ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.hpp (file contents), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/brains/SimInfo.hpp (file contents), Revision 1503 by gezelter, Sat Oct 2 19:54:41 2010 UTC

# Line 1 | Line 1
1 < #ifndef __SIMINFO_H__
2 < #define __SIMINFO_H__
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimInfo.hpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <map>
50 < #include <string>
49 > #ifndef BRAINS_SIMMODEL_HPP
50 > #define BRAINS_SIMMODEL_HPP
51 >
52 > #include <iostream>
53 > #include <set>
54 > #include <utility>
55   #include <vector>
56  
57 < #include "primitives/Atom.hpp"
58 < #include "primitives/RigidBody.hpp"
59 < #include "primitives/Molecule.hpp"
60 < #include "brains/Exclude.hpp"
61 < #include "brains/SkipList.hpp"
62 < #include "primitives/AbstractClasses.hpp"
63 < #include "types/MakeStamps.hpp"
64 < #include "brains/SimState.hpp"
65 < #include "restraints/Restraints.hpp"
57 > #include "brains/PairList.hpp"
58 > #include "io/Globals.hpp"
59 > #include "math/Vector3.hpp"
60 > #include "math/SquareMatrix3.hpp"
61 > #include "types/MoleculeStamp.hpp"
62 > #include "UseTheForce/ForceField.hpp"
63 > #include "utils/PropertyMap.hpp"
64 > #include "utils/LocalIndexManager.hpp"
65 > #include "nonbonded/Electrostatic.hpp"
66  
67 < #define __C
67 > //another nonsense macro declaration
68 > #define __OPENMD_C
69   #include "brains/fSimulation.h"
20 #include "UseTheForce/fortranWrapDefines.hpp"
21 #include "utils/GenericData.hpp"
70  
71 + namespace OpenMD{
72  
73 < //#include "Minimizer.hpp"
74 < //#include "minimizers/OOPSEMinimizer.hpp"
73 >  //forward decalration
74 >  class SnapshotManager;
75 >  class Molecule;
76 >  class SelectionManager;
77 >  class StuntDouble;
78 >  class Electrostatic;
79 >  /**
80 >   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
81 >   * @brief One of the heavy weight classes of OpenMD, SimInfo maintains a list of molecules.
82 >    * The Molecule class maintains all of the concrete objects
83 >    * (atoms, bond, bend, torsions, inversions, rigid bodies, cutoff groups,
84 >    * constraints). In both the single and parallel versions, atoms and
85 >    * rigid bodies have both global and local indices.  The local index is
86 >    * not relevant to molecules or cutoff groups.
87 >    */
88 >  class SimInfo {
89 >  public:
90 >    typedef std::map<int, Molecule*>::iterator  MoleculeIterator;
91  
92 +    /**
93 +     * Constructor of SimInfo
94 +     * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
95 +     * second element is the total number of molecules with the same molecule stamp in the system
96 +     * @param ff pointer of a concrete ForceField instance
97 +     * @param simParams
98 +     * @note
99 +     */
100 +    SimInfo(ForceField* ff, Globals* simParams);
101 +    virtual ~SimInfo();
102  
103 < double roundMe( double x );
104 < class OOPSEMinimizer;
105 < class SimInfo{
103 >    /**
104 >     * Adds a molecule
105 >     * @return return true if adding successfully, return false if the molecule is already in SimInfo
106 >     * @param mol molecule to be added
107 >     */
108 >    bool addMolecule(Molecule* mol);
109  
110 < public:
110 >    /**
111 >     * Removes a molecule from SimInfo
112 >     * @return true if removing successfully, return false if molecule is not in this SimInfo
113 >     */
114 >    bool removeMolecule(Molecule* mol);
115  
116 <  SimInfo();
117 <  ~SimInfo();
116 >    /** Returns the total number of molecules in the system. */
117 >    int getNGlobalMolecules() {
118 >      return nGlobalMols_;
119 >    }
120  
121 <  int n_atoms; // the number of atoms
122 <  Atom **atoms; // the array of atom objects
121 >    /** Returns the total number of atoms in the system. */
122 >    int getNGlobalAtoms() {
123 >      return nGlobalAtoms_;
124 >    }
125  
126 <  vector<RigidBody*> rigidBodies;  // A vector of rigid bodies
127 <  vector<StuntDouble*> integrableObjects;
128 <  
129 <  double tau[9]; // the stress tensor
126 >    /** Returns the total number of cutoff groups in the system. */
127 >    int getNGlobalCutoffGroups() {
128 >      return nGlobalCutoffGroups_;
129 >    }
130  
131 <  int n_bonds;    // number of bends
132 <  int n_bends;    // number of bends
133 <  int n_torsions; // number of torsions
134 <  int n_oriented; // number of of atoms with orientation
135 <  int ndf;        // number of actual degrees of freedom
136 <  int ndfRaw;     // number of settable degrees of freedom
137 <  int ndfTrans;   // number of translational degrees of freedom
52 <  int nZconstraints; // the number of zConstraints
131 >    /**
132 >     * Returns the total number of integrable objects (total number of rigid bodies plus the total number
133 >     * of atoms which do not belong to the rigid bodies) in the system
134 >     */
135 >    int getNGlobalIntegrableObjects() {
136 >      return nGlobalIntegrableObjects_;
137 >    }
138  
139 <  int setTemp;   // boolean to set the temperature at each sampleTime
140 <  int resetIntegrator; // boolean to reset the integrator
139 >    /**
140 >     * Returns the total number of integrable objects (total number of rigid bodies plus the total number
141 >     * of atoms which do not belong to the rigid bodies) in the system
142 >     */
143 >    int getNGlobalRigidBodies() {
144 >      return nGlobalRigidBodies_;
145 >    }
146  
147 <  int n_dipoles; // number of dipoles
147 >    int getNGlobalConstraints();
148 >    /**
149 >     * Returns the number of local molecules.
150 >     * @return the number of local molecules
151 >     */
152 >    int getNMolecules() {
153 >      return molecules_.size();
154 >    }
155  
156 <  int n_exclude;
157 <  Exclude* excludes;  // the exclude list for ignoring pairs in fortran
158 <  int nGlobalExcludes;
159 <  int* globalExcludes; // same as above, but these guys participate in
63 <                       // no long range forces.
156 >    /** Returns the number of local atoms */
157 >    unsigned int getNAtoms() {
158 >      return nAtoms_;
159 >    }
160  
161 <  int* identArray;     // array of unique identifiers for the atoms
162 <  int* molMembershipArray;  // map of atom numbers onto molecule numbers
161 >    /** Returns the number of local bonds */        
162 >    unsigned int getNBonds(){
163 >      return nBonds_;
164 >    }
165  
166 <  int n_constraints; // the number of constraints on the system
166 >    /** Returns the number of local bends */        
167 >    unsigned int getNBends() {
168 >      return nBends_;
169 >    }
170  
171 <  int n_SRI;   // the number of short range interactions
171 >    /** Returns the number of local torsions */        
172 >    unsigned int getNTorsions() {
173 >      return nTorsions_;
174 >    }
175  
176 <  double lrPot; // the potential energy from the long range calculations.
176 >    /** Returns the number of local torsions */        
177 >    unsigned int getNInversions() {
178 >      return nInversions_;
179 >    }
180 >    /** Returns the number of local rigid bodies */        
181 >    unsigned int getNRigidBodies() {
182 >      return nRigidBodies_;
183 >    }
184  
185 <  double Hmat[3][3];  // the periodic boundry conditions. The Hmat is the
186 <                      // column vectors of the x, y, and z box vectors.
187 <                      //   h1  h2  h3
188 <                      // [ Xx  Yx  Zx ]
78 <                      // [ Xy  Yy  Zy ]
79 <                      // [ Xz  Yz  Zz ]
80 <                      //  
81 <  double HmatInv[3][3];
185 >    /** Returns the number of local integrable objects */
186 >    unsigned int getNIntegrableObjects() {
187 >      return nIntegrableObjects_;
188 >    }
189  
190 <  double boxL[3]; // The Lengths of the 3 column vectors of Hmat
191 <  double boxVol;
192 <  int orthoRhombic;
193 <  
190 >    /** Returns the number of local cutoff groups */
191 >    unsigned int getNCutoffGroups() {
192 >      return nCutoffGroups_;
193 >    }
194  
195 <  double dielectric;      // the dielectric of the medium for reaction field
195 >    /** Returns the total number of constraints in this SimInfo */
196 >    unsigned int getNConstraints() {
197 >      return nConstraints_;
198 >    }
199 >        
200 >    /**
201 >     * Returns the first molecule in this SimInfo and intialize the iterator.
202 >     * @return the first molecule, return NULL if there is not molecule in this SimInfo
203 >     * @param i the iterator of molecule array (user shouldn't change it)
204 >     */
205 >    Molecule* beginMolecule(MoleculeIterator& i);
206  
207 <  
208 <  int usePBC; // whether we use periodic boundry conditions.
209 <  int useLJ;
210 <  int useSticky;
211 <  int useCharges;
212 <  int useDipoles;
96 <  int useReactionField;
97 <  int useGB;
98 <  int useEAM;
99 <  bool haveCutoffGroups;
100 <  bool useInitXSstate;
101 <  double orthoTolerance;
207 >    /**
208 >     * Returns the next avaliable Molecule based on the iterator.
209 >     * @return the next avaliable molecule, return NULL if reaching the end of the array
210 >     * @param i the iterator of molecule array
211 >     */
212 >    Molecule* nextMolecule(MoleculeIterator& i);
213  
214 <  double dt, run_time;           // the time step and total time
215 <  double sampleTime, statusTime; // the position and energy dump frequencies
216 <  double target_temp;            // the target temperature of the system
217 <  double thermalTime;            // the temp kick interval
107 <  double currentTime;            // Used primarily for correlation Functions
108 <  double resetTime;              // Use to reset the integrator periodically
109 <  short int have_target_temp;
214 >    /** Returns the number of degrees of freedom */
215 >    int getNdf() {
216 >      return ndf_ - getFdf();
217 >    }
218  
219 <  int n_mol;           // n_molecules;
220 <  Molecule* molecules; // the array of molecules
221 <  
222 <  int nComponents;           // the number of components in the system
115 <  int* componentsNmol;       // the number of molecules of each component
116 <  MoleculeStamp** compStamps;// the stamps matching the components
117 <  LinkedMolStamp* headStamp; // list of stamps used in the simulation
118 <  
119 <  
120 <  char ensemble[100]; // the enesemble of the simulation (NVT, NVE, etc. )
121 <  char mixingRule[100]; // the mixing rules for Lennard jones/van der walls
122 <  BaseIntegrator *the_integrator; // the integrator of the simulation
219 >    /** Returns the number of raw degrees of freedom */
220 >    int getNdfRaw() {
221 >      return ndfRaw_;
222 >    }
223  
224 <  OOPSEMinimizer* the_minimizer; // the energy minimizer
225 <  Restraints* restraint;
226 <  bool has_minimizer;
224 >    /** Returns the number of translational degrees of freedom */
225 >    int getNdfTrans() {
226 >      return ndfTrans_;
227 >    }
228  
229 <  string finalName;  // the name of the eor file to be written
230 <  string sampleName; // the name of the dump file to be written
231 <  string statusName; // the name of the stat file to be written
229 >    /** sets the current number of frozen degrees of freedom */
230 >    void setFdf(int fdf) {
231 >      fdf_local = fdf;
232 >    }
233  
234 <  int seed;                    //seed for random number generator
234 >    int getFdf();
235 >    
236 >    //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
237 >        
238 >    /** Returns the total number of z-constraint molecules in the system */
239 >    int getNZconstraint() {
240 >      return nZconstraint_;
241 >    }
242  
243 <  int useSolidThermInt;  // is solid-state thermodynamic integration being used
244 <  int useLiquidThermInt; // is liquid thermodynamic integration being used
245 <  double thermIntLambda; // lambda for TI
246 <  double thermIntK;      // power of lambda for TI
247 <  double vRaw;           // unperturbed potential for TI
248 <  double vHarm;          // harmonic potential for TI
249 <  int i;                 // just an int
243 >    /**
244 >     * Sets the number of z-constraint molecules in the system.
245 >     */
246 >    void setNZconstraint(int nZconstraint) {
247 >      nZconstraint_ = nZconstraint;
248 >    }
249 >        
250 >    /** Returns the snapshot manager. */
251 >    SnapshotManager* getSnapshotManager() {
252 >      return sman_;
253 >    }
254  
255 <  vector<double> mfact;
256 <  vector<int> FglobalGroupMembership;
257 <  int ngroup;
258 <  int* globalGroupMembership;
255 >    /** Sets the snapshot manager. */
256 >    void setSnapshotManager(SnapshotManager* sman);
257 >        
258 >    /** Returns the force field */
259 >    ForceField* getForceField() {
260 >      return forceField_;
261 >    }
262  
263 <  // refreshes the sim if things get changed (load balanceing, volume
264 <  // adjustment, etc.)
