ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
Revision: 1530
Committed: Tue Dec 28 21:47:55 2010 UTC (14 years, 4 months ago) by gezelter
File size: 22964 byte(s)
Log Message:
Moved switching functions and force options over to the C++ side, and
removed them from Fortran.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file SimInfo.hpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #ifndef BRAINS_SIMMODEL_HPP
50 #define BRAINS_SIMMODEL_HPP
51
52 #include <iostream>
53 #include <set>
54 #include <utility>
55 #include <vector>
56
57 #include "brains/PairList.hpp"
58 #include "io/Globals.hpp"
59 #include "math/Vector3.hpp"
60 #include "math/SquareMatrix3.hpp"
61 #include "types/MoleculeStamp.hpp"
62 #include "UseTheForce/ForceField.hpp"
63 #include "utils/PropertyMap.hpp"
64 #include "utils/LocalIndexManager.hpp"
65 #include "nonbonded/SwitchingFunction.hpp"
66
67 //another nonsense macro declaration
68 #define __OPENMD_C
69 #include "brains/fSimulation.h"
70
71 using namespace std;
72 namespace OpenMD{
73 enum CutoffMethod {
74 HARD,
75 SWITCHING_FUNCTION,
76 SHIFTED_POTENTIAL,
77 SHIFTED_FORCE
78 };
79
80 //forward decalration
81 class SnapshotManager;
82 class Molecule;
83 class SelectionManager;
84 class StuntDouble;
85
86 /**
87 * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
88 *
89 * @brief One of the heavy-weight classes of OpenMD, SimInfo
90 * maintains objects and variables relating to the current
91 * simulation. This includes the master list of Molecules. The
92 * Molecule class maintains all of the concrete objects (Atoms,
93 * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
94 * Constraints). In both the single and parallel versions, Atoms and
95 * RigidBodies have both global and local indices.
96 */
97 class SimInfo {
98 public:
99 typedef map<int, Molecule*>::iterator MoleculeIterator;
100
101 /**
102 * Constructor of SimInfo
103 *
104 * @param molStampPairs MoleculeStamp Array. The first element of
105 * the pair is molecule stamp, the second element is the total
106 * number of molecules with the same molecule stamp in the system
107 *
108 * @param ff pointer of a concrete ForceField instance
109 *
110 * @param simParams
111 */
112 SimInfo(ForceField* ff, Globals* simParams);
113 virtual ~SimInfo();
114
115 /**
116 * Adds a molecule
117 *
118 * @return return true if adding successfully, return false if the
119 * molecule is already in SimInfo
120 *
121 * @param mol molecule to be added
122 */
123 bool addMolecule(Molecule* mol);
124
125 /**
126 * Removes a molecule from SimInfo
127 *
128 * @return true if removing successfully, return false if molecule
129 * is not in this SimInfo
130 */
131 bool removeMolecule(Molecule* mol);
132
133 /** Returns the total number of molecules in the system. */
134 int getNGlobalMolecules() {
135 return nGlobalMols_;
136 }
137
138 /** Returns the total number of atoms in the system. */
139 int getNGlobalAtoms() {
140 return nGlobalAtoms_;
141 }
142
143 /** Returns the total number of cutoff groups in the system. */
144 int getNGlobalCutoffGroups() {
145 return nGlobalCutoffGroups_;
146 }
147
148 /**
149 * Returns the total number of integrable objects (total number of
150 * rigid bodies plus the total number of atoms which do not belong
151 * to the rigid bodies) in the system
152 */
153 int getNGlobalIntegrableObjects() {
154 return nGlobalIntegrableObjects_;
155 }
156
157 /**
158 * Returns the total number of integrable objects (total number of
159 * rigid bodies plus the total number of atoms which do not belong
160 * to the rigid bodies) in the system
161 */
162 int getNGlobalRigidBodies() {
163 return nGlobalRigidBodies_;
164 }
165
166 int getNGlobalConstraints();
167 /**
168 * Returns the number of local molecules.
