * Removes property from PropertyMap by name
402 +     * @param propName the name of property to be removed
403 +     */
404 +    void removeProperty(const std::string& propName);
405 +
406 +    /**
407 +     * clear all of the properties
408 +     */
409 +    void clearProperties();
410 +
411 +    /**
412 +     * Returns all names of properties
413 +     * @return all names of properties
414 +     */
415 +    std::vector<std::string> getPropertyNames();
416 +
417 +    /**
418 +     * Returns all of the properties in PropertyMap
419 +     * @return all of the properties in PropertyMap
420 +     */      
421 +    std::vector<GenericData*> getProperties();
422 +
423 +    /**
424 +     * Returns property
425 +     * @param propName name of property
426 +     * @return a pointer point to property with propName. If no property named propName
427 +     * exists, return NULL
428 +     */      
429 +    GenericData* getPropertyByName(const std::string& propName);
430 +
431 +    /**
432 +     * add all exclude pairs of a molecule into exclude list.
433 +     */
434 +    void addExcludePairs(Molecule* mol);
435 +
436 +    /**
437 +     * remove all exclude pairs which belong to a molecule from exclude list
438 +     */
439 +
440 +    void removeExcludePairs(Molecule* mol);
441 +
442 +
443 +    /** Returns the unique atom types of local processor in an array */
444 +    std::set<AtomType*> getUniqueAtomTypes();
445 +        
446 +    friend std::ostream& operator <<(std::ostream& o, SimInfo& info);
447 +
448 +    void getCutoff(RealType& rcut, RealType& rsw);
449 +        
450 +  private:
451 +
452 +    /** fill up the simtype struct*/
453 +    void setupSimType();
454 +
455 +    /**
456 +     * Setup Fortran Simulation
457 +     * @see #setupFortranParallel
458 +     */
459 +    void setupFortranSim();
460 +
461 +    /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
462 +    void setupCutoff();
463 +
464 +    /** Figure out which coulombic correction method to use and pass to fortran */
465 +    void setupElectrostaticSummationMethod( int isError );
466 +
467 +    /** Figure out which polynomial type to use for the switching function */
468 +    void setupSwitchingFunction();
469 +
470 +    /** Determine if we need to accumulate the simulation box dipole */
471 +    void setupAccumulateBoxDipole();
472 +
473 +    /** Calculates the number of degress of freedom in the whole system */
474 +    void calcNdf();
475 +    void calcNdfRaw();
476 +    void calcNdfTrans();
477 +
478 +    ForceField* forceField_;      
479 +    Globals* simParams_;
480 +
481 +    std::map<int, Molecule*>  molecules_; /**< Molecule array */
482 +
483 +    /**
484 +     * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
485 +     * system.
486 +     */
487 +    void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
488 +        
489 +    //degress of freedom
490 +    int ndf_;           /**< number of degress of freedom (excludes constraints),  ndf_ is local */
491 +    int fdf_local;       /**< number of frozen degrees of freedom */
492 +    int fdf_;            /**< number of frozen degrees of freedom */
493 +    int ndfRaw_;    /**< number of degress of freedom (includes constraints),  ndfRaw_ is local */
494 +    int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
495 +    int nZconstraint_; /** number of  z-constraint molecules, nZconstraint_ is global */
496 +        
497 +    //number of global objects
498 +    int nGlobalMols_;       /**< number of molecules in the system */
499 +    int nGlobalAtoms_;   /**< number of atoms in the system */
500 +    int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
501 +    int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
502 +    int nGlobalRigidBodies_; /**< number of rigid bodies in this system */
503 +    /**
504 +     * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
505 +     * corresponding content is the global index of cutoff group this atom belong to.
506 +     * It is filled by SimCreator once and only once, since it never changed during the simulation.
507 +     */
508 +    std::vector<int> globalGroupMembership_;
509 +
510 +    /**
511 +     * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
512 +     * corresponding content is the global index of molecule this atom belong to.
513 +     * It is filled by SimCreator once and only once, since it is never changed during the simulation.