263 >    Globals* getSimParams() {
264 >      return simParams_;
265 >    }
266  
267 <  void refreshSim( void );
268 <  
267 >    /** Returns the velocity of center of mass of the whole system.*/
268 >    Vector3d getComVel();
269  
270 <  // sets the internal function pointer to fortran.
270 >    /** Returns the center of the mass of the whole system.*/
271 >    Vector3d getCom();
272 >   /** Returns the center of the mass and Center of Mass velocity of the whole system.*/
273 >    void getComAll(Vector3d& com,Vector3d& comVel);
274  
275 <  void setInternal( setFortranSim_TD fSetup,
276 <                    setFortranBox_TD fBox,
277 <                    notifyFortranCutOff_TD fCut){
278 <    setFsimulation = fSetup;
279 <    setFortranBoxSize = fBox;
160 <    notifyFortranCutOffs = fCut;
161 <  }
275 >    /** Returns intertia tensor for the entire system and system Angular Momentum.*/
276 >    void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
277 >    
278 >    /** Returns system angular momentum */
279 >    Vector3d getAngularMomentum();
280  
281 <  int getNDF();
282 <  int getNDFraw();
283 <  int getNDFtranslational();
284 <  int getTotIntegrableObjects();
285 <  void setBox( double newBox[3] );
286 <  void setBoxM( double newBox[3][3] );
169 <  void getBoxM( double theBox[3][3] );
170 <  void scaleBox( double scale );
171 <  
172 <  void setDefaultRcut( double theRcut );
173 <  void setDefaultRcut( double theRcut, double theRsw );
174 <  void checkCutOffs( void );
281 >    /** Returns volume of system as estimated by an ellipsoid defined by the radii of gyration*/
282 >    void getGyrationalVolume(RealType &vol);
283 >    /** Overloaded version of gyrational volume that also returns det(I) so dV/dr can be calculated*/
284 >    void getGyrationalVolume(RealType &vol, RealType &detI);
285 >    /** main driver function to interact with fortran during the initialization and molecule migration */
286 >    void update();
287  
288 <  double getRcut( void )  { return rCut; }
289 <  double getRlist( void ) { return rList; }
290 <  double getRsw( void )   { return rSw; }
291 <  double getMaxCutoff( void ) { return maxCutoff; }
180 <  
181 <  void setTime( double theTime ) { currentTime = theTime; }
182 <  void incrTime( double the_dt ) { currentTime += the_dt; }
183 <  void decrTime( double the_dt ) { currentTime -= the_dt; }
184 <  double getTime( void ) { return currentTime; }
185 <
186 <  void wrapVector( double thePos[3] );
288 >    /** Returns the local index manager */
289 >    LocalIndexManager* getLocalIndexManager() {
290 >      return &localIndexMan_;
291 >    }
292  
293 <  SimState* getConfiguration( void ) { return myConfiguration; }
294 <  
295 <  void addProperty(GenericData* prop);
296 <  GenericData* getProperty(const string& propName);
192 <  //vector<GenericData*>& getProperties()  {return properties;}    
293 >    int getMoleculeStampId(int globalIndex) {
294 >      //assert(globalIndex < molStampIds_.size())
295 >      return molStampIds_[globalIndex];
296 >    }
297  
298 <  int getSeed(void) {  return seed; }
299 <  void setSeed(int theSeed) {  seed = theSeed;}
298 >    /** Returns the molecule stamp */
299 >    MoleculeStamp* getMoleculeStamp(int id) {
300 >      return moleculeStamps_[id];
301 >    }
302  
303 < private:
303 >    /** Return the total number of the molecule stamps */
304 >    int getNMoleculeStamp() {
305 >      return moleculeStamps_.size();
306 >    }
307 >    /**
308 >     * Finds a molecule with a specified global index
309 >     * @return a pointer point to found molecule
310 >     * @param index
311 >     */
312 >    Molecule* getMoleculeByGlobalIndex(int index) {
313 >      MoleculeIterator i;
314 >      i = molecules_.find(index);
315  
316 <  SimState* myConfiguration;
316 >      return i != molecules_.end() ? i->second : NULL;
317 >    }
318  
319 <  int boxIsInit, haveRcut, haveRsw;
319 >    int getGlobalMolMembership(int id){
320 >      return globalMolMembership_[id];
321 >    }
322  
323 <  double rList, rCut; // variables for the neighborlist
324 <  double rSw;         // the switching radius
323 >    RealType getRcut() {
324 >      return rcut_;
325 >    }
326  
327 <  double maxCutoff;
327 >    RealType getRsw() {
328 >      return rsw_;
329 >    }
330  
331 <  double distXY;
332 <  double distYZ;
333 <  double distZX;
334 <  
335 <  void calcHmatInv( void );
336 <  void calcBoxL();
337 <  double calcMaxCutOff();
331 >    RealType getList() {
332 >      return rlist_;
333 >    }
334 >        
335 >    std::string getFinalConfigFileName() {
336 >      return finalConfigFileName_;
337 >    }
338  
339 <  // private function to initialize the fortran side of the simulation
340 <  setFortranSim_TD setFsimulation;
339 >    void setFinalConfigFileName(const std::string& fileName) {
340 >      finalConfigFileName_ = fileName;
341 >    }
342  
343 <  setFortranBox_TD setFortranBoxSize;
344 <  
345 <  notifyFortranCutOff_TD notifyFortranCutOffs;
346 <  
347 <  //Addtional Properties of SimInfo
348 <  map<string, GenericData*> properties;
349 <  void getFortranGroupArrays(SimInfo* info,
350 <                             vector<int>& FglobalGroupMembership,
351 <                             vector<double>& mfact);
343 >    std::string getRawMetaData() {
344 >      return rawMetaData_;
345 >    }
346 >    void setRawMetaData(const std::string& rawMetaData) {
347 >      rawMetaData_ = rawMetaData;
348 >    }
349 >        
350 >    std::string getDumpFileName() {
351 >      return dumpFileName_;
352 >    }
353 >        
354 >    void setDumpFileName(const std::string& fileName) {
355 >      dumpFileName_ = fileName;
356 >    }
357  
358 +    std::string getStatFileName() {
359 +      return statFileName_;
360 +    }
361 +        
362 +    void setStatFileName(const std::string& fileName) {
363 +      statFileName_ = fileName;
364 +    }
365 +        
366 +    std::string getRestFileName() {
367 +      return restFileName_;
368 +    }
369 +        
370 +    void setRestFileName(const std::string& fileName) {
371 +      restFileName_ = fileName;
372 +    }
373  
374 < };
374 >    /**
375 >     * Sets GlobalGroupMembership
376 >     * @see #SimCreator::setGlobalIndex
377 >     */  
378 >    void setGlobalGroupMembership(const std::vector<int>& globalGroupMembership) {
379 >      assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
380 >      globalGroupMembership_ = globalGroupMembership;
381 >    }
382  
383 +    /**
384 +     * Sets GlobalMolMembership
385 +     * @see #SimCreator::setGlobalIndex
386 +     */        
387 +    void setGlobalMolMembership(const std::vector<int>& globalMolMembership) {
388 +      assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
389 +      globalMolMembership_ = globalMolMembership;
390 +    }
391  
392 < #endif
392 >
393 >    bool isFortranInitialized() {
394 >      return fortranInitialized_;
395 >    }
396 >        
397 >    bool getCalcBoxDipole() {
398 >      return calcBoxDipole_;
399 >    }
400 >
401 >    bool getUseAtomicVirial() {
402 >      return useAtomicVirial_;
403 >    }
404 >
405 >    //below functions are just forward functions
406 >    //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
407 >    //the other hand, has-a relation need composing.
408 >    /**
409 >     * Adds property into property map
410 >     * @param genData GenericData to be added into PropertyMap
411 >     */
412 >    void addProperty(GenericData* genData);
413 >
414 >    /**
415 >     * Removes property from PropertyMap by name
416 >     * @param propName the name of property to be removed
417 >     */
418 >    void removeProperty(const std::string& propName);
419 >
420 >    /**
421 >     * clear all of the properties
422 >     */
423 >    void clearProperties();
424 >
425 >    /**
426 >     * Returns all names of properties
427 >     * @return all names of properties
428 >     */
429 >    std::vector<std::string> getPropertyNames();
430 >
431 >    /**
432 >     * Returns all of the properties in PropertyMap
433 >     * @return all of the properties in PropertyMap
434 >     */      
435 >    std::vector<GenericData*> getProperties();
436 >
437 >    /**
438 >     * Returns property
439 >     * @param propName name of property
440 >     * @return a pointer point to property with propName. If no property named propName
441 >     * exists, return NULL
442 >     */      
443 >    GenericData* getPropertyByName(const std::string& propName);
444 >
445 >    /**
446 >     * add all special interaction pairs (including excluded
447 >     * interactions) in a molecule into the appropriate lists.
448 >     */
449 >    void addInteractionPairs(Molecule* mol);
450 >
451 >    /**
452 >     * remove all special interaction pairs which belong to a molecule
453 >     * from the appropriate lists.
454 >     */
455 >    void removeInteractionPairs(Molecule* mol);
456 >
457 >
458 >    /** Returns the unique atom types of local processor in an array */
459 >    std::set<AtomType*> getUniqueAtomTypes();
460 >        
461 >    friend std::ostream& operator <<(std::ostream& o, SimInfo& info);
462 >
463 >    void getCutoff(RealType& rcut, RealType& rsw);
464 >        
465 >  private:
466 >
467 >    /** fill up the simtype struct*/
468 >    void setupSimType();
469 >
470 >    /**
471 >     * Setup Fortran Simulation
472 >     * @see #setupFortranParallel
473 >     */
474 >    void setupFortranSim();
475 >
476 >    /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
477 >    void setupCutoff();
478 >
479 >    /** Figure out which coulombic correction method to use and pass to fortran */
480 >    void setupElectrostaticSummationMethod( int isError );
481 >
482 >    /** Figure out which polynomial type to use for the switching function */
483 >    void setupSwitchingFunction();
484 >
485 >    /** Determine if we need to accumulate the simulation box dipole */
486 >    void setupAccumulateBoxDipole();
487 >
488 >    /** Calculates the number of degress of freedom in the whole system */
489 >    void calcNdf();
490 >    void calcNdfRaw();
491 >    void calcNdfTrans();
492 >
493 >    ForceField* forceField_;      
494 >    Globals* simParams_;
495 >
496 >    std::map<int, Molecule*>  molecules_; /**< Molecule array */
497 >
498 >    /**
499 >     * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
500 >     * system.
501 >     */
502 >    void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
503 >        
504 >    //degress of freedom
505 >    int ndf_;           /**< number of degress of freedom (excludes constraints),  ndf_ is local */
506 >    int fdf_local;       /**< number of frozen degrees of freedom */
507 >    int fdf_;            /**< number of frozen degrees of freedom */
508 >    int ndfRaw_;    /**< number of degress of freedom (includes constraints),  ndfRaw_ is local */
509 >    int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
510 >    int nZconstraint_; /** number of  z-constraint molecules, nZconstraint_ is global */
511 >        
512 >    //number of global objects
513 >    int nGlobalMols_;       /**< number of molecules in the system */
514 >    int nGlobalAtoms_;   /**< number of atoms in the system */
515 >    int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
516 >    int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
517 >    int nGlobalRigidBodies_; /**< number of rigid bodies in this system */
518 >    /**
519 >     * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
520 >     * corresponding content is the global index of cutoff group this atom belong to.
521 >     * It is filled by SimCreator once and only once, since it never changed during the simulation.
522 >     */
523 >    std::vector<int> globalGroupMembership_;
524 >
525 >    /**
526 >     * the size of globalMolMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
527 >     * corresponding content is the global index of molecule this atom belong to.
528 >     * It is filled by SimCreator once and only once, since it is never changed during the simulation.
