ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
Revision: 1545
Committed: Fri Apr 8 21:25:19 2011 UTC (14 years ago) by gezelter
File size: 21975 byte(s)
Log Message:
still busted, but much progress

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file SimInfo.hpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #ifndef BRAINS_SIMMODEL_HPP
50 #define BRAINS_SIMMODEL_HPP
51
52 #include <iostream>
53 #include <set>
54 #include <utility>
55 #include <vector>
56
57 #include "brains/PairList.hpp"
58 #include "io/Globals.hpp"
59 #include "math/Vector3.hpp"
60 #include "math/SquareMatrix3.hpp"
61 #include "types/MoleculeStamp.hpp"
62 #include "UseTheForce/ForceField.hpp"
63 #include "utils/PropertyMap.hpp"
64 #include "utils/LocalIndexManager.hpp"
65 #include "nonbonded/SwitchingFunction.hpp"
66
67 //another nonsense macro declaration
68 #define __OPENMD_C
69 #include "brains/fSimulation.h"
70
71 using namespace std;
72 namespace OpenMD{
73 //forward decalration
74 class SnapshotManager;
75 class Molecule;
76 class SelectionManager;
77 class StuntDouble;
78
79 /**
80 * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
81 *
82 * @brief One of the heavy-weight classes of OpenMD, SimInfo
83 * maintains objects and variables relating to the current
84 * simulation. This includes the master list of Molecules. The
85 * Molecule class maintains all of the concrete objects (Atoms,
86 * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
87 * Constraints). In both the single and parallel versions, Atoms and
88 * RigidBodies have both global and local indices.
89 */
90 class SimInfo {
91 public:
92 typedef map<int, Molecule*>::iterator MoleculeIterator;
93
94 /**
95 * Constructor of SimInfo
96 *
97 * @param molStampPairs MoleculeStamp Array. The first element of
98 * the pair is molecule stamp, the second element is the total
99 * number of molecules with the same molecule stamp in the system
100 *
101 * @param ff pointer of a concrete ForceField instance
102 *
103 * @param simParams
104 */
105 SimInfo(ForceField* ff, Globals* simParams);
106 virtual ~SimInfo();
107
108 /**
109 * Adds a molecule
110 *
111 * @return return true if adding successfully, return false if the
112 * molecule is already in SimInfo
113 *
114 * @param mol molecule to be added
115 */
116 bool addMolecule(Molecule* mol);
117
118 /**
119 * Removes a molecule from SimInfo
120 *
121 * @return true if removing successfully, return false if molecule
122 * is not in this SimInfo
123 */
124 bool removeMolecule(Molecule* mol);
125
126 /** Returns the total number of molecules in the system. */
127 int getNGlobalMolecules() {
128 return nGlobalMols_;
129 }
130
131 /** Returns the total number of atoms in the system. */
132 int getNGlobalAtoms() {
133 return nGlobalAtoms_;
134 }
135
136 /** Returns the total number of cutoff groups in the system. */
137 int getNGlobalCutoffGroups() {
138 return nGlobalCutoffGroups_;
139 }
140
141 /**
142 * Returns the total number of integrable objects (total number of
143 * rigid bodies plus the total number of atoms which do not belong
144 * to the rigid bodies) in the system
145 */
146 int getNGlobalIntegrableObjects() {
147 return nGlobalIntegrableObjects_;
148 }
149
150 /**
151 * Returns the total number of integrable objects (total number of
152 * rigid bodies plus the total number of atoms which do not belong
153 * to the rigid bodies) in the system
154 */
155 int getNGlobalRigidBodies() {
156 return nGlobalRigidBodies_;
157 }
158
159 int getNGlobalConstraints();
160 /**
161 * Returns the number of local molecules.