514 +     */
515 +    std::vector<int> globalMolMembership_;        
516 +
517 +        
518 +    std::vector<int> molStampIds_;                                /**< stamp id array of all molecules in the system */
519 +    std::vector<MoleculeStamp*> moleculeStamps_;      /**< molecule stamps array */        
520 +        
521 +    //number of local objects
522 +    int nAtoms_;                        /**< number of atoms in local processor */
523 +    int nBonds_;                        /**< number of bonds in local processor */
524 +    int nBends_;                        /**< number of bends in local processor */
525 +    int nTorsions_;                    /**< number of torsions in local processor */
526 +    int nRigidBodies_;              /**< number of rigid bodies in local processor */
527 +    int nIntegrableObjects_;    /**< number of integrable objects in local processor */
528 +    int nCutoffGroups_;             /**< number of cutoff groups in local processor */
529 +    int nConstraints_;              /**< number of constraints in local processors */
530 +
531 +    simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
532 +    Exclude exclude_;      
533 +    PropertyMap properties_;                  /**< Generic Property */
534 +    SnapshotManager* sman_;               /**< SnapshotManager */
535 +
536 +    /**
537 +     * The reason to have a local index manager is that when molecule is migrating to other processors,
538 +     * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
539 +     * information of molecule migrating to current processor, Migrator class can query  the LocalIndexManager
540 +     * to make a efficient data moving plan.
541 +     */        
542 +    LocalIndexManager localIndexMan_;
543 +
544 +    // unparsed MetaData block for storing in Dump and EOR files:
545 +    std::string rawMetaData_;
546 +
547 +    //file names
548 +    std::string finalConfigFileName_;
549 +    std::string dumpFileName_;
550 +    std::string statFileName_;
551 +    std::string restFileName_;
552 +        
553 +    RealType rcut_;       /**< cutoff radius*/
554 +    RealType rsw_;        /**< radius of switching function*/
555 +    RealType rlist_;      /**< neighbor list radius */
556 +
557 +    bool fortranInitialized_; /**< flag indicate whether fortran side is initialized */
558 +
559 +    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate the simulation box dipole moment */
560 +
561 +    public:
562 +     /**
563 +      * return an integral objects by its global index. In MPI version, if the StuntDouble with specified
564 +      * global index does not belong to local processor, a NULL will be return.
565 +      */
566 +      StuntDouble* getIOIndexToIntegrableObject(int index);
567 +      void setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v);
568 +    private:
569 +      std::vector<StuntDouble*> IOIndexToIntegrableObject;
570 +  //public:
571 +    //void setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v);
572 +    /**
573 +     * return a StuntDouble by its global index. In MPI version, if the StuntDouble with specified
574 +     * global index does not belong to local processor, a NULL will be return.
575 +     */
576 +    //StuntDouble* getStuntDoubleFromGlobalIndex(int index);
577 +  //private:
578 +    //std::vector<StuntDouble*> sdByGlobalIndex_;
579 +    
580 + #ifdef IS_MPI
581 +    //in Parallel version, we need MolToProc
582 +  public:
583 +                
584 +    /**
585 +     * Finds the processor where a molecule resides
586 +     * @return the id of the processor which contains the molecule
587 +     * @param globalIndex global Index of the molecule
588 +     */
589 +    int getMolToProc(int globalIndex) {
590 +      //assert(globalIndex < molToProcMap_.size());
591 +      return molToProcMap_[globalIndex];
592 +    }
593 +
594 +    /**
595 +     * Set MolToProcMap array
596 +     * @see #SimCreator::divideMolecules
597 +     */
598 +    void setMolToProcMap(const std::vector<int>& molToProcMap) {
599 +      molToProcMap_ = molToProcMap;
600 +    }
601 +
602 +    
603 +        
604 +  private:
605 +
606 +    void setupFortranParallel();
607 +        
608 +    /**
609 +     * The size of molToProcMap_ is equal to total number of molecules in the system.
610 +     *  It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
611 +     * once.
612 +     */        
613 +    std::vector<int> molToProcMap_;
614 +
615   #endif
616 +
617 +  };
618 +
619 + } //namespace oopse
620 + #endif //BRAINS_SIMMODEL_HPP
621 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines