ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
Revision: 1503
Committed: Sat Oct 2 19:54:41 2010 UTC (14 years, 7 months ago) by gezelter
File size: 21460 byte(s)
Log Message:
Changes to remove more of the low level stuff from the fortran side.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file SimInfo.hpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #ifndef BRAINS_SIMMODEL_HPP
50 #define BRAINS_SIMMODEL_HPP
51
52 #include <iostream>
53 #include <set>
54 #include <utility>
55 #include <vector>
56
57 #include "brains/PairList.hpp"
58 #include "io/Globals.hpp"
59 #include "math/Vector3.hpp"
60 #include "math/SquareMatrix3.hpp"
61 #include "types/MoleculeStamp.hpp"
62 #include "UseTheForce/ForceField.hpp"
63 #include "utils/PropertyMap.hpp"
64 #include "utils/LocalIndexManager.hpp"
65 #include "nonbonded/Electrostatic.hpp"
66
67 //another nonsense macro declaration
68 #define __OPENMD_C
69 #include "brains/fSimulation.h"
70
71 namespace OpenMD{
72
73 //forward decalration
74 class SnapshotManager;
75 class Molecule;
76 class SelectionManager;
77 class StuntDouble;
78 class Electrostatic;
79 /**
80 * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
81 * @brief One of the heavy weight classes of OpenMD, SimInfo maintains a list of molecules.
82 * The Molecule class maintains all of the concrete objects
83 * (atoms, bond, bend, torsions, inversions, rigid bodies, cutoff groups,
84 * constraints). In both the single and parallel versions, atoms and
85 * rigid bodies have both global and local indices. The local index is
86 * not relevant to molecules or cutoff groups.
87 */
88 class SimInfo {
89 public:
90 typedef std::map<int, Molecule*>::iterator MoleculeIterator;
91
92 /**
93 * Constructor of SimInfo
94 * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
95 * second element is the total number of molecules with the same molecule stamp in the system
96 * @param ff pointer of a concrete ForceField instance
97 * @param simParams
98 * @note
99 */
100 SimInfo(ForceField* ff, Globals* simParams);
101 virtual ~SimInfo();
102
103 /**
104 * Adds a molecule
105 * @return return true if adding successfully, return false if the molecule is already in SimInfo
106 * @param mol molecule to be added
107 */
108 bool addMolecule(Molecule* mol);
109
110 /**
111 * Removes a molecule from SimInfo
112 * @return true if removing successfully, return false if molecule is not in this SimInfo
113 */
114 bool removeMolecule(Molecule* mol);
115
116 /** Returns the total number of molecules in the system. */
117 int getNGlobalMolecules() {
118 return nGlobalMols_;
119 }
120
121 /** Returns the total number of atoms in the system. */
122 int getNGlobalAtoms() {
123 return nGlobalAtoms_;
124 }
125
126 /** Returns the total number of cutoff groups in the system. */
127 int getNGlobalCutoffGroups() {
128 return nGlobalCutoffGroups_;
129 }
130
131 /**
132 * Returns the total number of integrable objects (total number of rigid bodies plus the total number
133 * of atoms which do not belong to the rigid bodies) in the system
134 */
135 int getNGlobalIntegrableObjects() {
136 return nGlobalIntegrableObjects_;
137 }
138
139 /**
140 * Returns the total number of integrable objects (total number of rigid bodies plus the total number
141 * of atoms which do not belong to the rigid bodies) in the system
142 */
143 int getNGlobalRigidBodies() {
144 return nGlobalRigidBodies_;
145 }
146
147 int getNGlobalConstraints();
148 /**
149 * Returns the number of local molecules.
150 * @return the number of local molecules
151 */
152 int getNMolecules() {
153 return molecules_.size();
154 }
155
156 /** Returns the number of local atoms */
157 unsigned int getNAtoms() {
158 return nAtoms_;
159 }
160
161 /** Returns the number of local bonds */
162 unsigned int getNBonds(){
163 return nBonds_;
164 }
165
166 /** Returns the number of local bends */
167 unsigned int getNBends() {
168 return nBends_;
169 }
170
171 /** Returns the number of local torsions */
172 unsigned int getNTorsions() {
173 return nTorsions_;
174 }
175
176 /** Returns the number of local torsions */
177 unsigned int getNInversions() {
178 return nInversions_;
179 }
180 /** Returns the number of local rigid bodies */
181 unsigned int getNRigidBodies() {
182 return nRigidBodies_;
183 }
184
185 /** Returns the number of local integrable objects */
186 unsigned int getNIntegrableObjects() {
187 return nIntegrableObjects_;
188 }
189
190 /** Returns the number of local cutoff groups */
191 unsigned int getNCutoffGroups() {
192 return nCutoffGroups_;
193 }
194
195 /** Returns the total number of constraints in this SimInfo */
196 unsigned int getNConstraints() {
197 return nConstraints_;
198 }
199
200 /**
201 * Returns the first molecule in this SimInfo and intialize the iterator.
202 * @return the first molecule, return NULL if there is not molecule in this SimInfo
203 * @param i the iterator of molecule array (user shouldn't change it)
204 */
205 Molecule* beginMolecule(MoleculeIterator& i);
206
207 /**
208 * Returns the next avaliable Molecule based on the iterator.
209 * @return the next avaliable molecule, return NULL if reaching the end of the array
210 * @param i the iterator of molecule array
211 */
212 Molecule* nextMolecule(MoleculeIterator& i);
213
214 /** Returns the number of degrees of freedom */
215 int getNdf() {
216 return ndf_ - getFdf();
217 }
218
219 /** Returns the number of raw degrees of freedom */
220 int getNdfRaw() {
221 return ndfRaw_;
222 }
223
224 /** Returns the number of translational degrees of freedom */
225 int getNdfTrans() {
226 return ndfTrans_;
227 }
228
229 /** sets the current number of frozen degrees of freedom */
230 void setFdf(int fdf) {
231 fdf_local = fdf;
232 }
233
234 int getFdf();
235
236 //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
237
238 /** Returns the total number of z-constraint molecules in the system */
239 int getNZconstraint() {
240 return nZconstraint_;
241 }
242
243 /**
244 * Sets the number of z-constraint molecules in the system.
245 */
246 void setNZconstraint(int nZconstraint) {
247 nZconstraint_ = nZconstraint;
248 }
249
250 /** Returns the snapshot manager. */
251 SnapshotManager* getSnapshotManager() {
252 return sman_;
253 }
254
255 /** Sets the snapshot manager. */
256 void setSnapshotManager(SnapshotManager* sman);
257
258 /** Returns the force field */
259 ForceField* getForceField() {
260 return forceField_;
261 }
262
263 Globals* getSimParams() {
264 return simParams_;
265 }
266
267 /** Returns the velocity of center of mass of the whole system.*/
268 Vector3d getComVel();
269
270 /** Returns the center of the mass of the whole system.*/
271 Vector3d getCom();
272 /** Returns the center of the mass and Center of Mass velocity of the whole system.*/
273 void getComAll(Vector3d& com,Vector3d& comVel);
274
275 /** Returns intertia tensor for the entire system and system Angular Momentum.*/
276 void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
277
278 /** Returns system angular momentum */
279 Vector3d getAngularMomentum();
280
281 /** Returns volume of system as estimated by an ellipsoid defined by the radii of gyration*/
282 void getGyrationalVolume(RealType &vol);
283 /** Overloaded version of gyrational volume that also returns det(I) so dV/dr can be calculated*/
284 void getGyrationalVolume(RealType &vol, RealType &detI);
285 /** main driver function to interact with fortran during the initialization and molecule migration */
286 void update();
287
288 /** Returns the local index manager */
289 LocalIndexManager* getLocalIndexManager() {
290 return &localIndexMan_;
291 }
292
293 int getMoleculeStampId(int globalIndex) {
294 //assert(globalIndex < molStampIds_.size())
295 return molStampIds_[globalIndex];
296 }
297
298 /** Returns the molecule stamp */
299 MoleculeStamp* getMoleculeStamp(int id) {
300 return moleculeStamps_[id];
301 }
302
303 /** Return the total number of the molecule stamps */
304 int getNMoleculeStamp() {
305 return moleculeStamps_.size();
306 }
307 /**
308 * Finds a molecule with a specified global index
309 * @return a pointer point to found molecule
310 * @param index
311 */
312 Molecule* getMoleculeByGlobalIndex(int index) {
313 MoleculeIterator i;
314 i = molecules_.find(index);
315
316 return i != molecules_.end() ? i->second : NULL;
317 }
318
319 int getGlobalMolMembership(int id){
320 return globalMolMembership_[id];
321 }
322
323 RealType getRcut() {
324 return rcut_;
325 }
326
327 RealType getRsw() {
328 return rsw_;
329 }
330
331 RealType getList() {
332 return rlist_;
333 }
334
335 std::string getFinalConfigFileName() {
336 return finalConfigFileName_;
337 }
338
339 void setFinalConfigFileName(const std::string& fileName) {
340 finalConfigFileName_ = fileName;
341 }
342
343 std::string getRawMetaData() {
344 return rawMetaData_;
345 }
346 void setRawMetaData(const std::string& rawMetaData) {
347 rawMetaData_ = rawMetaData;
348 }
349
350 std::string getDumpFileName() {
351 return dumpFileName_;
352 }
353
354 void setDumpFileName(const std::string& fileName) {
355 dumpFileName_ = fileName;
356 }
357
358 std::string getStatFileName() {
359 return statFileName_;
360 }
361
362 void setStatFileName(const std::string& fileName) {
363 statFileName_ = fileName;
364 }
365
366 std::string getRestFileName() {
367 return restFileName_;
368 }
369
370 void setRestFileName(const std::string& fileName) {
371 restFileName_ = fileName;
372 }
373
374 /**
375 * Sets GlobalGroupMembership
376 * @see #SimCreator::setGlobalIndex
377 */
378 void setGlobalGroupMembership(const std::vector<int>& globalGroupMembership) {
379 assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
380 globalGroupMembership_ = globalGroupMembership;
381 }
382
383 /**
384 * Sets GlobalMolMembership
385 * @see #SimCreator::setGlobalIndex
386 */
387 void setGlobalMolMembership(const std::vector<int>& globalMolMembership) {
388 assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
389 globalMolMembership_ = globalMolMembership;
390 }
391
392
393 bool isFortranInitialized() {
394 return fortranInitialized_;
395 }
396
397 bool getCalcBoxDipole() {
398 return calcBoxDipole_;
399 }
400
401 bool getUseAtomicVirial() {
402 return useAtomicVirial_;
403 }
404
405 //below functions are just forward functions
406 //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
407 //the other hand, has-a relation need composing.
408 /**
409 * Adds property into property map
410 * @param genData GenericData to be added into PropertyMap
411 */
412 void addProperty(GenericData* genData);
413
414 /**
415 * Removes property from PropertyMap by name
416 * @param propName the name of property to be removed
417 */
418 void removeProperty(const std::string& propName);
419
420 /**
421 * clear all of the properties
422 */
423 void clearProperties();
424
425 /**
426 * Returns all names of properties
427 * @return all names of properties
428 */
429 std::vector<std::string> getPropertyNames();
430
431 /**
432 * Returns all of the properties in PropertyMap
433 * @return all of the properties in PropertyMap
434 */
435 std::vector<GenericData*> getProperties();
436
437 /**
438 * Returns property
439 * @param propName name of property
440 * @return a pointer point to property with propName. If no property named propName
441 * exists, return NULL
442 */
443 GenericData* getPropertyByName(const std::string& propName);
444
445 /**
446 * add all special interaction pairs (including excluded
447 * interactions) in a molecule into the appropriate lists.
448 */
449 void addInteractionPairs(Molecule* mol);
450
451 /**
452 * remove all special interaction pairs which belong to a molecule
453 * from the appropriate lists.
454 */
455 void removeInteractionPairs(Molecule* mol);
456
457
458 /** Returns the unique atom types of local processor in an array */
459 std::set<AtomType*> getUniqueAtomTypes();
460
461 friend std::ostream& operator <<(std::ostream& o, SimInfo& info);
462
463 void getCutoff(RealType& rcut, RealType& rsw);
464
465 private:
466
467 /** fill up the simtype struct*/
468 void setupSimType();
469
470 /**
471 * Setup Fortran Simulation
472 * @see #setupFortranParallel
473 */
474 void setupFortranSim();
475
476 /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
477 void setupCutoff();
478
479 /** Figure out which coulombic correction method to use and pass to fortran */
480 void setupElectrostaticSummationMethod( int isError );
481
482 /** Figure out which polynomial type to use for the switching function */
483 void setupSwitchingFunction();
484
485 /** Determine if we need to accumulate the simulation box dipole */
486 void setupAccumulateBoxDipole();
487
488 /** Calculates the number of degress of freedom in the whole system */
489 void calcNdf();
490 void calcNdfRaw();
491 void calcNdfTrans();
492
493 ForceField* forceField_;
494 Globals* simParams_;
495
496 std::map<int, Molecule*> molecules_; /**< Molecule array */
497
498 /**
499 * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
500 * system.
501 */
502 void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
503
504 //degress of freedom
505 int ndf_; /**< number of degress of freedom (excludes constraints), ndf_ is local */
506 int fdf_local; /**< number of frozen degrees of freedom */
507 int fdf_; /**< number of frozen degrees of freedom */
508 int ndfRaw_; /**< number of degress of freedom (includes constraints), ndfRaw_ is local */
509 int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
510 int nZconstraint_; /** number of z-constraint molecules, nZconstraint_ is global */
511
512 //number of global objects
513 int nGlobalMols_; /**< number of molecules in the system */
514 int nGlobalAtoms_; /**< number of atoms in the system */
515 int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
516 int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
517 int nGlobalRigidBodies_; /**< number of rigid bodies in this system */
518 /**
519 * the size of globalGroupMembership_ is nGlobalAtoms. Its index is global index of an atom, and the
520 * corresponding content is the global index of cutoff group this atom belong to.
521 * It is filled by SimCreator once and only once, since it never changed during the simulation.
522 */
523 std::vector<int> globalGroupMembership_;
524
525 /**
526 * the size of globalMolMembership_ is nGlobalAtoms. Its index is global index of an atom, and the
527 * corresponding content is the global index of molecule this atom belong to.
528 * It is filled by SimCreator once and only once, since it is never changed during the simulation.
529 */
530 std::vector<int> globalMolMembership_;
531
532
533 std::vector<int> molStampIds_; /**< stamp id array of all molecules in the system */
534 std::vector<MoleculeStamp*> moleculeStamps_; /**< molecule stamps array */
535
536 //number of local objects
537 int nAtoms_; /**< number of atoms in local processor */
538 int nBonds_; /**< number of bonds in local processor */
539 int nBends_; /**< number of bends in local processor */
540 int nTorsions_; /**< number of torsions in local processor */
541 int nInversions_; /**< number of inversions in local processor */
542 int nRigidBodies_; /**< number of rigid bodies in local processor */
543 int nIntegrableObjects_; /**< number of integrable objects in local processor */
544 int nCutoffGroups_; /**< number of cutoff groups in local processor */
545 int nConstraints_; /**< number of constraints in local processors */
546
547 simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
548 PairList excludedInteractions_;
549 PairList oneTwoInteractions_;
550 PairList oneThreeInteractions_;
551 PairList oneFourInteractions_;
552 PropertyMap properties_; /**< Generic Property */
553 SnapshotManager* sman_; /**< SnapshotManager */
554
555 /**
556 * The reason to have a local index manager is that when molecule is migrating to other processors,
557 * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
558 * information of molecule migrating to current processor, Migrator class can query the LocalIndexManager
559 * to make a efficient data moving plan.
560 */
561 LocalIndexManager localIndexMan_;
562
563 // unparsed MetaData block for storing in Dump and EOR files:
564 std::string rawMetaData_;
565
566 //file names
567 std::string finalConfigFileName_;
568 std::string dumpFileName_;
569 std::string statFileName_;
570 std::string restFileName_;
571
572 RealType rcut_; /**< cutoff radius*/
573 RealType rsw_; /**< radius of switching function*/
574 RealType rlist_; /**< neighbor list radius */
575
576 int ljsp_; /**< use shifted potential for LJ*/
577 int ljsf_; /**< use shifted force for LJ*/
578
579 bool fortranInitialized_; /** flag to indicate whether the fortran side is initialized */
580
581 bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
582 the simulation box dipole moment */
583
584 bool useAtomicVirial_; /**< flag to indicate whether or not we use
585 Atomic Virials to calculate the pressure */
586
587 public:
588 /**
589 * return an integral objects by its global index. In MPI version, if the StuntDouble with specified
590 * global index does not belong to local processor, a NULL will be return.
591 */
592 StuntDouble* getIOIndexToIntegrableObject(int index);
593 void setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v);
594 private:
595 std::vector<StuntDouble*> IOIndexToIntegrableObject;
596 //public:
597 //void setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v);
598 /**
599 * return a StuntDouble by its global index. In MPI version, if the StuntDouble with specified
600 * global index does not belong to local processor, a NULL will be return.
601 */
602 //StuntDouble* getStuntDoubleFromGlobalIndex(int index);
603 //private:
604 //std::vector<StuntDouble*> sdByGlobalIndex_;
605
606 //in Parallel version, we need MolToProc
607 public:
608
609 /**
610 * Finds the processor where a molecule resides
611 * @return the id of the processor which contains the molecule
612 * @param globalIndex global Index of the molecule
613 */
614 int getMolToProc(int globalIndex) {
615 //assert(globalIndex < molToProcMap_.size());
616 return molToProcMap_[globalIndex];
617 }
618
619 /**
620 * Set MolToProcMap array
621 * @see #SimCreator::divideMolecules
622 */
623 void setMolToProcMap(const std::vector<int>& molToProcMap) {
624 molToProcMap_ = molToProcMap;
625 }
626
627 private:
628
629 void setupFortranParallel();
630
631 /**
632 * The size of molToProcMap_ is equal to total number of molecules
633 * in the system. It maps a molecule to the processor on which it
634 * resides. it is filled by SimCreator once and only once.
635 */
636 std::vector<int> molToProcMap_;
637
638
639 };
640
641 } //namespace OpenMD
642 #endif //BRAINS_SIMMODEL_HPP
643

Properties

Name Value
svn:keywords Author Id Revision Date