ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
Revision: 1744
Committed: Tue Jun 5 18:07:08 2012 UTC (12 years, 10 months ago) by gezelter
File size: 39659 byte(s)
Log Message:
Fixes for minimization

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 /**
44 * @file SimInfo.cpp
45 * @author tlin
46 * @date 11/02/2004
47 * @version 1.0
48 */
49
50 #include <algorithm>
51 #include <set>
52 #include <map>
53
54 #include "brains/SimInfo.hpp"
55 #include "math/Vector3.hpp"
56 #include "primitives/Molecule.hpp"
57 #include "primitives/StuntDouble.hpp"
58 #include "utils/MemoryUtils.hpp"
59 #include "utils/simError.h"
60 #include "selection/SelectionManager.hpp"
61 #include "io/ForceFieldOptions.hpp"
62 #include "brains/ForceField.hpp"
63 #include "nonbonded/SwitchingFunction.hpp"
64 #ifdef IS_MPI
65 #include <mpi.h>
66 #endif
67
68 using namespace std;
69 namespace OpenMD {
70
71 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 forceField_(ff), simParams_(simParams),
73 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
77 nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 calcBoxDipole_(false), useAtomicVirial_(true) {
80
81 MoleculeStamp* molStamp;
82 int nMolWithSameStamp;
83 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 int nGroups = 0; //total cutoff groups defined in meta-data file
85 CutoffGroupStamp* cgStamp;
86 RigidBodyStamp* rbStamp;
87 int nRigidAtoms = 0;
88
89 vector<Component*> components = simParams->getComponents();
90
91 for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 molStamp = (*i)->getMoleculeStamp();
93 nMolWithSameStamp = (*i)->getNMol();
94
95 addMoleculeStamp(molStamp, nMolWithSameStamp);
96
97 //calculate atoms in molecules
98 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
99
100 //calculate atoms in cutoff groups
101 int nAtomsInGroups = 0;
102 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103
104 for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 cgStamp = molStamp->getCutoffGroupStamp(j);
106 nAtomsInGroups += cgStamp->getNMembers();
107 }
108
109 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110
111 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
112
113 //calculate atoms in rigid bodies
114 int nAtomsInRigidBodies = 0;
115 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116
117 for (int j=0; j < nRigidBodiesInStamp; j++) {
118 rbStamp = molStamp->getRigidBodyStamp(j);
119 nAtomsInRigidBodies += rbStamp->getNMembers();
120 }
121
122 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
124
125 }
126
127 //every free atom (atom does not belong to cutoff groups) is a cutoff
128 //group therefore the total number of cutoff groups in the system is
129 //equal to the total number of atoms minus number of atoms belong to
130 //cutoff group defined in meta-data file plus the number of cutoff
131 //groups defined in meta-data file
132
133 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134
135 //every free atom (atom does not belong to rigid bodies) is an
136 //integrable object therefore the total number of integrable objects
137 //in the system is equal to the total number of atoms minus number of
138 //atoms belong to rigid body defined in meta-data file plus the number
139 //of rigid bodies defined in meta-data file
140 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 + nGlobalRigidBodies_;
142
143 nGlobalMols_ = molStampIds_.size();
144 molToProcMap_.resize(nGlobalMols_);
145 }
146
147 SimInfo::~SimInfo() {
148 map<int, Molecule*>::iterator i;
149 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150 delete i->second;
151 }
152 molecules_.clear();
153
154 delete sman_;
155 delete simParams_;
156 delete forceField_;
157 }
158
159
160 bool SimInfo::addMolecule(Molecule* mol) {
161 MoleculeIterator i;
162
163 i = molecules_.find(mol->getGlobalIndex());
164 if (i == molecules_.end() ) {
165
166 molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167
168 nAtoms_ += mol->getNAtoms();
169 nBonds_ += mol->getNBonds();
170 nBends_ += mol->getNBends();
171 nTorsions_ += mol->getNTorsions();
172 nInversions_ += mol->getNInversions();
173 nRigidBodies_ += mol->getNRigidBodies();
174 nIntegrableObjects_ += mol->getNIntegrableObjects();
175 nCutoffGroups_ += mol->getNCutoffGroups();
176 nConstraints_ += mol->getNConstraintPairs();
177
178 addInteractionPairs(mol);
179
180 return true;
181 } else {
182 return false;
183 }
184 }
185
186 bool SimInfo::removeMolecule(Molecule* mol) {
187 MoleculeIterator i;
188 i = molecules_.find(mol->getGlobalIndex());
189
190 if (i != molecules_.end() ) {
191
192 assert(mol == i->second);
193
194 nAtoms_ -= mol->getNAtoms();
195 nBonds_ -= mol->getNBonds();
196 nBends_ -= mol->getNBends();
197 nTorsions_ -= mol->getNTorsions();
198 nInversions_ -= mol->getNInversions();
199 nRigidBodies_ -= mol->getNRigidBodies();
200 nIntegrableObjects_ -= mol->getNIntegrableObjects();
201 nCutoffGroups_ -= mol->getNCutoffGroups();
202 nConstraints_ -= mol->getNConstraintPairs();
203
204 removeInteractionPairs(mol);
205 molecules_.erase(mol->getGlobalIndex());
206
207 delete mol;
208
209 return true;
210 } else {
211 return false;
212 }
213 }
214
215
216 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
217 i = molecules_.begin();
218 return i == molecules_.end() ? NULL : i->second;
219 }
220
221 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
222 ++i;
223 return i == molecules_.end() ? NULL : i->second;
224 }
225
226
227 void SimInfo::calcNdf() {
228 int ndf_local, nfq_local;
229 MoleculeIterator i;
230 vector<StuntDouble*>::iterator j;
231 vector<Atom*>::iterator k;
232
233 Molecule* mol;
234 StuntDouble* integrableObject;
235 Atom* atom;
236
237 ndf_local = 0;
238 nfq_local = 0;
239
240 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
242 integrableObject = mol->nextIntegrableObject(j)) {
243
244 ndf_local += 3;
245
246 if (integrableObject->isDirectional()) {
247 if (integrableObject->isLinear()) {
248 ndf_local += 2;
249 } else {
250 ndf_local += 3;
251 }
252 }
253 }
254 for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 atom = mol->nextFluctuatingCharge(k)) {
256 if (atom->isFluctuatingCharge()) {
257 nfq_local++;
258 }
259 }
260 }
261
262 ndfLocal_ = ndf_local;
263 cerr << "ndfLocal_ = " << ndfLocal_ << "\n";
264
265 // n_constraints is local, so subtract them on each processor
266 ndf_local -= nConstraints_;
267
268 #ifdef IS_MPI
269 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
270 MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
271 #else
272 ndf_ = ndf_local;
273 nGlobalFluctuatingCharges_ = nfq_local;
274 #endif
275
276 // nZconstraints_ is global, as are the 3 COM translations for the
277 // entire system:
278 ndf_ = ndf_ - 3 - nZconstraint_;
279
280 }
281
282 int SimInfo::getFdf() {
283 #ifdef IS_MPI
284 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
285 #else
286 fdf_ = fdf_local;
287 #endif
288 return fdf_;
289 }
290
291 unsigned int SimInfo::getNLocalCutoffGroups(){
292 int nLocalCutoffAtoms = 0;
293 Molecule* mol;
294 MoleculeIterator mi;
295 CutoffGroup* cg;
296 Molecule::CutoffGroupIterator ci;
297
298 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
299
300 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
301 cg = mol->nextCutoffGroup(ci)) {
302 nLocalCutoffAtoms += cg->getNumAtom();
303
304 }
305 }
306
307 return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
308 }
309
310 void SimInfo::calcNdfRaw() {
311 int ndfRaw_local;
312
313 MoleculeIterator i;
314 vector<StuntDouble*>::iterator j;
315 Molecule* mol;
316 StuntDouble* integrableObject;
317
318 // Raw degrees of freedom that we have to set
319 ndfRaw_local = 0;
320
321 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
322 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
323 integrableObject = mol->nextIntegrableObject(j)) {
324
325 ndfRaw_local += 3;
326
327 if (integrableObject->isDirectional()) {
328 if (integrableObject->isLinear()) {
329 ndfRaw_local += 2;
330 } else {
331 ndfRaw_local += 3;
332 }
333 }
334
335 }
336 }
337
338 #ifdef IS_MPI
339 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
340 #else
341 ndfRaw_ = ndfRaw_local;
342 #endif
343 }
344
345 void SimInfo::calcNdfTrans() {
346 int ndfTrans_local;
347
348 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
349
350
351 #ifdef IS_MPI
352 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
353 #else
354 ndfTrans_ = ndfTrans_local;
355 #endif
356
357 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
358
359 }
360
361 void SimInfo::addInteractionPairs(Molecule* mol) {
362 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
363 vector<Bond*>::iterator bondIter;
364 vector<Bend*>::iterator bendIter;
365 vector<Torsion*>::iterator torsionIter;
366 vector<Inversion*>::iterator inversionIter;
367 Bond* bond;
368 Bend* bend;
369 Torsion* torsion;
370 Inversion* inversion;
371 int a;
372 int b;
373 int c;
374 int d;
375
376 // atomGroups can be used to add special interaction maps between
377 // groups of atoms that are in two separate rigid bodies.