529 >     */
530 >    std::vector<int> globalMolMembership_;        
531 >
532 >        
533 >    std::vector<int> molStampIds_;                                /**< stamp id array of all molecules in the system */
534 >    std::vector<MoleculeStamp*> moleculeStamps_;      /**< molecule stamps array */        
535 >        
536 >    //number of local objects
537 >    int nAtoms_;              /**< number of atoms in local processor */
538 >    int nBonds_;              /**< number of bonds in local processor */
539 >    int nBends_;              /**< number of bends in local processor */
540 >    int nTorsions_;           /**< number of torsions in local processor */
541 >    int nInversions_;         /**< number of inversions in local processor */
542 >    int nRigidBodies_;        /**< number of rigid bodies in local processor */
543 >    int nIntegrableObjects_;  /**< number of integrable objects in local processor */
544 >    int nCutoffGroups_;       /**< number of cutoff groups in local processor */
545 >    int nConstraints_;        /**< number of constraints in local processors */
546 >
547 >    simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
548 >    PairList excludedInteractions_;      
549 >    PairList oneTwoInteractions_;      
550 >    PairList oneThreeInteractions_;      
551 >    PairList oneFourInteractions_;      
552 >    PropertyMap properties_;                  /**< Generic Property */
553 >    SnapshotManager* sman_;               /**< SnapshotManager */
554 >
555 >    /**
556 >     * The reason to have a local index manager is that when molecule is migrating to other processors,
557 >     * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
558 >     * information of molecule migrating to current processor, Migrator class can query  the LocalIndexManager
559 >     * to make a efficient data moving plan.
560 >     */        
561 >    LocalIndexManager localIndexMan_;
562 >
563 >    // unparsed MetaData block for storing in Dump and EOR files:
564 >    std::string rawMetaData_;
565 >
566 >    //file names
567 >    std::string finalConfigFileName_;
568 >    std::string dumpFileName_;
569 >    std::string statFileName_;
570 >    std::string restFileName_;
571 >        
572 >    RealType rcut_;       /**< cutoff radius*/
573 >    RealType rsw_;        /**< radius of switching function*/
574 >    RealType rlist_;      /**< neighbor list radius */
575 >
576 >    int ljsp_; /**< use shifted potential for LJ*/
577 >    int ljsf_; /**< use shifted force for LJ*/
578 >
579 >    bool fortranInitialized_; /** flag to indicate whether the fortran side is initialized */
580 >    
581 >    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
582 >                            the simulation box dipole moment */
583 >    
584 >    bool useAtomicVirial_; /**< flag to indicate whether or not we use
585 >                              Atomic Virials to calculate the pressure */
586 >
587 >    public:
588 >     /**
589 >      * return an integral objects by its global index. In MPI version, if the StuntDouble with specified
590 >      * global index does not belong to local processor, a NULL will be return.
591 >      */
592 >      StuntDouble* getIOIndexToIntegrableObject(int index);
593 >      void setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v);
594 >    private:
595 >      std::vector<StuntDouble*> IOIndexToIntegrableObject;
596 >  //public:
597 >    //void setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v);
598 >    /**
599 >     * return a StuntDouble by its global index. In MPI version, if the StuntDouble with specified
600 >     * global index does not belong to local processor, a NULL will be return.
601 >     */
602 >    //StuntDouble* getStuntDoubleFromGlobalIndex(int index);
603 >  //private:
604 >    //std::vector<StuntDouble*> sdByGlobalIndex_;
605 >    
606 >    //in Parallel version, we need MolToProc
607 >  public:
608 >                
609 >    /**
610 >     * Finds the processor where a molecule resides
611 >     * @return the id of the processor which contains the molecule
612 >     * @param globalIndex global Index of the molecule
613 >     */
614 >    int getMolToProc(int globalIndex) {
615 >      //assert(globalIndex < molToProcMap_.size());
616 >      return molToProcMap_[globalIndex];
617 >    }
618 >
619 >    /**
620 >     * Set MolToProcMap array
621 >     * @see #SimCreator::divideMolecules
622 >     */
623 >    void setMolToProcMap(const std::vector<int>& molToProcMap) {
624 >      molToProcMap_ = molToProcMap;
625 >    }
626 >        
627 >  private:
628 >
629 >    void setupFortranParallel();
630 >        
631 >    /**
632 >     * The size of molToProcMap_ is equal to total number of molecules
633 >     * in the system.  It maps a molecule to the processor on which it
634 >     * resides. it is filled by SimCreator once and only once.
635 >     */        
636 >    std::vector<int> molToProcMap_;
637 >
638 >
639 >  };
640 >
641 > } //namespace OpenMD
642 > #endif //BRAINS_SIMMODEL_HPP
643 >

Comparing:
trunk/src/brains/SimInfo.hpp (property svn:keywords), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/brains/SimInfo.hpp (property svn:keywords), Revision 1503 by gezelter, Sat Oct 2 19:54:41 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines