1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file SimInfo.cpp |
44 |
* @author tlin |
45 |
* @date 11/02/2004 |
46 |
* @version 1.0 |
47 |
*/ |
48 |
|
49 |
#include <algorithm> |
50 |
#include <set> |
51 |
#include <map> |
52 |
|
53 |
#include "brains/SimInfo.hpp" |
54 |
#include "math/Vector3.hpp" |
55 |
#include "primitives/Molecule.hpp" |
56 |
#include "primitives/StuntDouble.hpp" |
57 |
#include "utils/MemoryUtils.hpp" |
58 |
#include "utils/simError.h" |
59 |
#include "selection/SelectionManager.hpp" |
60 |
#include "io/ForceFieldOptions.hpp" |
61 |
#include "UseTheForce/ForceField.hpp" |
62 |
#include "nonbonded/SwitchingFunction.hpp" |
63 |
#ifdef IS_MPI |
64 |
#include <mpi.h> |
65 |
#endif |
66 |
|
67 |
using namespace std; |
68 |
namespace OpenMD { |
69 |
|
70 |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
71 |
forceField_(ff), simParams_(simParams), |
72 |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
73 |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
74 |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
75 |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
76 |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
77 |
nConstraints_(0), sman_(NULL), topologyDone_(false), |
78 |
calcBoxDipole_(false), useAtomicVirial_(true) { |
79 |
|
80 |
MoleculeStamp* molStamp; |
81 |
int nMolWithSameStamp; |
82 |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
83 |
int nGroups = 0; //total cutoff groups defined in meta-data file |
84 |
CutoffGroupStamp* cgStamp; |
85 |
RigidBodyStamp* rbStamp; |
86 |
int nRigidAtoms = 0; |
87 |
|
88 |
vector<Component*> components = simParams->getComponents(); |
89 |
|
90 |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
91 |
molStamp = (*i)->getMoleculeStamp(); |
92 |
nMolWithSameStamp = (*i)->getNMol(); |
93 |
|
94 |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
95 |
|
96 |
//calculate atoms in molecules |
97 |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
98 |
|
99 |
//calculate atoms in cutoff groups |
100 |
int nAtomsInGroups = 0; |
101 |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
102 |
|
103 |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
104 |
cgStamp = molStamp->getCutoffGroupStamp(j); |
105 |
nAtomsInGroups += cgStamp->getNMembers(); |
106 |
} |
107 |
|
108 |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
109 |
|
110 |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
111 |
|
112 |
//calculate atoms in rigid bodies |
113 |
int nAtomsInRigidBodies = 0; |
114 |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
115 |
|
116 |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
117 |
rbStamp = molStamp->getRigidBodyStamp(j); |
118 |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
119 |
} |
120 |
|
121 |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
122 |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
123 |
|
124 |
} |
125 |
|
126 |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
127 |
//group therefore the total number of cutoff groups in the system is |
128 |
//equal to the total number of atoms minus number of atoms belong to |
129 |
//cutoff group defined in meta-data file plus the number of cutoff |
130 |
//groups defined in meta-data file |
131 |
|
132 |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
133 |
|
134 |
//every free atom (atom does not belong to rigid bodies) is an |
135 |
//integrable object therefore the total number of integrable objects |
136 |
//in the system is equal to the total number of atoms minus number of |
137 |
//atoms belong to rigid body defined in meta-data file plus the number |
138 |
//of rigid bodies defined in meta-data file |
139 |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
140 |
+ nGlobalRigidBodies_; |
141 |
|
142 |
nGlobalMols_ = molStampIds_.size(); |
143 |
molToProcMap_.resize(nGlobalMols_); |
144 |
} |
145 |
|
146 |
SimInfo::~SimInfo() { |
147 |
map<int, Molecule*>::iterator i; |
148 |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
149 |
delete i->second; |
150 |
} |
151 |
molecules_.clear(); |
152 |
|
153 |
delete sman_; |
154 |
delete simParams_; |
155 |
delete forceField_; |
156 |
} |
157 |
|
158 |
|
159 |
bool SimInfo::addMolecule(Molecule* mol) { |
160 |
MoleculeIterator i; |
161 |
|
162 |
i = molecules_.find(mol->getGlobalIndex()); |
163 |
if (i == molecules_.end() ) { |
164 |
|
165 |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
166 |
|
167 |
nAtoms_ += mol->getNAtoms(); |
168 |
nBonds_ += mol->getNBonds(); |
169 |
nBends_ += mol->getNBends(); |
170 |
nTorsions_ += mol->getNTorsions(); |
171 |
nInversions_ += mol->getNInversions(); |
172 |
nRigidBodies_ += mol->getNRigidBodies(); |
173 |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
174 |
nCutoffGroups_ += mol->getNCutoffGroups(); |
175 |
nConstraints_ += mol->getNConstraintPairs(); |
176 |
|
177 |
addInteractionPairs(mol); |
178 |
|
179 |
return true; |
180 |
} else { |
181 |
return false; |
182 |
} |
183 |
} |
184 |
|
185 |
bool SimInfo::removeMolecule(Molecule* mol) { |
186 |
MoleculeIterator i; |
187 |
i = molecules_.find(mol->getGlobalIndex()); |
188 |
|
189 |
if (i != molecules_.end() ) { |
190 |
|
191 |
assert(mol == i->second); |
192 |
|
193 |
nAtoms_ -= mol->getNAtoms(); |
194 |
nBonds_ -= mol->getNBonds(); |
195 |
nBends_ -= mol->getNBends(); |
196 |
nTorsions_ -= mol->getNTorsions(); |
197 |
nInversions_ -= mol->getNInversions(); |
198 |
nRigidBodies_ -= mol->getNRigidBodies(); |
199 |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
200 |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
201 |
nConstraints_ -= mol->getNConstraintPairs(); |
202 |
|
203 |
removeInteractionPairs(mol); |
204 |
molecules_.erase(mol->getGlobalIndex()); |
205 |
|
206 |
delete mol; |
207 |
|
208 |
return true; |
209 |
} else { |
210 |
return false; |
211 |
} |
212 |
} |
213 |
|
214 |
|
215 |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
216 |
i = molecules_.begin(); |
217 |
return i == molecules_.end() ? NULL : i->second; |
218 |
} |
219 |
|
220 |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
221 |
++i; |
222 |
return i == molecules_.end() ? NULL : i->second; |
223 |
} |
224 |
|
225 |
|
226 |
void SimInfo::calcNdf() { |
227 |
int ndf_local; |
228 |
MoleculeIterator i; |
229 |
vector<StuntDouble*>::iterator j; |
230 |
Molecule* mol; |
231 |
StuntDouble* integrableObject; |
232 |
|
233 |
ndf_local = 0; |
234 |
|
235 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
236 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
237 |
integrableObject = mol->nextIntegrableObject(j)) { |
238 |
|
239 |
ndf_local += 3; |
240 |
|
241 |
if (integrableObject->isDirectional()) { |
242 |
if (integrableObject->isLinear()) { |
243 |
ndf_local += 2; |
244 |
} else { |
245 |
ndf_local += 3; |
246 |
} |
247 |
} |
248 |
|
249 |
} |
250 |
} |
251 |
|
252 |
// n_constraints is local, so subtract them on each processor |
253 |
ndf_local -= nConstraints_; |
254 |
|
255 |
#ifdef IS_MPI |
256 |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
257 |
#else |
258 |
ndf_ = ndf_local; |
259 |
#endif |
260 |
|
261 |
// nZconstraints_ is global, as are the 3 COM translations for the |
262 |
// entire system: |
263 |
ndf_ = ndf_ - 3 - nZconstraint_; |
264 |
|
265 |
} |
266 |
|
267 |
int SimInfo::getFdf() { |
268 |
#ifdef IS_MPI |
269 |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
270 |
#else |
271 |
fdf_ = fdf_local; |
272 |
#endif |
273 |
return fdf_; |
274 |
} |
275 |
|
276 |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
277 |
int nLocalCutoffAtoms = 0; |
278 |
Molecule* mol; |
279 |
MoleculeIterator mi; |
280 |
CutoffGroup* cg; |
281 |
Molecule::CutoffGroupIterator ci; |
282 |
|
283 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
284 |
|
285 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
286 |
cg = mol->nextCutoffGroup(ci)) { |
287 |
nLocalCutoffAtoms += cg->getNumAtom(); |
288 |
|
289 |
} |
290 |
} |
291 |
|
292 |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
293 |
} |
294 |
|
295 |
void SimInfo::calcNdfRaw() { |
296 |
int ndfRaw_local; |
297 |
|
298 |
MoleculeIterator i; |
299 |
vector<StuntDouble*>::iterator j; |
300 |
Molecule* mol; |
301 |
StuntDouble* integrableObject; |
302 |
|
303 |
// Raw degrees of freedom that we have to set |
304 |
ndfRaw_local = 0; |
305 |
|
306 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
307 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
308 |
integrableObject = mol->nextIntegrableObject(j)) { |
309 |
|
310 |
ndfRaw_local += 3; |
311 |
|
312 |
if (integrableObject->isDirectional()) { |
313 |
if (integrableObject->isLinear()) { |
314 |
ndfRaw_local += 2; |
315 |
} else { |
316 |
ndfRaw_local += 3; |
317 |
} |
318 |
} |
319 |
|
320 |
} |
321 |
} |
322 |
|
323 |
#ifdef IS_MPI |
324 |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
325 |
#else |
326 |
ndfRaw_ = ndfRaw_local; |
327 |
#endif |
328 |
} |
329 |
|
330 |
void SimInfo::calcNdfTrans() { |
331 |
int ndfTrans_local; |
332 |
|
333 |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
334 |
|
335 |
|
336 |
#ifdef IS_MPI |
337 |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
338 |
#else |
339 |
ndfTrans_ = ndfTrans_local; |
340 |
#endif |
341 |
|
342 |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
343 |
|
344 |
} |
345 |
|
346 |
void SimInfo::addInteractionPairs(Molecule* mol) { |
347 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
348 |
vector<Bond*>::iterator bondIter; |
349 |
vector<Bend*>::iterator bendIter; |
350 |
vector<Torsion*>::iterator torsionIter; |
351 |
vector<Inversion*>::iterator inversionIter; |
352 |
Bond* bond; |
353 |
Bend* bend; |
354 |
Torsion* torsion; |
355 |
Inversion* inversion; |
356 |
int a; |
357 |
int b; |
358 |
int c; |
359 |
int d; |
360 |
|
361 |
// atomGroups can be used to add special interaction maps between |
362 |
// groups of atoms that are in two separate rigid bodies. |
363 |
// However, most site-site interactions between two rigid bodies |
364 |
// are probably not special, just the ones between the physically |
365 |
// bonded atoms. Interactions *within* a single rigid body should |
366 |
// always be excluded. These are done at the bottom of this |
367 |
// function. |
368 |
|
369 |
map<int, set<int> > atomGroups; |
370 |
Molecule::RigidBodyIterator rbIter; |
371 |
RigidBody* rb; |
372 |
Molecule::IntegrableObjectIterator ii; |
373 |
StuntDouble* integrableObject; |
374 |
|
375 |
for (integrableObject = mol->beginIntegrableObject(ii); |
376 |
integrableObject != NULL; |
377 |
integrableObject = mol->nextIntegrableObject(ii)) { |
378 |
|
379 |
if (integrableObject->isRigidBody()) { |
380 |
rb = static_cast<RigidBody*>(integrableObject); |
381 |
vector<Atom*> atoms = rb->getAtoms(); |
382 |
set<int> rigidAtoms; |
383 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
384 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
385 |
} |
386 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
387 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
388 |
} |
389 |
} else { |
390 |
set<int> oneAtomSet; |
391 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
392 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
393 |
} |
394 |
} |
395 |
|
396 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
397 |
bond = mol->nextBond(bondIter)) { |
398 |
|
399 |
a = bond->getAtomA()->getGlobalIndex(); |
400 |
b = bond->getAtomB()->getGlobalIndex(); |
401 |
|
402 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
403 |
oneTwoInteractions_.addPair(a, b); |
404 |
} else { |
405 |
excludedInteractions_.addPair(a, b); |
406 |
} |
407 |
} |
408 |
|
409 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
410 |
bend = mol->nextBend(bendIter)) { |
411 |
|
412 |
a = bend->getAtomA()->getGlobalIndex(); |
413 |
b = bend->getAtomB()->getGlobalIndex(); |
414 |
c = bend->getAtomC()->getGlobalIndex(); |
415 |
|
416 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
417 |
oneTwoInteractions_.addPair(a, b); |
418 |
oneTwoInteractions_.addPair(b, c); |
419 |
} else { |
420 |
excludedInteractions_.addPair(a, b); |
421 |
excludedInteractions_.addPair(b, c); |
422 |
} |
423 |
|
424 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
425 |
oneThreeInteractions_.addPair(a, c); |
426 |
} else { |
427 |
excludedInteractions_.addPair(a, c); |
428 |
} |
429 |
} |
430 |
|
431 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
432 |
torsion = mol->nextTorsion(torsionIter)) { |
433 |
|
434 |
a = torsion->getAtomA()->getGlobalIndex(); |
435 |
b = torsion->getAtomB()->getGlobalIndex(); |
436 |
c = torsion->getAtomC()->getGlobalIndex(); |
437 |
d = torsion->getAtomD()->getGlobalIndex(); |
438 |
|
439 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
440 |
oneTwoInteractions_.addPair(a, b); |
441 |
oneTwoInteractions_.addPair(b, c); |
442 |
oneTwoInteractions_.addPair(c, d); |
443 |
} else { |
444 |
excludedInteractions_.addPair(a, b); |
445 |
excludedInteractions_.addPair(b, c); |
446 |
excludedInteractions_.addPair(c, d); |
447 |
} |
448 |
|
449 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
450 |
oneThreeInteractions_.addPair(a, c); |
451 |
oneThreeInteractions_.addPair(b, d); |
452 |
} else { |
453 |
excludedInteractions_.addPair(a, c); |
454 |
excludedInteractions_.addPair(b, d); |
455 |
} |
456 |
|
457 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
458 |
oneFourInteractions_.addPair(a, d); |
459 |
} else { |
460 |
excludedInteractions_.addPair(a, d); |
461 |
} |
462 |
} |
463 |
|
464 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
465 |
inversion = mol->nextInversion(inversionIter)) { |
466 |
|
467 |
a = inversion->getAtomA()->getGlobalIndex(); |
468 |
b = inversion->getAtomB()->getGlobalIndex(); |
469 |
c = inversion->getAtomC()->getGlobalIndex(); |
470 |
d = inversion->getAtomD()->getGlobalIndex(); |
471 |
|
472 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
473 |
oneTwoInteractions_.addPair(a, b); |
474 |
oneTwoInteractions_.addPair(a, c); |
475 |
oneTwoInteractions_.addPair(a, d); |
476 |
} else { |
477 |
excludedInteractions_.addPair(a, b); |
478 |
excludedInteractions_.addPair(a, c); |
479 |
excludedInteractions_.addPair(a, d); |
480 |
} |
481 |
|
482 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
483 |
oneThreeInteractions_.addPair(b, c); |
484 |
oneThreeInteractions_.addPair(b, d); |
485 |
oneThreeInteractions_.addPair(c, d); |
486 |
} else { |
487 |
excludedInteractions_.addPair(b, c); |
488 |
excludedInteractions_.addPair(b, d); |
489 |
excludedInteractions_.addPair(c, d); |
490 |
} |
491 |
} |
492 |
|
493 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
494 |
rb = mol->nextRigidBody(rbIter)) { |
495 |
vector<Atom*> atoms = rb->getAtoms(); |
496 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
497 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
498 |
a = atoms[i]->getGlobalIndex(); |
499 |
b = atoms[j]->getGlobalIndex(); |
500 |
excludedInteractions_.addPair(a, b); |
501 |
} |
502 |
} |
503 |
} |
504 |
|
505 |
} |
506 |
|
507 |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
508 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
509 |
vector<Bond*>::iterator bondIter; |
510 |
vector<Bend*>::iterator bendIter; |
511 |
vector<Torsion*>::iterator torsionIter; |
512 |
vector<Inversion*>::iterator inversionIter; |
513 |
Bond* bond; |
514 |
Bend* bend; |
515 |
Torsion* torsion; |
516 |
Inversion* inversion; |
517 |
int a; |
518 |
int b; |
519 |
int c; |
520 |
int d; |
521 |
|
522 |
map<int, set<int> > atomGroups; |
523 |
Molecule::RigidBodyIterator rbIter; |
524 |
RigidBody* rb; |
525 |
Molecule::IntegrableObjectIterator ii; |
526 |
StuntDouble* integrableObject; |
527 |
|
528 |
for (integrableObject = mol->beginIntegrableObject(ii); |
529 |
integrableObject != NULL; |
530 |
integrableObject = mol->nextIntegrableObject(ii)) { |
531 |
|
532 |
if (integrableObject->isRigidBody()) { |
533 |
rb = static_cast<RigidBody*>(integrableObject); |
534 |
vector<Atom*> atoms = rb->getAtoms(); |
535 |
set<int> rigidAtoms; |