378 // However, most site-site interactions between two rigid bodies
379 // are probably not special, just the ones between the physically
380 // bonded atoms. Interactions *within* a single rigid body should
381 // always be excluded. These are done at the bottom of this
382 // function.
383
384 map<int, set<int> > atomGroups;
385 Molecule::RigidBodyIterator rbIter;
386 RigidBody* rb;
387 Molecule::IntegrableObjectIterator ii;
388 StuntDouble* integrableObject;
389
390 for (integrableObject = mol->beginIntegrableObject(ii);
391 integrableObject != NULL;
392 integrableObject = mol->nextIntegrableObject(ii)) {
393
394 if (integrableObject->isRigidBody()) {
395 rb = static_cast<RigidBody*>(integrableObject);
396 vector<Atom*> atoms = rb->getAtoms();
397 set<int> rigidAtoms;
398 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
399 rigidAtoms.insert(atoms[i]->getGlobalIndex());
400 }
401 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
402 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
403 }
404 } else {
405 set<int> oneAtomSet;
406 oneAtomSet.insert(integrableObject->getGlobalIndex());
407 atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
408 }
409 }
410
411 for (bond= mol->beginBond(bondIter); bond != NULL;
412 bond = mol->nextBond(bondIter)) {
413
414 a = bond->getAtomA()->getGlobalIndex();
415 b = bond->getAtomB()->getGlobalIndex();
416
417 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
418 oneTwoInteractions_.addPair(a, b);
419 } else {
420 excludedInteractions_.addPair(a, b);
421 }
422 }
423
424 for (bend= mol->beginBend(bendIter); bend != NULL;
425 bend = mol->nextBend(bendIter)) {
426
427 a = bend->getAtomA()->getGlobalIndex();
428 b = bend->getAtomB()->getGlobalIndex();
429 c = bend->getAtomC()->getGlobalIndex();
430
431 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
432 oneTwoInteractions_.addPair(a, b);
433 oneTwoInteractions_.addPair(b, c);
434 } else {
435 excludedInteractions_.addPair(a, b);
436 excludedInteractions_.addPair(b, c);
437 }
438
439 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
440 oneThreeInteractions_.addPair(a, c);
441 } else {
442 excludedInteractions_.addPair(a, c);
443 }
444 }
445
446 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
447 torsion = mol->nextTorsion(torsionIter)) {
448
449 a = torsion->getAtomA()->getGlobalIndex();
450 b = torsion->getAtomB()->getGlobalIndex();
451 c = torsion->getAtomC()->getGlobalIndex();
452 d = torsion->getAtomD()->getGlobalIndex();
453
454 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
455 oneTwoInteractions_.addPair(a, b);
456 oneTwoInteractions_.addPair(b, c);
457 oneTwoInteractions_.addPair(c, d);
458 } else {
459 excludedInteractions_.addPair(a, b);
460 excludedInteractions_.addPair(b, c);
461 excludedInteractions_.addPair(c, d);
462 }
463
464 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
465 oneThreeInteractions_.addPair(a, c);
466 oneThreeInteractions_.addPair(b, d);
467 } else {
468 excludedInteractions_.addPair(a, c);
469 excludedInteractions_.addPair(b, d);
470 }
471
472 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
473 oneFourInteractions_.addPair(a, d);
474 } else {
475 excludedInteractions_.addPair(a, d);
476 }
477 }
478
479 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
480 inversion = mol->nextInversion(inversionIter)) {
481
482 a = inversion->getAtomA()->getGlobalIndex();
483 b = inversion->getAtomB()->getGlobalIndex();
484 c = inversion->getAtomC()->getGlobalIndex();
485 d = inversion->getAtomD()->getGlobalIndex();
486
487 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
488 oneTwoInteractions_.addPair(a, b);
489 oneTwoInteractions_.addPair(a, c);
490 oneTwoInteractions_.addPair(a, d);
491 } else {
492 excludedInteractions_.addPair(a, b);
493 excludedInteractions_.addPair(a, c);
494 excludedInteractions_.addPair(a, d);
495 }
496
497 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
498 oneThreeInteractions_.addPair(b, c);
499 oneThreeInteractions_.addPair(b, d);
500 oneThreeInteractions_.addPair(c, d);
501 } else {
502 excludedInteractions_.addPair(b, c);
503 excludedInteractions_.addPair(b, d);
504 excludedInteractions_.addPair(c, d);
505 }
506 }
507
508 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
509 rb = mol->nextRigidBody(rbIter)) {
510 vector<Atom*> atoms = rb->getAtoms();
511 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
512 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
513 a = atoms[i]->getGlobalIndex();
514 b = atoms[j]->getGlobalIndex();
515 excludedInteractions_.addPair(a, b);
516 }
517 }
518 }
519
520 }
521
522 void SimInfo::removeInteractionPairs(Molecule* mol) {
523 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
524 vector<Bond*>::iterator bondIter;
525 vector<Bend*>::iterator bendIter;
526 vector<Torsion*>::iterator torsionIter;
527 vector<Inversion*>::iterator inversionIter;
528 Bond* bond;
529 Bend* bend;
530 Torsion* torsion;
531 Inversion* inversion;
532 int a;
533 int b;
534 int c;
535 int d;
536
537 map<int, set<int> > atomGroups;
538 Molecule::RigidBodyIterator rbIter;
539 RigidBody* rb;
540 Molecule::IntegrableObjectIterator ii;
541 StuntDouble* integrableObject;
542
543 for (integrableObject = mol->beginIntegrableObject(ii);
544 integrableObject != NULL;
545 integrableObject = mol->nextIntegrableObject(ii)) {
546
547 if (integrableObject->isRigidBody()) {
548 rb = static_cast<RigidBody*>(integrableObject);
549 vector<Atom*> atoms = rb->getAtoms();
550 set<int> rigidAtoms;
551 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
552 rigidAtoms.insert(atoms[i]->getGlobalIndex());
553 }
554 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
555 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
556 }
557 } else {
558 set<int> oneAtomSet;
559 oneAtomSet.insert(integrableObject->getGlobalIndex());
560 atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
561 }
562 }
563
564 for (bond= mol->beginBond(bondIter); bond != NULL;
565 bond = mol->nextBond(bondIter)) {
566
567 a = bond->getAtomA()->getGlobalIndex();
568 b = bond->getAtomB()->getGlobalIndex();
569
570 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
571 oneTwoInteractions_.removePair(a, b);
572 } else {
573 excludedInteractions_.removePair(a, b);
574 }
575 }
576
577 for (bend= mol->beginBend(bendIter); bend != NULL;
578 bend = mol->nextBend(bendIter)) {
579
580 a = bend->getAtomA()->getGlobalIndex();
581 b = bend->getAtomB()->getGlobalIndex();
582 c = bend->getAtomC()->getGlobalIndex();
583
584 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
585 oneTwoInteractions_.removePair(a, b);
586 oneTwoInteractions_.removePair(b, c);
587 } else {
588 excludedInteractions_.removePair(a, b);
589 excludedInteractions_.removePair(b, c);
590 }
591
592 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
593 oneThreeInteractions_.removePair(a, c);
594 } else {
595 excludedInteractions_.removePair(a, c);
596 }
597 }
598
599 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
600 torsion = mol->nextTorsion(torsionIter)) {
601
602 a = torsion->getAtomA()->getGlobalIndex();
603 b = torsion->getAtomB()->getGlobalIndex();
604 c = torsion->getAtomC()->getGlobalIndex();
605 d = torsion->getAtomD()->getGlobalIndex();
606
607 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
608 oneTwoInteractions_.removePair(a, b);
609 oneTwoInteractions_.removePair(b, c);
610 oneTwoInteractions_.removePair(c, d);
611 } else {
612 excludedInteractions_.removePair(a, b);
613 excludedInteractions_.removePair(b, c);
614 excludedInteractions_.removePair(c, d);
615 }
616
617 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
618 oneThreeInteractions_.removePair(a, c);
619 oneThreeInteractions_.removePair(b, d);
620 } else {
621 excludedInteractions_.removePair(a, c);
622 excludedInteractions_.removePair(b, d);
623 }
624
625 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
626 oneFourInteractions_.removePair(a, d);
627 } else {
628 excludedInteractions_.removePair(a, d);
629 }
630 }
631
632 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
633 inversion = mol->nextInversion(inversionIter)) {
634
635 a = inversion->getAtomA()->getGlobalIndex();
636 b = inversion->getAtomB()->getGlobalIndex();
637 c = inversion->getAtomC()->getGlobalIndex();
638 d = inversion->getAtomD()->getGlobalIndex();
639
640 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
641 oneTwoInteractions_.removePair(a, b);
642 oneTwoInteractions_.removePair(a, c);
643 oneTwoInteractions_.removePair(a, d);
644 } else {
645 excludedInteractions_.removePair(a, b);
646 excludedInteractions_.removePair(a, c);
647 excludedInteractions_.removePair(a, d);
648 }
649
650 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
651 oneThreeInteractions_.removePair(b, c);
652 oneThreeInteractions_.removePair(b, d);
653 oneThreeInteractions_.removePair(c, d);
654 } else {
655 excludedInteractions_.removePair(b, c);
656 excludedInteractions_.removePair(b, d);
657 excludedInteractions_.removePair(c, d);
658 }
659 }
660
661 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
662 rb = mol->nextRigidBody(rbIter)) {
663 vector<Atom*> atoms = rb->getAtoms();
664 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
665 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
666 a = atoms[i]->getGlobalIndex();
667 b = atoms[j]->getGlobalIndex();
668 excludedInteractions_.removePair(a, b);
669 }
670 }
671 }
672
673 }
674
675
676 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
677 int curStampId;
678
679 //index from 0
680 curStampId = moleculeStamps_.size();
681
682 moleculeStamps_.push_back(molStamp);
683 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
684 }
685
686
687 /**
688 * update
689 *
690 * Performs the global checks and variable settings after the
691 * objects have been created.
692 *
693 */
694 void SimInfo::update() {
695 setupSimVariables();
696 calcNdf();
697 calcNdfRaw();
698 calcNdfTrans();
699 }
700
701 /**
702 * getSimulatedAtomTypes
703 *
704 * Returns an STL set of AtomType* that are actually present in this
705 * simulation. Must query all processors to assemble this information.
706 *
707 */
708 set<AtomType*> SimInfo::getSimulatedAtomTypes() {
709 SimInfo::MoleculeIterator mi;
710 Molecule* mol;
711 Molecule::AtomIterator ai;
712 Atom* atom;
713 set<AtomType*> atomTypes;
714
715 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
716 for(atom = mol->beginAtom(ai); atom != NULL;
717 atom = mol->nextAtom(ai)) {
718 atomTypes.insert(atom->getAtomType());
719 }
720 }
721
722 #ifdef IS_MPI
723
724 // loop over the found atom types on this processor, and add their
725 // numerical idents to a vector:
726
727 vector<int> foundTypes;
728 set<AtomType*>::iterator i;
729 for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
730 foundTypes.push_back( (*i)->getIdent() );
731
732 // count_local holds the number of found types on this processor
733 int count_local = foundTypes.size();
734
735 int nproc = MPI::COMM_WORLD.Get_size();
736
737 // we need arrays to hold the counts and displacement vectors for
738 // all processors
739 vector<int> counts(nproc, 0);
740 vector<int> disps(nproc, 0);
741
742 // fill the counts array
743 MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
744 1, MPI::INT);
745
746 // use the processor counts to compute the displacement array
747 disps[0] = 0;
748 int totalCount = counts[0];
749 for (int iproc = 1; iproc < nproc; iproc++) {
750 disps[iproc] = disps[iproc-1] + counts[iproc-1];
751 totalCount += counts[iproc];
752 }
753
754 // we need a (possibly redundant) set of all found types:
755 vector<int> ftGlobal(totalCount);
756
757 // now spray out the foundTypes to all the other processors:
758 MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
759 &ftGlobal[0], &counts[0], &disps[0],
760 MPI::INT);
761
762 vector<int>::iterator j;
763
764 // foundIdents is a stl set, so inserting an already found ident
765 // will have no effect.