169 * @return the number of local molecules
170 */
171 int getNMolecules() {
172 return molecules_.size();
173 }
174
175 /** Returns the number of local atoms */
176 unsigned int getNAtoms() {
177 return nAtoms_;
178 }
179
180 /** Returns the number of local bonds */
181 unsigned int getNBonds(){
182 return nBonds_;
183 }
184
185 /** Returns the number of local bends */
186 unsigned int getNBends() {
187 return nBends_;
188 }
189
190 /** Returns the number of local torsions */
191 unsigned int getNTorsions() {
192 return nTorsions_;
193 }
194
195 /** Returns the number of local torsions */
196 unsigned int getNInversions() {
197 return nInversions_;
198 }
199 /** Returns the number of local rigid bodies */
200 unsigned int getNRigidBodies() {
201 return nRigidBodies_;
202 }
203
204 /** Returns the number of local integrable objects */
205 unsigned int getNIntegrableObjects() {
206 return nIntegrableObjects_;
207 }
208
209 /** Returns the number of local cutoff groups */
210 unsigned int getNCutoffGroups() {
211 return nCutoffGroups_;
212 }
213
214 /** Returns the total number of constraints in this SimInfo */
215 unsigned int getNConstraints() {
216 return nConstraints_;
217 }
218
219 /**
220 * Returns the first molecule in this SimInfo and intialize the iterator.
221 * @return the first molecule, return NULL if there is not molecule in this SimInfo
222 * @param i the iterator of molecule array (user shouldn't change it)
223 */
224 Molecule* beginMolecule(MoleculeIterator& i);
225
226 /**
227 * Returns the next avaliable Molecule based on the iterator.
228 * @return the next avaliable molecule, return NULL if reaching the end of the array
229 * @param i the iterator of molecule array
230 */
231 Molecule* nextMolecule(MoleculeIterator& i);
232
233 /** Returns the number of degrees of freedom */
234 int getNdf() {
235 return ndf_ - getFdf();
236 }
237
238 /** Returns the number of raw degrees of freedom */
239 int getNdfRaw() {
240 return ndfRaw_;
241 }
242
243 /** Returns the number of translational degrees of freedom */
244 int getNdfTrans() {
245 return ndfTrans_;
246 }
247
248 /** sets the current number of frozen degrees of freedom */
249 void setFdf(int fdf) {
250 fdf_local = fdf;
251 }
252
253 int getFdf();
254
255 //getNZconstraint and setNZconstraint ruin the coherence of
256 //SimInfo class, need refactoring
257
258 /** Returns the total number of z-constraint molecules in the system */
259 int getNZconstraint() {
260 return nZconstraint_;
261 }
262
263 /**
264 * Sets the number of z-constraint molecules in the system.
265 */
266 void setNZconstraint(int nZconstraint) {
267 nZconstraint_ = nZconstraint;
268 }
269
270 /** Returns the snapshot manager. */
271 SnapshotManager* getSnapshotManager() {
272 return sman_;
273 }
274
275 /** Sets the snapshot manager. */
276 void setSnapshotManager(SnapshotManager* sman);
277
278 /** Returns the force field */
279 ForceField* getForceField() {
280 return forceField_;
281 }
282
283 Globals* getSimParams() {
284 return simParams_;
285 }
286
287 /** Returns the velocity of center of mass of the whole system.*/
288 Vector3d getComVel();
289
290 /** Returns the center of the mass of the whole system.*/
291 Vector3d getCom();
292 /** Returns the center of the mass and Center of Mass velocity of
293 the whole system.*/
294 void getComAll(Vector3d& com,Vector3d& comVel);
295
296 /** Returns intertia tensor for the entire system and system
297 Angular Momentum.*/
298 void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
299
300 /** Returns system angular momentum */
301 Vector3d getAngularMomentum();
302
303 /** Returns volume of system as estimated by an ellipsoid defined
304 by the radii of gyration*/
305 void getGyrationalVolume(RealType &vol);
306 /** Overloaded version of gyrational volume that also returns
307 det(I) so dV/dr can be calculated*/
308 void getGyrationalVolume(RealType &vol, RealType &detI);
309 /** main driver function to interact with fortran during the
310 initialization and molecule migration */
311 void update();
312
313 /** Returns the local index manager */
314 LocalIndexManager* getLocalIndexManager() {
315 return &localIndexMan_;
316 }
317
318 int getMoleculeStampId(int globalIndex) {
319 //assert(globalIndex < molStampIds_.size())
320 return molStampIds_[globalIndex];
321 }
322
323 /** Returns the molecule stamp */
324 MoleculeStamp* getMoleculeStamp(int id) {
325 return moleculeStamps_[id];
326 }
327
328 /** Return the total number of the molecule stamps */
329 int getNMoleculeStamp() {
330 return moleculeStamps_.size();
331 }
332 /**
333 * Finds a molecule with a specified global index
334 * @return a pointer point to found molecule
335 * @param index
336 */
337 Molecule* getMoleculeByGlobalIndex(int index) {
338 MoleculeIterator i;
339 i = molecules_.find(index);
340
341 return i != molecules_.end() ? i->second : NULL;
342 }
343
344 int getGlobalMolMembership(int id){
345 return globalMolMembership_[id];
346 }
347
348 RealType getCutoffRadius() {
349 return cutoffRadius_;
350 }
351
352 RealType getSwitchingRadius() {
353 return switchingRadius_;
354 }
355
356 RealType getListRadius() {
357 return listRadius_;
358 }
359
360 string getFinalConfigFileName() {
361 return finalConfigFileName_;
362 }
363
364 void setFinalConfigFileName(const string& fileName) {
365 finalConfigFileName_ = fileName;
366 }
367
368 string getRawMetaData() {
369 return rawMetaData_;
370 }
371 void setRawMetaData(const string& rawMetaData) {
372 rawMetaData_ = rawMetaData;
373 }
374
375 string getDumpFileName() {
376 return dumpFileName_;
377 }
378
379 void setDumpFileName(const string& fileName) {
380 dumpFileName_ = fileName;
381 }
382
383 string getStatFileName() {
384 return statFileName_;
385 }
386
387 void setStatFileName(const string& fileName) {
388 statFileName_ = fileName;
389 }
390
391 string getRestFileName() {
392 return restFileName_;
393 }
394
395 void setRestFileName(const string& fileName) {
396 restFileName_ = fileName;
397 }
398
399 /**
400 * Sets GlobalGroupMembership
401 * @see #SimCreator::setGlobalIndex
402 */
403 void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
404 assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
405 globalGroupMembership_ = globalGroupMembership;
406 }
407
408 /**
409 * Sets GlobalMolMembership
410 * @see #SimCreator::setGlobalIndex
411 */
412 void setGlobalMolMembership(const vector<int>& globalMolMembership) {
413 assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
414 globalMolMembership_ = globalMolMembership;
415 }
416
417
418 bool isFortranInitialized() {
419 return fortranInitialized_;
420 }
421
422 bool getCalcBoxDipole() {
423 return calcBoxDipole_;
424 }
425
426 bool getUseAtomicVirial() {
427 return useAtomicVirial_;
428 }
429
430 /**
431 * Adds property into property map
432 * @param genData GenericData to be added into PropertyMap
433 */
434 void addProperty(GenericData* genData);
435
436 /**
437 * Removes property from PropertyMap by name
438 * @param propName the name of property to be removed
439 */
440 void removeProperty(const string& propName);
441
442 /**
443 * clear all of the properties
444 */
445 void clearProperties();
446
447 /**
448 * Returns all names of properties
449 * @return all names of properties
450 */
451 vector<string> getPropertyNames();
452
453 /**
454 * Returns all of the properties in PropertyMap
455 * @return all of the properties in PropertyMap
456 */
457 vector<GenericData*> getProperties();
458
459 /**
460 * Returns property
461 * @param propName name of property
462 * @return a pointer point to property with propName. If no property named propName
463 * exists, return NULL
464 */
465 GenericData* getPropertyByName(const string& propName);
466
467 /**
468 * add all special interaction pairs (including excluded
469 * interactions) in a molecule into the appropriate lists.
470 */
471 void addInteractionPairs(Molecule* mol);
472
473 /**
474 * remove all special interaction pairs which belong to a molecule
475 * from the appropriate lists.