536 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
537 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
538 |
} |
539 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
540 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
541 |
} |
542 |
} else { |
543 |
set<int> oneAtomSet; |
544 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
545 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
546 |
} |
547 |
} |
548 |
|
549 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
550 |
bond = mol->nextBond(bondIter)) { |
551 |
|
552 |
a = bond->getAtomA()->getGlobalIndex(); |
553 |
b = bond->getAtomB()->getGlobalIndex(); |
554 |
|
555 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
556 |
oneTwoInteractions_.removePair(a, b); |
557 |
} else { |
558 |
excludedInteractions_.removePair(a, b); |
559 |
} |
560 |
} |
561 |
|
562 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
563 |
bend = mol->nextBend(bendIter)) { |
564 |
|
565 |
a = bend->getAtomA()->getGlobalIndex(); |
566 |
b = bend->getAtomB()->getGlobalIndex(); |
567 |
c = bend->getAtomC()->getGlobalIndex(); |
568 |
|
569 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
570 |
oneTwoInteractions_.removePair(a, b); |
571 |
oneTwoInteractions_.removePair(b, c); |
572 |
} else { |
573 |
excludedInteractions_.removePair(a, b); |
574 |
excludedInteractions_.removePair(b, c); |
575 |
} |
576 |
|
577 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
578 |
oneThreeInteractions_.removePair(a, c); |
579 |
} else { |
580 |
excludedInteractions_.removePair(a, c); |
581 |
} |
582 |
} |
583 |
|
584 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
585 |
torsion = mol->nextTorsion(torsionIter)) { |
586 |
|
587 |
a = torsion->getAtomA()->getGlobalIndex(); |
588 |
b = torsion->getAtomB()->getGlobalIndex(); |
589 |
c = torsion->getAtomC()->getGlobalIndex(); |
590 |
d = torsion->getAtomD()->getGlobalIndex(); |
591 |
|
592 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
593 |
oneTwoInteractions_.removePair(a, b); |
594 |
oneTwoInteractions_.removePair(b, c); |
595 |
oneTwoInteractions_.removePair(c, d); |
596 |
} else { |
597 |
excludedInteractions_.removePair(a, b); |
598 |
excludedInteractions_.removePair(b, c); |
599 |
excludedInteractions_.removePair(c, d); |
600 |
} |
601 |
|
602 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
603 |
oneThreeInteractions_.removePair(a, c); |
604 |
oneThreeInteractions_.removePair(b, d); |
605 |
} else { |
606 |
excludedInteractions_.removePair(a, c); |
607 |
excludedInteractions_.removePair(b, d); |
608 |
} |
609 |
|
610 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
611 |
oneFourInteractions_.removePair(a, d); |
612 |
} else { |
613 |
excludedInteractions_.removePair(a, d); |
614 |
} |
615 |
} |
616 |
|
617 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
618 |
inversion = mol->nextInversion(inversionIter)) { |
619 |
|
620 |
a = inversion->getAtomA()->getGlobalIndex(); |
621 |
b = inversion->getAtomB()->getGlobalIndex(); |
622 |
c = inversion->getAtomC()->getGlobalIndex(); |
623 |
d = inversion->getAtomD()->getGlobalIndex(); |
624 |
|
625 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
626 |
oneTwoInteractions_.removePair(a, b); |
627 |
oneTwoInteractions_.removePair(a, c); |
628 |
oneTwoInteractions_.removePair(a, d); |
629 |
} else { |
630 |
excludedInteractions_.removePair(a, b); |
631 |
excludedInteractions_.removePair(a, c); |
632 |
excludedInteractions_.removePair(a, d); |
633 |
} |
634 |
|
635 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
636 |
oneThreeInteractions_.removePair(b, c); |
637 |
oneThreeInteractions_.removePair(b, d); |
638 |
oneThreeInteractions_.removePair(c, d); |
639 |
} else { |
640 |
excludedInteractions_.removePair(b, c); |
641 |
excludedInteractions_.removePair(b, d); |
642 |
excludedInteractions_.removePair(c, d); |
643 |
} |
644 |
} |
645 |
|
646 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
647 |
rb = mol->nextRigidBody(rbIter)) { |
648 |
vector<Atom*> atoms = rb->getAtoms(); |