162 * @return the number of local molecules
163 */
164 int getNMolecules() {
165 return molecules_.size();
166 }
167
168 /** Returns the number of local atoms */
169 unsigned int getNAtoms() {
170 return nAtoms_;
171 }
172
173 /** Returns the number of local bonds */
174 unsigned int getNBonds(){
175 return nBonds_;
176 }
177
178 /** Returns the number of local bends */
179 unsigned int getNBends() {
180 return nBends_;
181 }
182
183 /** Returns the number of local torsions */
184 unsigned int getNTorsions() {
185 return nTorsions_;
186 }
187
188 /** Returns the number of local torsions */
189 unsigned int getNInversions() {
190 return nInversions_;
191 }
192 /** Returns the number of local rigid bodies */
193 unsigned int getNRigidBodies() {
194 return nRigidBodies_;
195 }
196
197 /** Returns the number of local integrable objects */
198 unsigned int getNIntegrableObjects() {
199 return nIntegrableObjects_;
200 }
201
202 /** Returns the number of local cutoff groups */
203 unsigned int getNCutoffGroups() {
204 return nCutoffGroups_;
205 }
206
207 /** Returns the total number of constraints in this SimInfo */
208 unsigned int getNConstraints() {
209 return nConstraints_;
210 }
211
212 /**
213 * Returns the first molecule in this SimInfo and intialize the iterator.
214 * @return the first molecule, return NULL if there is not molecule in this SimInfo
215 * @param i the iterator of molecule array (user shouldn't change it)
216 */
217 Molecule* beginMolecule(MoleculeIterator& i);
218
219 /**
220 * Returns the next avaliable Molecule based on the iterator.
221 * @return the next avaliable molecule, return NULL if reaching the end of the array
222 * @param i the iterator of molecule array
223 */
224 Molecule* nextMolecule(MoleculeIterator& i);
225
226 /** Returns the number of degrees of freedom */
227 int getNdf() {
228 return ndf_ - getFdf();
229 }
230
231 /** Returns the number of raw degrees of freedom */
232 int getNdfRaw() {
233 return ndfRaw_;
234 }
235
236 /** Returns the number of translational degrees of freedom */
237 int getNdfTrans() {
238 return ndfTrans_;
239 }
240
241 /** sets the current number of frozen degrees of freedom */
242 void setFdf(int fdf) {
243 fdf_local = fdf;
244 }
245
246 int getFdf();
247
248 //getNZconstraint and setNZconstraint ruin the coherence of
249 //SimInfo class, need refactoring
250
251 /** Returns the total number of z-constraint molecules in the system */
252 int getNZconstraint() {
253 return nZconstraint_;
254 }
255
256 /**
257 * Sets the number of z-constraint molecules in the system.
258 */
259 void setNZconstraint(int nZconstraint) {
260 nZconstraint_ = nZconstraint;
261 }
262
263 /** Returns the snapshot manager. */
264 SnapshotManager* getSnapshotManager() {
265 return sman_;
266 }
267
268 /** Sets the snapshot manager. */
269 void setSnapshotManager(SnapshotManager* sman);
270
271 /** Returns the force field */
272 ForceField* getForceField() {
273 return forceField_;
274 }
275
276 Globals* getSimParams() {
277 return simParams_;
278 }
279
280 /** Returns the velocity of center of mass of the whole system.*/
281 Vector3d getComVel();
282
283 /** Returns the center of the mass of the whole system.*/
284 Vector3d getCom();
285 /** Returns the center of the mass and Center of Mass velocity of
286 the whole system.*/
287 void getComAll(Vector3d& com,Vector3d& comVel);
288
289 /** Returns intertia tensor for the entire system and system
290 Angular Momentum.*/
291 void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
292
293 /** Returns system angular momentum */
294 Vector3d getAngularMomentum();
295
296 /** Returns volume of system as estimated by an ellipsoid defined
297 by the radii of gyration*/
298 void getGyrationalVolume(RealType &vol);
299 /** Overloaded version of gyrational volume that also returns