476 */
477 void removeInteractionPairs(Molecule* mol);
478
479
480 /** Returns the unique atom types of local processor in an array */
481 set<AtomType*> getUniqueAtomTypes();
482
483 /** Returns the set of atom types present in this simulation */
484 set<AtomType*> getSimulatedAtomTypes();
485
486 friend ostream& operator <<(ostream& o, SimInfo& info);
487
488 void getCutoff(RealType& rcut, RealType& rsw);
489
490 private:
491
492 /** fill up the simtype struct and other simulation-related variables */
493 void setupSimVariables();
494
495 /**
496 * Setup Fortran Simulation
497 * @see #setupFortranParallel
498 */
499 void setupFortranSim();
500
501 /** Figure out the cutoff radius and cutoff method */
502 void setupCutoffs();
503 /** Figure out the switching radius and polynomial type for the switching function */
504 void setupSwitching();
505 /** Figure out the simulation variables associated with electrostatics */
506 void setupElectrostatics();
507 /** Figure out the neighbor list skin thickness */
508 void setupNeighborlists();
509
510 /** Determine if we need to accumulate the simulation box dipole */
511 void setupAccumulateBoxDipole();
512
513 /** Calculates the number of degress of freedom in the whole system */
514 void calcNdf();
515 void calcNdfRaw();
516 void calcNdfTrans();
517
518 /**
519 * Adds molecule stamp and the total number of the molecule with
520 * same molecule stamp in the whole system.
521 */
522 void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
523
524 // Other classes holdingn important information
525 ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
526 Globals* simParams_; /**< provides access to simulation parameters set by user */
527
528 /// Counts of local objects
529 int nAtoms_; /**< number of atoms in local processor */
530 int nBonds_; /**< number of bonds in local processor */
531 int nBends_; /**< number of bends in local processor */
532 int nTorsions_; /**< number of torsions in local processor */
533 int nInversions_; /**< number of inversions in local processor */
534 int nRigidBodies_; /**< number of rigid bodies in local processor */
535 int nIntegrableObjects_; /**< number of integrable objects in local processor */
536 int nCutoffGroups_; /**< number of cutoff groups in local processor */
537 int nConstraints_; /**< number of constraints in local processors */
538
539 /// Counts of global objects
540 int nGlobalMols_; /**< number of molecules in the system (GLOBAL) */
541 int nGlobalAtoms_; /**< number of atoms in the system (GLOBAL) */
542 int nGlobalCutoffGroups_; /**< number of cutoff groups in this system (GLOBAL) */
543 int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
544 int nGlobalRigidBodies_; /**< number of rigid bodies in this system (GLOBAL) */
545
546 /// Degress of freedom
547 int ndf_; /**< number of degress of freedom (excludes constraints) (LOCAL) */
548 int fdf_local; /**< number of frozen degrees of freedom (LOCAL) */
549 int fdf_; /**< number of frozen degrees of freedom (GLOBAL) */
550 int ndfRaw_; /**< number of degress of freedom (includes constraints), (LOCAL) */
551 int ndfTrans_; /**< number of translation degress of freedom, (LOCAL) */
552 int nZconstraint_; /**< number of z-constraint molecules (GLOBAL) */
553
554 /// logicals
555 bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
556 bool usesDirectionalAtoms_; /**< are there atoms with position AND orientation? */
557 bool usesMetallicAtoms_; /**< are there transition metal atoms? */
558 bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
559 bool usesAtomicVirial_; /**< are we computing atomic virials? */
560 bool requiresPrepair_; /**< does this simulation require a pre-pair loop? */
561 bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
562 bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
563
564 /// Data structures holding primary simulation objects
565 map<int, Molecule*> molecules_; /**< map holding pointers to LOCAL molecules */
566 simtype fInfo_; /**< A dual struct shared by C++
567 and Fortran to pass
568 information about what types
569 of calculation are
570 required */
571
572 /// Stamps are templates for objects that are then used to create
573 /// groups of objects. For example, a molecule stamp contains
574 /// information on how to build that molecule (i.e. the topology,
575 /// the atoms, the bonds, etc.) Once the system is built, the
576 /// stamps are no longer useful.
577 vector<int> molStampIds_; /**< stamp id for molecules in the system */
578 vector<MoleculeStamp*> moleculeStamps_; /**< molecule stamps array */
579
580 /**
581 * A vector that maps between the global index of an atom, and the
582 * global index of cutoff group the atom belong to. It is filled
583 * by SimCreator once and only once, since it never changed during
584 * the simulation. It should be nGlobalAtoms_ in size.
585 */
586 vector<int> globalGroupMembership_;
587
588 /**
589 * A vector that maps between the global index of an atom and the
590 * global index of the molecule the atom belongs to. It is filled
591 * by SimCreator once and only once, since it is never changed
592 * during the simulation. It shoudl be nGlobalAtoms_ in size.
593 */
594 vector<int> globalMolMembership_;
595
596 /// lists to handle atoms needing special treatment in the non-bonded interactions
597 PairList excludedInteractions_; /**< atoms excluded from interacting with each other */
598 PairList oneTwoInteractions_; /**< atoms that are directly Bonded */
599 PairList oneThreeInteractions_; /**< atoms sharing a Bend */
600 PairList oneFourInteractions_; /**< atoms sharing a Torsion */
601
602 PropertyMap properties_; /**< Generic Properties can be added */
603 SnapshotManager* sman_; /**< SnapshotManager (handles particle positions, etc.) */
604
605 /**
606 * The reason to have a local index manager is that when molecule
607 * is migrating to other processors, the atoms and the
608 * rigid-bodies will release their local indices to
609 * LocalIndexManager. Combining the information of molecule
610 * migrating to current processor, Migrator class can query the
611 * LocalIndexManager to make a efficient data moving plan.
612 */
613 LocalIndexManager localIndexMan_;
614
615 // unparsed MetaData block for storing in Dump and EOR files:
616 string rawMetaData_;
617
618 // file names
619 string finalConfigFileName_;
620 string dumpFileName_;
621 string statFileName_;
622 string restFileName_;
623
624 RealType cutoffRadius_; /**< cutoff radius for non-bonded interactions */
625 RealType switchingRadius_; /**< inner radius of switching function */
626 RealType listRadius_; /**< Verlet neighbor list radius */
627 RealType skinThickness_; /**< Verlet neighbor list skin thickness */
628 CutoffMethod cutoffMethod_; /**< Cutoff Method for most non-bonded interactions */
629
630 bool fortranInitialized_; /** flag to indicate whether the fortran side is initialized */
631
632 bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
633 the simulation box dipole moment */
634
635 bool useAtomicVirial_; /**< flag to indicate whether or not we use
636 Atomic Virials to calculate the pressure */
637
638 public:
639 /**
640 * return an integral objects by its global index. In MPI
641 * version, if the StuntDouble with specified global index does
642 * not belong to local processor, a NULL will be return.
643 */
644 StuntDouble* getIOIndexToIntegrableObject(int index);
645 void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
646
647 private:
648 vector<StuntDouble*> IOIndexToIntegrableObject;
649
650 public:
651
652 /**
653 * Finds the processor where a molecule resides
654 * @return the id of the processor which contains the molecule
655 * @param globalIndex global Index of the molecule
656 */
657 int getMolToProc(int globalIndex) {
658 //assert(globalIndex < molToProcMap_.size());
659 return molToProcMap_[globalIndex];
660 }
661
662 /**
663 * Set MolToProcMap array
664 * @see #SimCreator::divideMolecules
665 */
666 void setMolToProcMap(const vector<int>& molToProcMap) {
667 molToProcMap_ = molToProcMap;
668 }
669
670 private:
671
672 void setupFortranParallel();
673
674 /**
675 * The size of molToProcMap_ is equal to total number of molecules
676 * in the system. It maps a molecule to the processor on which it
677 * resides. it is filled by SimCreator once and only once.
678 */
679 vector<int> molToProcMap_;
680
681 };
682
683 } //namespace OpenMD
684 #endif //BRAINS_SIMMODEL_HPP
685

Properties

Name Value
svn:keywords Author Id Revision Date