1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file SimInfo.hpp |
44 |
* @author tlin |
45 |
* @date 11/02/2004 |
46 |
* @version 1.0 |
47 |
*/ |
48 |
|
49 |
#ifndef BRAINS_SIMMODEL_HPP |
50 |
#define BRAINS_SIMMODEL_HPP |
51 |
|
52 |
#include <iostream> |
53 |
#include <set> |
54 |
#include <utility> |
55 |
#include <vector> |
56 |
|
57 |
#include "brains/PairList.hpp" |
58 |
#include "io/Globals.hpp" |
59 |
#include "math/Vector3.hpp" |
60 |
#include "math/SquareMatrix3.hpp" |
61 |
#include "types/MoleculeStamp.hpp" |
62 |
#include "UseTheForce/ForceField.hpp" |
63 |
#include "utils/PropertyMap.hpp" |
64 |
#include "utils/LocalIndexManager.hpp" |
65 |
#include "nonbonded/SwitchingFunction.hpp" |
66 |
|
67 |
//another nonsense macro declaration |
68 |
#define __OPENMD_C |
69 |
#include "brains/fSimulation.h" |
70 |
|
71 |
using namespace std; |
72 |
namespace OpenMD{ |
73 |
enum CutoffMethod { |
74 |
HARD, |
75 |
SWITCHING_FUNCTION, |
76 |
SHIFTED_POTENTIAL, |
77 |
SHIFTED_FORCE |
78 |
}; |
79 |
|
80 |
//forward decalration |
81 |
class SnapshotManager; |
82 |
class Molecule; |
83 |
class SelectionManager; |
84 |
class StuntDouble; |
85 |
|
86 |
/** |
87 |
* @class SimInfo SimInfo.hpp "brains/SimInfo.hpp" |
88 |
* |
89 |
* @brief One of the heavy-weight classes of OpenMD, SimInfo |
90 |
* maintains objects and variables relating to the current |
91 |
* simulation. This includes the master list of Molecules. The |
92 |
* Molecule class maintains all of the concrete objects (Atoms, |
93 |
* Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups, |
94 |
* Constraints). In both the single and parallel versions, Atoms and |
95 |
* RigidBodies have both global and local indices. |
96 |
*/ |
97 |
class SimInfo { |
98 |
public: |
99 |
typedef map<int, Molecule*>::iterator MoleculeIterator; |
100 |
|
101 |
/** |
102 |
* Constructor of SimInfo |
103 |
* |
104 |
* @param molStampPairs MoleculeStamp Array. The first element of |
105 |
* the pair is molecule stamp, the second element is the total |
106 |
* number of molecules with the same molecule stamp in the system |
107 |
* |
108 |
* @param ff pointer of a concrete ForceField instance |
109 |
* |
110 |
* @param simParams |
111 |
*/ |
112 |
SimInfo(ForceField* ff, Globals* simParams); |
113 |
virtual ~SimInfo(); |
114 |
|
115 |
/** |
116 |
* Adds a molecule |
117 |
* |
118 |
* @return return true if adding successfully, return false if the |
119 |
* molecule is already in SimInfo |
120 |
* |
121 |
* @param mol molecule to be added |
122 |
*/ |
123 |
bool addMolecule(Molecule* mol); |
124 |
|
125 |
/** |
126 |
* Removes a molecule from SimInfo |
127 |
* |
128 |
* @return true if removing successfully, return false if molecule |
129 |
* is not in this SimInfo |
130 |
*/ |
131 |
bool removeMolecule(Molecule* mol); |
132 |
|
133 |
/** Returns the total number of molecules in the system. */ |
134 |
int getNGlobalMolecules() { |
135 |
return nGlobalMols_; |
136 |
} |
137 |
|
138 |
/** Returns the total number of atoms in the system. */ |
139 |
int getNGlobalAtoms() { |
140 |
return nGlobalAtoms_; |
141 |
} |
142 |
|
143 |
/** Returns the total number of cutoff groups in the system. */ |
144 |
int getNGlobalCutoffGroups() { |
145 |
return nGlobalCutoffGroups_; |
146 |
} |
147 |
|
148 |
/** |
149 |
* Returns the total number of integrable objects (total number of |
150 |
* rigid bodies plus the total number of atoms which do not belong |
151 |
* to the rigid bodies) in the system |
152 |
*/ |
153 |
int getNGlobalIntegrableObjects() { |
154 |
return nGlobalIntegrableObjects_; |
155 |
} |
156 |
|
157 |
/** |
158 |
* Returns the total number of integrable objects (total number of |
159 |
* rigid bodies plus the total number of atoms which do not belong |
160 |
* to the rigid bodies) in the system |
161 |
*/ |
162 |
int getNGlobalRigidBodies() { |
163 |
return nGlobalRigidBodies_; |
164 |
} |
165 |
|
166 |
int getNGlobalConstraints(); |
167 |
/** |
168 |
* Returns the number of local molecules. |
169 |
* @return the number of local molecules |
170 |
*/ |
171 |
int getNMolecules() { |
172 |
return molecules_.size(); |
173 |
} |
174 |
|
175 |
/** Returns the number of local atoms */ |
176 |
unsigned int getNAtoms() { |
177 |
return nAtoms_; |
178 |
} |
179 |
|
180 |
/** Returns the number of local bonds */ |
181 |
unsigned int getNBonds(){ |
182 |
return nBonds_; |
183 |
} |
184 |
|
185 |
/** Returns the number of local bends */ |
186 |
unsigned int getNBends() { |
187 |
return nBends_; |
188 |
} |
189 |
|
190 |
/** Returns the number of local torsions */ |
191 |
unsigned int getNTorsions() { |
192 |
return nTorsions_; |
193 |
} |
194 |
|
195 |
/** Returns the number of local torsions */ |
196 |
unsigned int getNInversions() { |
197 |
return nInversions_; |
198 |
} |
199 |
/** Returns the number of local rigid bodies */ |
200 |
unsigned int getNRigidBodies() { |
201 |
return nRigidBodies_; |
202 |
} |
203 |
|
204 |
/** Returns the number of local integrable objects */ |
205 |
unsigned int getNIntegrableObjects() { |
206 |
return nIntegrableObjects_; |
207 |
} |
208 |
|
209 |
/** Returns the number of local cutoff groups */ |
210 |
unsigned int getNCutoffGroups() { |
211 |
return nCutoffGroups_; |
212 |
} |
213 |
|
214 |
/** Returns the total number of constraints in this SimInfo */ |
215 |
unsigned int getNConstraints() { |
216 |
return nConstraints_; |
217 |
} |
218 |
|
219 |
/** |
220 |
* Returns the first molecule in this SimInfo and intialize the iterator. |
221 |
* @return the first molecule, return NULL if there is not molecule in this SimInfo |
222 |
* @param i the iterator of molecule array (user shouldn't change it) |
223 |
*/ |
224 |
Molecule* beginMolecule(MoleculeIterator& i); |
225 |
|
226 |
/** |
227 |
* Returns the next avaliable Molecule based on the iterator. |
228 |
* @return the next avaliable molecule, return NULL if reaching the end of the array |
229 |
* @param i the iterator of molecule array |
230 |
*/ |
231 |
Molecule* nextMolecule(MoleculeIterator& i); |
232 |
|
233 |
/** Returns the number of degrees of freedom */ |
234 |
int getNdf() { |
235 |
return ndf_ - getFdf(); |
236 |
} |
237 |
|
238 |
/** Returns the number of raw degrees of freedom */ |
239 |
int getNdfRaw() { |
240 |
return ndfRaw_; |
241 |
} |
242 |
|
243 |
/** Returns the number of translational degrees of freedom */ |
244 |
int getNdfTrans() { |
245 |
return ndfTrans_; |
246 |
} |
247 |
|
248 |
/** sets the current number of frozen degrees of freedom */ |
249 |
void setFdf(int fdf) { |
250 |
fdf_local = fdf; |
251 |
} |
252 |
|
253 |
int getFdf(); |
254 |
|
255 |
//getNZconstraint and setNZconstraint ruin the coherence of |
256 |
//SimInfo class, need refactoring |
257 |
|
258 |
/** Returns the total number of z-constraint molecules in the system */ |
259 |
int getNZconstraint() { |
260 |
return nZconstraint_; |
261 |
} |
262 |
|
263 |
/** |
264 |
* Sets the number of z-constraint molecules in the system. |
265 |
*/ |
266 |
void setNZconstraint(int nZconstraint) { |
267 |
nZconstraint_ = nZconstraint; |
268 |
} |
269 |
|
270 |
/** Returns the snapshot manager. */ |
271 |
SnapshotManager* getSnapshotManager() { |
272 |
return sman_; |
273 |
} |
274 |
|
275 |
/** Sets the snapshot manager. */ |
276 |
void setSnapshotManager(SnapshotManager* sman); |
277 |
|
278 |
/** Returns the force field */ |
279 |
ForceField* getForceField() { |
280 |
return forceField_; |
281 |
} |
282 |
|
283 |
Globals* getSimParams() { |
284 |
return simParams_; |
285 |
} |
286 |
|
287 |
/** Returns the velocity of center of mass of the whole system.*/ |
288 |
Vector3d getComVel(); |
289 |
|
290 |
/** Returns the center of the mass of the whole system.*/ |
291 |
Vector3d getCom(); |
292 |
/** Returns the center of the mass and Center of Mass velocity of |
293 |
the whole system.*/ |
294 |
void getComAll(Vector3d& com,Vector3d& comVel); |
295 |
|
296 |
/** Returns intertia tensor for the entire system and system |
297 |
Angular Momentum.*/ |
298 |
void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum); |
299 |
|
300 |
/** Returns system angular momentum */ |
301 |
Vector3d getAngularMomentum(); |
302 |
|
303 |
/** Returns volume of system as estimated by an ellipsoid defined |
304 |
by the radii of gyration*/ |
305 |
void getGyrationalVolume(RealType &vol); |
306 |
/** Overloaded version of gyrational volume that also returns |
307 |
det(I) so dV/dr can be calculated*/ |
308 |
void getGyrationalVolume(RealType &vol, RealType &detI); |
309 |
/** main driver function to interact with fortran during the |
310 |
initialization and molecule migration */ |
311 |
void update(); |
312 |
|
313 |
/** Returns the local index manager */ |
314 |
LocalIndexManager* getLocalIndexManager() { |
315 |
return &localIndexMan_; |
316 |
} |
317 |
|
318 |
int getMoleculeStampId(int globalIndex) { |
319 |
//assert(globalIndex < molStampIds_.size()) |
320 |
return molStampIds_[globalIndex]; |
321 |
} |
322 |
|
323 |
/** Returns the molecule stamp */ |
324 |
MoleculeStamp* getMoleculeStamp(int id) { |
325 |
return moleculeStamps_[id]; |
326 |
} |
327 |
|
328 |
/** Return the total number of the molecule stamps */ |
329 |
int getNMoleculeStamp() { |
330 |
return moleculeStamps_.size(); |
331 |
} |
332 |
/** |
333 |
* Finds a molecule with a specified global index |
334 |
* @return a pointer point to found molecule |
335 |
* @param index |
336 |
*/ |
337 |
Molecule* getMoleculeByGlobalIndex(int index) { |
338 |
MoleculeIterator i; |
339 |
i = molecules_.find(index); |
340 |
|
341 |
return i != molecules_.end() ? i->second : NULL; |
342 |
} |
343 |
|
344 |
int getGlobalMolMembership(int id){ |
345 |
return globalMolMembership_[id]; |
346 |
} |
347 |
|
348 |
RealType getCutoffRadius() { |
349 |
return cutoffRadius_; |
350 |
} |
351 |
|
352 |
RealType getSwitchingRadius() { |
353 |
return switchingRadius_; |
354 |
} |
355 |
|
356 |
RealType getListRadius() { |
357 |
return listRadius_; |
358 |
} |
359 |
|
360 |
string getFinalConfigFileName() { |
361 |
return finalConfigFileName_; |
362 |
} |
363 |
|
364 |
void setFinalConfigFileName(const string& fileName) { |
365 |
finalConfigFileName_ = fileName; |
366 |
} |
367 |
|
368 |
string getRawMetaData() { |
369 |
return rawMetaData_; |
370 |
} |
371 |
void setRawMetaData(const string& rawMetaData) { |
372 |
rawMetaData_ = rawMetaData; |
373 |
} |
374 |
|
375 |
string getDumpFileName() { |
376 |
return dumpFileName_; |
377 |
} |
378 |
|
379 |
void setDumpFileName(const string& fileName) { |
380 |
dumpFileName_ = fileName; |
381 |
} |
382 |
|
383 |
string getStatFileName() { |
384 |
return statFileName_; |
385 |
} |
386 |
|
387 |
void setStatFileName(const string& fileName) { |
388 |
statFileName_ = fileName; |
389 |
} |
390 |
|
391 |
string getRestFileName() { |
392 |
return restFileName_; |
393 |
} |
394 |
|
395 |
void setRestFileName(const string& fileName) { |
396 |
restFileName_ = fileName; |
397 |
} |
398 |
|
399 |
/** |
400 |
* Sets GlobalGroupMembership |
401 |
* @see #SimCreator::setGlobalIndex |
402 |
*/ |
403 |
void setGlobalGroupMembership(const vector<int>& globalGroupMembership) { |
404 |
assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_)); |
405 |
globalGroupMembership_ = globalGroupMembership; |
406 |
} |
407 |
|
408 |
/** |
409 |
* Sets GlobalMolMembership |
410 |
* @see #SimCreator::setGlobalIndex |
411 |
*/ |
412 |
void setGlobalMolMembership(const vector<int>& globalMolMembership) { |
413 |
assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_)); |
414 |
globalMolMembership_ = globalMolMembership; |
415 |
} |
416 |
|
417 |
|
418 |
bool isFortranInitialized() { |
419 |
return fortranInitialized_; |
420 |
} |
421 |
|
422 |
bool getCalcBoxDipole() { |
423 |
return calcBoxDipole_; |
424 |
} |
425 |
|
426 |
bool getUseAtomicVirial() { |
427 |
return useAtomicVirial_; |
428 |
} |
429 |
|
430 |
/** |
431 |
* Adds property into property map |
432 |
* @param genData GenericData to be added into PropertyMap |
433 |
*/ |
434 |
void addProperty(GenericData* genData); |
435 |
|
436 |
/** |
437 |
* Removes property from PropertyMap by name |
438 |
* @param propName the name of property to be removed |
439 |
*/ |
440 |
void removeProperty(const string& propName); |
441 |
|
442 |
/** |
443 |
* clear all of the properties |
444 |
*/ |
445 |
void clearProperties(); |
446 |
|
447 |
/** |
448 |
* Returns all names of properties |
449 |
* @return all names of properties |
450 |
*/ |
451 |
vector<string> getPropertyNames(); |
452 |
|
453 |
/** |
454 |
* Returns all of the properties in PropertyMap |
455 |
* @return all of the properties in PropertyMap |
456 |
*/ |
457 |
vector<GenericData*> getProperties(); |
458 |
|
459 |
/** |
460 |
* Returns property |
461 |
* @param propName name of property |
462 |
* @return a pointer point to property with propName. If no property named propName |
463 |
* exists, return NULL |
464 |
*/ |
465 |
GenericData* getPropertyByName(const string& propName); |
466 |
|
467 |
/** |
468 |
* add all special interaction pairs (including excluded |
469 |
* interactions) in a molecule into the appropriate lists. |
470 |
*/ |
471 |
void addInteractionPairs(Molecule* mol); |
472 |
|
473 |
/** |
474 |
* remove all special interaction pairs which belong to a molecule |
475 |
* from the appropriate lists. |
476 |
*/ |
477 |
void removeInteractionPairs(Molecule* mol); |
478 |
|
479 |
|
480 |
/** Returns the unique atom types of local processor in an array */ |
481 |
set<AtomType*> getUniqueAtomTypes(); |
482 |
|
483 |
/** Returns the set of atom types present in this simulation */ |
484 |
set<AtomType*> getSimulatedAtomTypes(); |
485 |
|
486 |
friend ostream& operator <<(ostream& o, SimInfo& info); |
487 |
|
488 |
void getCutoff(RealType& rcut, RealType& rsw); |
489 |
|
490 |
private: |
491 |
|
492 |
/** fill up the simtype struct and other simulation-related variables */ |
493 |
void setupSimVariables(); |
494 |
|
495 |
/** |
496 |
* Setup Fortran Simulation |
497 |
* @see #setupFortranParallel |
498 |
*/ |
499 |
void setupFortranSim(); |
500 |
|
501 |
/** Figure out the cutoff radius and cutoff method */ |
502 |
void setupCutoffs(); |
503 |
/** Figure out the switching radius and polynomial type for the switching function */ |
504 |
void setupSwitching(); |
505 |
/** Figure out the simulation variables associated with electrostatics */ |
506 |
void setupElectrostatics(); |
507 |
/** Figure out the neighbor list skin thickness */ |
508 |
void setupNeighborlists(); |
509 |
|
510 |
/** Determine if we need to accumulate the simulation box dipole */ |
511 |
void setupAccumulateBoxDipole(); |
512 |
|
513 |
/** Calculates the number of degress of freedom in the whole system */ |
514 |
void calcNdf(); |
515 |
void calcNdfRaw(); |
516 |
void calcNdfTrans(); |
517 |
|
518 |
/** |
519 |
* Adds molecule stamp and the total number of the molecule with |
520 |
* same molecule stamp in the whole system. |
521 |
*/ |
522 |
void addMoleculeStamp(MoleculeStamp* molStamp, int nmol); |
523 |
|
524 |
// Other classes holdingn important information |
525 |
ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */ |
526 |
Globals* simParams_; /**< provides access to simulation parameters set by user */ |
527 |
|
528 |
/// Counts of local objects |
529 |
int nAtoms_; /**< number of atoms in local processor */ |
530 |
int nBonds_; /**< number of bonds in local processor */ |
531 |
int nBends_; /**< number of bends in local processor */ |
532 |
int nTorsions_; /**< number of torsions in local processor */ |
533 |
int nInversions_; /**< number of inversions in local processor */ |
534 |
int nRigidBodies_; /**< number of rigid bodies in local processor */ |
535 |
int nIntegrableObjects_; /**< number of integrable objects in local processor */ |
536 |
int nCutoffGroups_; /**< number of cutoff groups in local processor */ |
537 |
int nConstraints_; /**< number of constraints in local processors */ |
538 |
|
539 |
/// Counts of global objects |
540 |
int nGlobalMols_; /**< number of molecules in the system (GLOBAL) */ |
541 |
int nGlobalAtoms_; /**< number of atoms in the system (GLOBAL) */ |
542 |
int nGlobalCutoffGroups_; /**< number of cutoff groups in this system (GLOBAL) */ |
543 |
int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */ |
544 |
int nGlobalRigidBodies_; /**< number of rigid bodies in this system (GLOBAL) */ |
545 |
|
546 |
/// Degress of freedom |
547 |
int ndf_; /**< number of degress of freedom (excludes constraints) (LOCAL) */ |
548 |
int fdf_local; /**< number of frozen degrees of freedom (LOCAL) */ |
549 |
int fdf_; /**< number of frozen degrees of freedom (GLOBAL) */ |
550 |
int ndfRaw_; /**< number of degress of freedom (includes constraints), (LOCAL) */ |
551 |
int ndfTrans_; /**< number of translation degress of freedom, (LOCAL) */ |
552 |
int nZconstraint_; /**< number of z-constraint molecules (GLOBAL) */ |
553 |
|
554 |
/// logicals |
555 |
bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */ |
556 |
bool usesDirectionalAtoms_; /**< are there atoms with position AND orientation? */ |
557 |
bool usesMetallicAtoms_; /**< are there transition metal atoms? */ |
558 |
bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */ |
559 |
bool usesAtomicVirial_; /**< are we computing atomic virials? */ |
560 |
bool requiresPrepair_; /**< does this simulation require a pre-pair loop? */ |
561 |
bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */ |
562 |
bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */ |
563 |
|
564 |
/// Data structures holding primary simulation objects |
565 |
map<int, Molecule*> molecules_; /**< map holding pointers to LOCAL molecules */ |
566 |
simtype fInfo_; /**< A dual struct shared by C++ |
567 |
and Fortran to pass |
568 |
information about what types |
569 |
of calculation are |
570 |
required */ |
571 |
|
572 |
/// Stamps are templates for objects that are then used to create |
573 |
/// groups of objects. For example, a molecule stamp contains |
574 |
/// information on how to build that molecule (i.e. the topology, |
575 |
/// the atoms, the bonds, etc.) Once the system is built, the |
576 |
/// stamps are no longer useful. |
577 |
vector<int> molStampIds_; /**< stamp id for molecules in the system */ |
578 |
vector<MoleculeStamp*> moleculeStamps_; /**< molecule stamps array */ |
579 |
|
580 |
/** |
581 |
* A vector that maps between the global index of an atom, and the |
582 |
* global index of cutoff group the atom belong to. It is filled |
583 |
* by SimCreator once and only once, since it never changed during |
584 |
* the simulation. It should be nGlobalAtoms_ in size. |
585 |
*/ |
586 |
vector<int> globalGroupMembership_; |
587 |
|
588 |
/** |
589 |
* A vector that maps between the global index of an atom and the |
590 |
* global index of the molecule the atom belongs to. It is filled |
591 |
* by SimCreator once and only once, since it is never changed |
592 |
* during the simulation. It shoudl be nGlobalAtoms_ in size. |
593 |
*/ |
594 |
vector<int> globalMolMembership_; |
595 |
|
596 |
/// lists to handle atoms needing special treatment in the non-bonded interactions |
597 |
PairList excludedInteractions_; /**< atoms excluded from interacting with each other */ |
598 |
PairList oneTwoInteractions_; /**< atoms that are directly Bonded */ |
599 |
PairList oneThreeInteractions_; /**< atoms sharing a Bend */ |
600 |
PairList oneFourInteractions_; /**< atoms sharing a Torsion */ |
601 |
|
602 |
PropertyMap properties_; /**< Generic Properties can be added */ |
603 |
SnapshotManager* sman_; /**< SnapshotManager (handles particle positions, etc.) */ |
604 |
|
605 |
/** |
606 |
* The reason to have a local index manager is that when molecule |
607 |
* is migrating to other processors, the atoms and the |
608 |
* rigid-bodies will release their local indices to |
609 |
* LocalIndexManager. Combining the information of molecule |
610 |
* migrating to current processor, Migrator class can query the |
611 |
* LocalIndexManager to make a efficient data moving plan. |
612 |
*/ |
613 |
LocalIndexManager localIndexMan_; |
614 |
|
615 |
// unparsed MetaData block for storing in Dump and EOR files: |
616 |
string rawMetaData_; |
617 |
|
618 |
// file names |
619 |
string finalConfigFileName_; |
620 |
string dumpFileName_; |
621 |
string statFileName_; |
622 |
string restFileName_; |
623 |
|
624 |
RealType cutoffRadius_; /**< cutoff radius for non-bonded interactions */ |
625 |
RealType switchingRadius_; /**< inner radius of switching function */ |
626 |
RealType listRadius_; /**< Verlet neighbor list radius */ |
627 |
RealType skinThickness_; /**< Verlet neighbor list skin thickness */ |
628 |
CutoffMethod cutoffMethod_; /**< Cutoff Method for most non-bonded interactions */ |
629 |
|
630 |
bool fortranInitialized_; /** flag to indicate whether the fortran side is initialized */ |
631 |
|
632 |
bool calcBoxDipole_; /**< flag to indicate whether or not we calculate |
633 |
the simulation box dipole moment */ |
634 |
|
635 |
bool useAtomicVirial_; /**< flag to indicate whether or not we use |
636 |
Atomic Virials to calculate the pressure */ |
637 |
|
638 |
public: |
639 |
/** |
640 |
* return an integral objects by its global index. In MPI |
641 |
* version, if the StuntDouble with specified global index does |
642 |
* not belong to local processor, a NULL will be return. |
643 |
*/ |
644 |
StuntDouble* getIOIndexToIntegrableObject(int index); |
645 |
void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v); |
646 |
|
647 |
private: |
648 |
vector<StuntDouble*> IOIndexToIntegrableObject; |
649 |
|
650 |
public: |
651 |
|
652 |
/** |
653 |
* Finds the processor where a molecule resides |
654 |
* @return the id of the processor which contains the molecule |
655 |
* @param globalIndex global Index of the molecule |
656 |
*/ |
657 |
int getMolToProc(int globalIndex) { |
658 |
//assert(globalIndex < molToProcMap_.size()); |
659 |
return molToProcMap_[globalIndex]; |
660 |
} |
661 |
|
662 |
/** |
663 |
* Set MolToProcMap array |
664 |
* @see #SimCreator::divideMolecules |
665 |
*/ |
666 |
void setMolToProcMap(const vector<int>& molToProcMap) { |
667 |
molToProcMap_ = molToProcMap; |
668 |
} |
669 |
|
670 |
private: |
671 |
|
672 |
void setupFortranParallel(); |
673 |
|
674 |
/** |
675 |
* The size of molToProcMap_ is equal to total number of molecules |
676 |
* in the system. It maps a molecule to the processor on which it |
677 |
* resides. it is filled by SimCreator once and only once. |
678 |
*/ |
679 |
vector<int> molToProcMap_; |
680 |
|
681 |
}; |
682 |
|
683 |
} //namespace OpenMD |
684 |
#endif //BRAINS_SIMMODEL_HPP |
685 |
|