766 set<int> foundIdents;
767
768 for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
769 foundIdents.insert((*j));
770
771 // now iterate over the foundIdents and get the actual atom types
772 // that correspond to these:
773 set<int>::iterator it;
774 for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
775 atomTypes.insert( forceField_->getAtomType((*it)) );
776
777 #endif
778
779 return atomTypes;
780 }
781
782 void SimInfo::setupSimVariables() {
783 useAtomicVirial_ = simParams_->getUseAtomicVirial();
784 // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
785 calcBoxDipole_ = false;
786 if ( simParams_->haveAccumulateBoxDipole() )
787 if ( simParams_->getAccumulateBoxDipole() ) {
788 calcBoxDipole_ = true;
789 }
790
791 set<AtomType*>::iterator i;
792 set<AtomType*> atomTypes;
793 atomTypes = getSimulatedAtomTypes();
794 int usesElectrostatic = 0;
795 int usesMetallic = 0;
796 int usesDirectional = 0;
797 int usesFluctuatingCharges = 0;
798 //loop over all of the atom types
799 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
800 usesElectrostatic |= (*i)->isElectrostatic();
801 usesMetallic |= (*i)->isMetal();
802 usesDirectional |= (*i)->isDirectional();
803 usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
804 }
805
806 #ifdef IS_MPI
807 int temp;
808 temp = usesDirectional;
809 MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
810
811 temp = usesMetallic;
812 MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
813
814 temp = usesElectrostatic;
815 MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
816
817 temp = usesFluctuatingCharges;
818 MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
819 #else
820
821 usesDirectionalAtoms_ = usesDirectional;
822 usesMetallicAtoms_ = usesMetallic;
823 usesElectrostaticAtoms_ = usesElectrostatic;
824 usesFluctuatingCharges_ = usesFluctuatingCharges;
825
826 #endif
827
828 requiresPrepair_ = usesMetallicAtoms_ ? true : false;
829 requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
830 requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;
831 }
832
833
834 vector<int> SimInfo::getGlobalAtomIndices() {
835 SimInfo::MoleculeIterator mi;
836 Molecule* mol;
837 Molecule::AtomIterator ai;
838 Atom* atom;
839
840 vector<int> GlobalAtomIndices(getNAtoms(), 0);
841
842 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
843
844 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
845 GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
846 }
847 }
848 return GlobalAtomIndices;
849 }
850
851
852 vector<int> SimInfo::getGlobalGroupIndices() {
853 SimInfo::MoleculeIterator mi;
854 Molecule* mol;
855 Molecule::CutoffGroupIterator ci;
856 CutoffGroup* cg;
857
858 vector<int> GlobalGroupIndices;
859
860 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
861
862 //local index of cutoff group is trivial, it only depends on the
863 //order of travesing
864 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
865 cg = mol->nextCutoffGroup(ci)) {
866 GlobalGroupIndices.push_back(cg->getGlobalIndex());
867 }
868 }
869 return GlobalGroupIndices;
870 }
871
872
873 void SimInfo::prepareTopology() {
874 int nExclude, nOneTwo, nOneThree, nOneFour;
875
876 //calculate mass ratio of cutoff group
877 SimInfo::MoleculeIterator mi;
878 Molecule* mol;
879 Molecule::CutoffGroupIterator ci;
880 CutoffGroup* cg;
881 Molecule::AtomIterator ai;
882 Atom* atom;
883 RealType totalMass;
884
885 /**
886 * The mass factor is the relative mass of an atom to the total
887 * mass of the cutoff group it belongs to. By default, all atoms
888 * are their own cutoff groups, and therefore have mass factors of
889 * 1. We need some special handling for massless atoms, which
890 * will be treated as carrying the entire mass of the cutoff
891 * group.
892 */
893 massFactors_.clear();
894 massFactors_.resize(getNAtoms(), 1.0);
895
896 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
897 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
898 cg = mol->nextCutoffGroup(ci)) {
899
900 totalMass = cg->getMass();
901 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
902 // Check for massless groups - set mfact to 1 if true
903 if (totalMass != 0)
904 massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
905 else
906 massFactors_[atom->getLocalIndex()] = 1.0;
907 }
908 }
909 }
910
911 // Build the identArray_
912
913 identArray_.clear();
914 identArray_.reserve(getNAtoms());
915 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
916 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
917 identArray_.push_back(atom->getIdent());
918 }
919 }
920
921 //scan topology
922
923 nExclude = excludedInteractions_.getSize();
924 nOneTwo = oneTwoInteractions_.getSize();
925 nOneThree = oneThreeInteractions_.getSize();
926 nOneFour = oneFourInteractions_.getSize();
927
928 int* excludeList = excludedInteractions_.getPairList();
929 int* oneTwoList = oneTwoInteractions_.getPairList();
930 int* oneThreeList = oneThreeInteractions_.getPairList();
931 int* oneFourList = oneFourInteractions_.getPairList();
932
933 topologyDone_ = true;
934 }
935
936 void SimInfo::addProperty(GenericData* genData) {
937 properties_.addProperty(genData);
938 }
939
940 void SimInfo::removeProperty(const string& propName) {
941 properties_.removeProperty(propName);
942 }
943
944 void SimInfo::clearProperties() {
945 properties_.clearProperties();
946 }
947
948 vector<string> SimInfo::getPropertyNames() {
949 return properties_.getPropertyNames();
950 }
951
952 vector<GenericData*> SimInfo::getProperties() {
953 return properties_.getProperties();
954 }
955
956 GenericData* SimInfo::getPropertyByName(const string& propName) {
957 return properties_.getPropertyByName(propName);
958 }
959
960 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
961 if (sman_ == sman) {
962 return;
963 }
964 delete sman_;
965 sman_ = sman;
966
967 Molecule* mol;
968 RigidBody* rb;
969 Atom* atom;
970 CutoffGroup* cg;
971 SimInfo::MoleculeIterator mi;
972 Molecule::RigidBodyIterator rbIter;
973 Molecule::AtomIterator atomIter;
974 Molecule::CutoffGroupIterator cgIter;
975
976 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
977
978 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
979 atom->setSnapshotManager(sman_);
980 }
981
982 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
983 rb->setSnapshotManager(sman_);
984 }
985
986 for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
987 cg->setSnapshotManager(sman_);
988 }
989 }
990
991 }
992
993 Vector3d SimInfo::getComVel(){
994 SimInfo::MoleculeIterator i;
995 Molecule* mol;
996
997 Vector3d comVel(0.0);
998 RealType totalMass = 0.0;
999
1000
1001 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1002 RealType mass = mol->getMass();
1003 totalMass += mass;
1004 comVel += mass * mol->getComVel();
1005 }
1006
1007 #ifdef IS_MPI
1008 RealType tmpMass = totalMass;
1009 Vector3d tmpComVel(comVel);
1010 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1011 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1012 #endif
1013
1014 comVel /= totalMass;
1015
1016 return comVel;
1017 }
1018
1019 Vector3d SimInfo::getCom(){
1020 SimInfo::MoleculeIterator i;
1021 Molecule* mol;
1022
1023 Vector3d com(0.0);
1024 RealType totalMass = 0.0;
1025
1026 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1027 RealType mass = mol->getMass();
1028 totalMass += mass;
1029 com += mass * mol->getCom();
1030 }
1031
1032 #ifdef IS_MPI
1033 RealType tmpMass = totalMass;
1034 Vector3d tmpCom(com);
1035 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1036 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1037 #endif
1038
1039 com /= totalMass;
1040
1041 return com;
1042
1043 }
1044
1045 ostream& operator <<(ostream& o, SimInfo& info) {
1046
1047 return o;
1048 }
1049
1050
1051 /*
1052 Returns center of mass and center of mass velocity in one function call.
1053 */
1054
1055 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1056 SimInfo::MoleculeIterator i;
1057 Molecule* mol;
1058
1059
1060 RealType totalMass = 0.0;
1061
1062
1063 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1064 RealType mass = mol->getMass();
1065 totalMass += mass;
1066 com += mass * mol->getCom();
1067 comVel += mass * mol->getComVel();
1068 }
1069
1070 #ifdef IS_MPI
1071 RealType tmpMass = totalMass;
1072 Vector3d tmpCom(com);
1073 Vector3d tmpComVel(comVel);
1074 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1075 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1076 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1077 #endif
1078
1079 com /= totalMass;
1080 comVel /= totalMass;
1081 }
1082
1083 /*
1084 Return intertia tensor for entire system and angular momentum Vector.
1085
1086
1087 [ Ixx -Ixy -Ixz ]
1088 J =| -Iyx Iyy -Iyz |
1089 [ -Izx -Iyz Izz ]
1090 */
1091
1092 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1093
1094
1095 RealType xx = 0.0;
1096 RealType yy = 0.0;
1097 RealType zz = 0.0;
1098 RealType xy = 0.0;
1099 RealType xz = 0.0;
1100 RealType yz = 0.0;
1101 Vector3d com(0.0);
1102 Vector3d comVel(0.0);
1103
1104 getComAll(com, comVel);
1105
1106 SimInfo::MoleculeIterator i;
1107 Molecule* mol;
1108
1109 Vector3d thisq(0.0);
1110 Vector3d thisv(0.0);
1111
1112 RealType thisMass = 0.0;
1113
1114
1115
1116
1117 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1118
1119 thisq = mol->getCom()-com;
1120 thisv = mol->getComVel()-comVel;
1121 thisMass = mol->getMass();
1122 // Compute moment of intertia coefficients.
1123 xx += thisq[0]*thisq[0]*thisMass;
1124 yy += thisq[1]*thisq[1]*thisMass;
1125 zz += thisq[2]*thisq[2]*thisMass;
1126
1127 // compute products of intertia
1128 xy += thisq[0]*thisq[1]*thisMass;
1129 xz += thisq[0]*thisq[2]*thisMass;
1130 yz += thisq[1]*thisq[2]*thisMass;
1131
1132 angularMomentum += cross( thisq, thisv ) * thisMass;
1133
1134 }
1135
1136
1137 inertiaTensor(0,0) = yy + zz;
1138 inertiaTensor(0,1) = -xy;
1139 inertiaTensor(0,2) = -xz;
1140 inertiaTensor(1,0) = -xy;
1141 inertiaTensor(1,1) = xx + zz;
1142 inertiaTensor(1,2) = -yz;
1143 inertiaTensor(2,0) = -xz;
1144 inertiaTensor(2,1) = -yz;
1145 inertiaTensor(2,2) = xx + yy;
1146
1147 #ifdef IS_MPI
1148 Mat3x3d tmpI(inertiaTensor);
1149 Vector3d tmpAngMom;
1150 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1151 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1152 #endif
1153
1154 return;
1155 }
1156
1157 //Returns the angular momentum of the system
1158 Vector3d SimInfo::getAngularMomentum(){
1159
1160 Vector3d com(0.0);
1161 Vector3d comVel(0.0);
1162 Vector3d angularMomentum(0.0);
1163
1164 getComAll(com,comVel);
1165
1166 SimInfo::MoleculeIterator i;
1167 Molecule* mol;
1168
1169 Vector3d thisr(0.0);
1170 Vector3d thisp(0.0);
1171
1172 RealType thisMass;
1173
1174 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1175 thisMass = mol->getMass();
1176 thisr = mol->getCom()-com;
1177 thisp = (mol->getComVel()-comVel)*thisMass;
1178
1179 angularMomentum += cross( thisr, thisp );
1180
1181 }
1182
1183 #ifdef IS_MPI
1184 Vector3d tmpAngMom;
1185 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1186 #endif
1187
1188 return angularMomentum;
1189 }
1190
1191 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1192 return IOIndexToIntegrableObject.at(index);
1193 }
1194
1195 void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1196 IOIndexToIntegrableObject= v;
1197 }
1198
1199 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1200 based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1201 where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1202 V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1203 */
1204 void SimInfo::getGyrationalVolume(RealType &volume){
1205 Mat3x3d intTensor;
1206 RealType det;
1207 Vector3d dummyAngMom;
1208 RealType sysconstants;
1209 RealType geomCnst;
1210
1211 geomCnst = 3.0/2.0;
1212 /* Get the inertial tensor and angular momentum for free*/
1213 getInertiaTensor(intTensor,dummyAngMom);
1214
1215 det = intTensor.determinant();
1216 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1217 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
1218 return;
1219 }
1220
1221 void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1222 Mat3x3d intTensor;
1223 Vector3d dummyAngMom;
1224 RealType sysconstants;
1225 RealType geomCnst;
1226
1227 geomCnst = 3.0/2.0;
1228 /* Get the inertial tensor and angular momentum for free*/
1229 getInertiaTensor(intTensor,dummyAngMom);
1230
1231 detI = intTensor.determinant();
1232 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1233 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
1234 return;
1235 }
1236 /*
1237 void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1238 assert( v.size() == nAtoms_ + nRigidBodies_);
1239 sdByGlobalIndex_ = v;
1240 }
1241
1242 StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1243 //assert(index < nAtoms_ + nRigidBodies_);
1244 return sdByGlobalIndex_.at(index);
1245 }
1246 */
1247 int SimInfo::getNGlobalConstraints() {
1248 int nGlobalConstraints;
1249 #ifdef IS_MPI
1250 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1251 MPI_COMM_WORLD);
1252 #else
1253 nGlobalConstraints = nConstraints_;
1254 #endif
1255 return nGlobalConstraints;
1256 }
1257
1258 }//end namespace OpenMD
1259

Properties

Name Value
svn:keywords Author Id Revision Date