300 det(I) so dV/dr can be calculated*/
301 void getGyrationalVolume(RealType &vol, RealType &detI);
302
303 void update();
304 /**
305 * Setup Fortran Simulation
306 */
307 void setupFortran();
308
309
310 /** Returns the local index manager */
311 LocalIndexManager* getLocalIndexManager() {
312 return &localIndexMan_;
313 }
314
315 int getMoleculeStampId(int globalIndex) {
316 //assert(globalIndex < molStampIds_.size())
317 return molStampIds_[globalIndex];
318 }
319
320 /** Returns the molecule stamp */
321 MoleculeStamp* getMoleculeStamp(int id) {
322 return moleculeStamps_[id];
323 }
324
325 /** Return the total number of the molecule stamps */
326 int getNMoleculeStamp() {
327 return moleculeStamps_.size();
328 }
329 /**
330 * Finds a molecule with a specified global index
331 * @return a pointer point to found molecule
332 * @param index
333 */
334 Molecule* getMoleculeByGlobalIndex(int index) {
335 MoleculeIterator i;
336 i = molecules_.find(index);
337
338 return i != molecules_.end() ? i->second : NULL;
339 }
340
341 int getGlobalMolMembership(int id){
342 return globalMolMembership_[id];
343 }
344
345 string getFinalConfigFileName() {
346 return finalConfigFileName_;
347 }
348
349 void setFinalConfigFileName(const string& fileName) {
350 finalConfigFileName_ = fileName;
351 }
352
353 string getRawMetaData() {
354 return rawMetaData_;
355 }
356 void setRawMetaData(const string& rawMetaData) {
357 rawMetaData_ = rawMetaData;
358 }
359
360 string getDumpFileName() {
361 return dumpFileName_;
362 }
363
364 void setDumpFileName(const string& fileName) {
365 dumpFileName_ = fileName;
366 }
367
368 string getStatFileName() {
369 return statFileName_;
370 }
371
372 void setStatFileName(const string& fileName) {
373 statFileName_ = fileName;
374 }
375
376 string getRestFileName() {
377 return restFileName_;
378 }
379
380 void setRestFileName(const string& fileName) {
381 restFileName_ = fileName;
382 }
383
384 /**
385 * Sets GlobalGroupMembership
386 * @see #SimCreator::setGlobalIndex
387 */
388 void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
389 assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
390 globalGroupMembership_ = globalGroupMembership;
391 }
392
393 /**
394 * Sets GlobalMolMembership
395 * @see #SimCreator::setGlobalIndex
396 */
397 void setGlobalMolMembership(const vector<int>& globalMolMembership) {
398 assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
399 globalMolMembership_ = globalMolMembership;
400 }
401
402
403 bool isFortranInitialized() {
404 return fortranInitialized_;
405 }
406
407 bool getCalcBoxDipole() {
408 return calcBoxDipole_;
409 }
410
411 bool getUseAtomicVirial() {
412 return useAtomicVirial_;
413 }
414
415 /**
416 * Adds property into property map
417 * @param genData GenericData to be added into PropertyMap
418 */
419 void addProperty(GenericData* genData);
420
421 /**
422 * Removes property from PropertyMap by name
423 * @param propName the name of property to be removed
424 */
425 void removeProperty(const string& propName);
426
427 /**
428 * clear all of the properties
429 */
430 void clearProperties();
431
432 /**
433 * Returns all names of properties
434 * @return all names of properties
435 */
436 vector<string> getPropertyNames();
437
438 /**
439 * Returns all of the properties in PropertyMap
440 * @return all of the properties in PropertyMap
441 */
442 vector<GenericData*> getProperties();
443
444 /**
445 * Returns property
446 * @param propName name of property
447 * @return a pointer point to property with propName. If no property named propName
448 * exists, return NULL
449 */
450 GenericData* getPropertyByName(const string& propName);
451
452 /**
453 * add all special interaction pairs (including excluded
454 * interactions) in a molecule into the appropriate lists.
455 */
456 void addInteractionPairs(Molecule* mol);
457
458 /**
459 * remove all special interaction pairs which belong to a molecule
460 * from the appropriate lists.
461 */
462 void removeInteractionPairs(Molecule* mol);
463
464 /** Returns the set of atom types present in this simulation */
465 set<AtomType*> getSimulatedAtomTypes();
466
467 friend ostream& operator <<(ostream& o, SimInfo& info);
468
469 void getCutoff(RealType& rcut, RealType& rsw);
470
471 private:
472
473 /** fill up the simtype struct and other simulation-related variables */
474 void setupSimVariables();
475
476
477 /** Determine if we need to accumulate the simulation box dipole */
478 void setupAccumulateBoxDipole();
479
480 /** Calculates the number of degress of freedom in the whole system */
481 void calcNdf();
482 void calcNdfRaw();
483 void calcNdfTrans();
484
485 /**
486 * Adds molecule stamp and the total number of the molecule with
487 * same molecule stamp in the whole system.
488 */
489 void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
490
491 // Other classes holdingn important information
492 ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
493 Globals* simParams_; /**< provides access to simulation parameters set by user */
494
495 /// Counts of local objects
496 int nAtoms_; /**< number of atoms in local processor */
497 int nBonds_; /**< number of bonds in local processor */
498 int nBends_; /**< number of bends in local processor */
499 int nTorsions_; /**< number of torsions in local processor */
500 int nInversions_; /**< number of inversions in local processor */
501 int nRigidBodies_; /**< number of rigid bodies in local processor */
502 int nIntegrableObjects_; /**< number of integrable objects in local processor */
503 int nCutoffGroups_; /**< number of cutoff groups in local processor */
504 int nConstraints_; /**< number of constraints in local processors */
505
506 /// Counts of global objects
507 int nGlobalMols_; /**< number of molecules in the system (GLOBAL) */
508 int nGlobalAtoms_; /**< number of atoms in the system (GLOBAL) */
509 int nGlobalCutoffGroups_; /**< number of cutoff groups in this system (GLOBAL) */
510 int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
511 int nGlobalRigidBodies_; /**< number of rigid bodies in this system (GLOBAL) */
512
513 /// Degress of freedom
514 int ndf_; /**< number of degress of freedom (excludes constraints) (LOCAL) */
515 int fdf_local; /**< number of frozen degrees of freedom (LOCAL) */
516 int fdf_; /**< number of frozen degrees of freedom (GLOBAL) */
517 int ndfRaw_; /**< number of degress of freedom (includes constraints), (LOCAL) */
518 int ndfTrans_; /**< number of translation degress of freedom, (LOCAL) */
519 int nZconstraint_; /**< number of z-constraint molecules (GLOBAL) */
520
521 /// logicals
522 bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
523 bool usesDirectionalAtoms_; /**< are there atoms with position AND orientation? */
524 bool usesMetallicAtoms_; /**< are there transition metal atoms? */
525 bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
526 bool usesAtomicVirial_; /**< are we computing atomic virials? */
527 bool requiresPrepair_; /**< does this simulation require a pre-pair loop? */
528 bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
529 bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
530
531 public:
532 bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
533 bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
534 bool usesMetallicAtoms() { return usesMetallicAtoms_; }
535
536 private:
537 /// Data structures holding primary simulation objects
538 map<int, Molecule*> molecules_; /**< map holding pointers to LOCAL molecules */
539 simtype fInfo_; /**< A dual struct shared by C++
540 and Fortran to pass
541 information about what types
542 of calculation are
543 required */
544
545 /// Stamps are templates for objects that are then used to create
546 /// groups of objects. For example, a molecule stamp contains
547 /// information on how to build that molecule (i.e. the topology,
548 /// the atoms, the bonds, etc.) Once the system is built, the
549 /// stamps are no longer useful.
550 vector<int> molStampIds_; /**< stamp id for molecules in the system */
551 vector<MoleculeStamp*> moleculeStamps_; /**< molecule stamps array */
552
553 /**
554 * A vector that maps between the global index of an atom, and the
555 * global index of cutoff group the atom belong to. It is filled
556 * by SimCreator once and only once, since it never changed during
557 * the simulation. It should be nGlobalAtoms_ in size.
558 */
559 vector<int> globalGroupMembership_;
560
561 /**
562 * A vector that maps between the global index of an atom and the
563 * global index of the molecule the atom belongs to. It is filled
564 * by SimCreator once and only once, since it is never changed
565 * during the simulation. It shoudl be nGlobalAtoms_ in size.
566 */
567 vector<int> globalMolMembership_;
568
569 /**
570 * A vector that maps between the local index of an atom and the
571 * index of the AtomType.
572 */
573 vector<int> identArray_;
574 public:
575 vector<int> getIdentArray() { return identArray_; }
576 private:
577
578 /// lists to handle atoms needing special treatment in the non-bonded interactions
579 PairList excludedInteractions_; /**< atoms excluded from interacting with each other */
580 PairList oneTwoInteractions_; /**< atoms that are directly Bonded */
581 PairList oneThreeInteractions_; /**< atoms sharing a Bend */
582 PairList oneFourInteractions_; /**< atoms sharing a Torsion */
583
584 PropertyMap properties_; /**< Generic Properties can be added */
585 SnapshotManager* sman_; /**< SnapshotManager (handles particle positions, etc.) */
586
587 /**
588 * The reason to have a local index manager is that when molecule
589 * is migrating to other processors, the atoms and the
590 * rigid-bodies will release their local indices to
591 * LocalIndexManager. Combining the information of molecule
592 * migrating to current processor, Migrator class can query the
593 * LocalIndexManager to make a efficient data moving plan.
594 */
595 LocalIndexManager localIndexMan_;
596
597 // unparsed MetaData block for storing in Dump and EOR files:
598 string rawMetaData_;
599
600 // file names
601 string finalConfigFileName_;
602 string dumpFileName_;
603 string statFileName_;
604 string restFileName_;
605
606
607 bool fortranInitialized_; /** flag to indicate whether the fortran side is initialized */
608
609 bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
610 the simulation box dipole moment */
611
612 bool useAtomicVirial_; /**< flag to indicate whether or not we use
613 Atomic Virials to calculate the pressure */
614
615 public:
616 /**
617 * return an integral objects by its global index. In MPI
618 * version, if the StuntDouble with specified global index does
619 * not belong to local processor, a NULL will be return.
620 */
621 StuntDouble* getIOIndexToIntegrableObject(int index);
622 void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
623
624 private:
625 vector<StuntDouble*> IOIndexToIntegrableObject;
626
627 public:
628
629 /**
630 * Finds the processor where a molecule resides
631 * @return the id of the processor which contains the molecule
632 * @param globalIndex global Index of the molecule
633 */
634 int getMolToProc(int globalIndex) {
635 //assert(globalIndex < molToProcMap_.size());
636 return molToProcMap_[globalIndex];
637 }
638
639 /**
640 * Set MolToProcMap array
641 * @see #SimCreator::divideMolecules
642 */
643 void setMolToProcMap(const vector<int>& molToProcMap) {
644 molToProcMap_ = molToProcMap;
645 }
646
647 private:
648
649 /**
650 * The size of molToProcMap_ is equal to total number of molecules
651 * in the system. It maps a molecule to the processor on which it
652 * resides. it is filled by SimCreator once and only once.
653 */
654 vector<int> molToProcMap_;
655
656 };
657
658 } //namespace OpenMD
659 #endif //BRAINS_SIMMODEL_HPP
660

Properties

Name Value
svn:keywords Author Id Revision Date