649 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
650 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
651 |
a = atoms[i]->getGlobalIndex(); |
652 |
b = atoms[j]->getGlobalIndex(); |
653 |
excludedInteractions_.removePair(a, b); |
654 |
} |
655 |
} |
656 |
} |
657 |
|
658 |
} |
659 |
|
660 |
|
661 |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
662 |
int curStampId; |
663 |
|
664 |
//index from 0 |
665 |
curStampId = moleculeStamps_.size(); |
666 |
|
667 |
moleculeStamps_.push_back(molStamp); |
668 |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
669 |
} |
670 |
|
671 |
|
672 |
/** |
673 |
* update |
674 |
* |
675 |
* Performs the global checks and variable settings after the |
676 |
* objects have been created. |
677 |
* |
678 |
*/ |
679 |
void SimInfo::update() { |
680 |
setupSimVariables(); |
681 |
calcNdf(); |
682 |
calcNdfRaw(); |
683 |
calcNdfTrans(); |
684 |
} |
685 |
|
686 |
/** |
687 |
* getSimulatedAtomTypes |
688 |
* |
689 |
* Returns an STL set of AtomType* that are actually present in this |
690 |
* simulation. Must query all processors to assemble this information. |
691 |
* |
692 |
*/ |
693 |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
694 |
SimInfo::MoleculeIterator mi; |
695 |
Molecule* mol; |
696 |
Molecule::AtomIterator ai; |
697 |
Atom* atom; |
698 |
set<AtomType*> atomTypes; |
699 |
|
700 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
701 |
for(atom = mol->beginAtom(ai); atom != NULL; |
702 |
atom = mol->nextAtom(ai)) { |
703 |
atomTypes.insert(atom->getAtomType()); |
704 |
} |
705 |
} |
706 |
|
707 |
#ifdef IS_MPI |
708 |
|
709 |
// loop over the found atom types on this processor, and add their |
710 |
// numerical idents to a vector: |
711 |
|
712 |
vector<int> foundTypes; |
713 |
set<AtomType*>::iterator i; |
714 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
715 |
foundTypes.push_back( (*i)->getIdent() ); |
716 |
|
717 |
// count_local holds the number of found types on this processor |
718 |
int count_local = foundTypes.size(); |
719 |
|
720 |
int nproc = MPI::COMM_WORLD.Get_size(); |
721 |
|
722 |
// we need arrays to hold the counts and displacement vectors for |
723 |
// all processors |
724 |
vector<int> counts(nproc, 0); |
725 |
vector<int> disps(nproc, 0); |
726 |
|
727 |
// fill the counts array |
728 |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
729 |
1, MPI::INT); |
730 |
|
731 |
// use the processor counts to compute the displacement array |
732 |
disps[0] = 0; |
733 |
int totalCount = counts[0]; |
734 |
for (int iproc = 1; iproc < nproc; iproc++) { |
735 |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
736 |
totalCount += counts[iproc]; |
737 |
} |
738 |
|
739 |
// we need a (possibly redundant) set of all found types: |
740 |
vector<int> ftGlobal(totalCount); |
741 |
|
742 |
// now spray out the foundTypes to all the other processors: |
743 |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
744 |
&ftGlobal[0], &counts[0], &disps[0], |
745 |
MPI::INT); |
746 |
|
747 |
vector<int>::iterator j; |
748 |
|
749 |
// foundIdents is a stl set, so inserting an already found ident |
750 |
// will have no effect. |
751 |
set<int> foundIdents; |
752 |
|
753 |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
754 |
foundIdents.insert((*j)); |
755 |
|
756 |
// now iterate over the foundIdents and get the actual atom types |
757 |
// that correspond to these: |
758 |
set<int>::iterator it; |
759 |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
760 |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
761 |
|
762 |
#endif |
763 |
|
764 |
return atomTypes; |
765 |
} |
766 |
|
767 |
void SimInfo::setupSimVariables() { |
768 |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
769 |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
770 |
calcBoxDipole_ = false; |
771 |
if ( simParams_->haveAccumulateBoxDipole() ) |
772 |
if ( simParams_->getAccumulateBoxDipole() ) { |
773 |
calcBoxDipole_ = true; |
774 |
} |
775 |
|
776 |
set<AtomType*>::iterator i; |
777 |
set<AtomType*> atomTypes; |
778 |
atomTypes = getSimulatedAtomTypes(); |
779 |
int usesElectrostatic = 0; |
780 |
int usesMetallic = 0; |
781 |
int usesDirectional = 0; |
782 |
//loop over all of the atom types |
783 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
784 |
usesElectrostatic |= (*i)->isElectrostatic(); |
785 |
usesMetallic |= (*i)->isMetal(); |
786 |
usesDirectional |= (*i)->isDirectional(); |
787 |
} |
788 |
|
789 |
#ifdef IS_MPI |
790 |
int temp; |
791 |
temp = usesDirectional; |
792 |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
793 |
|
794 |
temp = usesMetallic; |
795 |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
796 |
|
797 |
temp = usesElectrostatic; |
798 |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
799 |
#else |
800 |
|
801 |
usesDirectionalAtoms_ = usesDirectional; |
802 |
usesMetallicAtoms_ = usesMetallic; |
803 |
usesElectrostaticAtoms_ = usesElectrostatic; |
804 |
|
805 |
#endif |
806 |
|
807 |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
808 |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
809 |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
810 |
} |
811 |
|
812 |
|
813 |
vector<int> SimInfo::getGlobalAtomIndices() { |
814 |
SimInfo::MoleculeIterator mi; |
815 |
Molecule* mol; |
816 |
Molecule::AtomIterator ai; |
817 |
Atom* atom; |
818 |
|
819 |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
820 |
|
821 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
822 |
|
823 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
824 |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
825 |
} |
826 |
} |
827 |
return GlobalAtomIndices; |
828 |
} |
829 |
|
830 |
|
831 |
vector<int> SimInfo::getGlobalGroupIndices() { |
832 |
SimInfo::MoleculeIterator mi; |
833 |
Molecule* mol; |
834 |
Molecule::CutoffGroupIterator ci; |
835 |
CutoffGroup* cg; |
836 |
|
837 |
vector<int> GlobalGroupIndices; |
838 |
|
839 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
840 |
|
841 |
//local index of cutoff group is trivial, it only depends on the |
842 |
//order of travesing |
843 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
844 |
cg = mol->nextCutoffGroup(ci)) { |
845 |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
846 |
} |
847 |
} |
848 |
return GlobalGroupIndices; |
849 |
} |
850 |
|
851 |
|
852 |
void SimInfo::prepareTopology() { |
853 |
int nExclude, nOneTwo, nOneThree, nOneFour; |
854 |
|
855 |
//calculate mass ratio of cutoff group |
856 |
SimInfo::MoleculeIterator mi; |
857 |
Molecule* mol; |
858 |
Molecule::CutoffGroupIterator ci; |
859 |
CutoffGroup* cg; |
860 |
Molecule::AtomIterator ai; |
861 |
Atom* atom; |
862 |
RealType totalMass; |
863 |
|
864 |
/** |
865 |
* The mass factor is the relative mass of an atom to the total |
866 |
* mass of the cutoff group it belongs to. By default, all atoms |
867 |
* are their own cutoff groups, and therefore have mass factors of |
868 |
* 1. We need some special handling for massless atoms, which |
869 |
* will be treated as carrying the entire mass of the cutoff |
870 |
* group. |
871 |
*/ |
872 |
massFactors_.clear(); |
873 |
massFactors_.resize(getNAtoms(), 1.0); |
874 |
|
875 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
876 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
877 |
cg = mol->nextCutoffGroup(ci)) { |
878 |
|
879 |
totalMass = cg->getMass(); |
880 |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
881 |
// Check for massless groups - set mfact to 1 if true |
882 |
if (totalMass != 0) |
883 |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
884 |
else |
885 |
massFactors_[atom->getLocalIndex()] = 1.0; |
886 |
} |
887 |
} |
888 |
} |
889 |
|
890 |
// Build the identArray_ |
891 |
|
892 |
identArray_.clear(); |
893 |
identArray_.reserve(getNAtoms()); |
894 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
895 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
896 |
identArray_.push_back(atom->getIdent()); |
897 |
} |
898 |
} |
899 |
|
900 |
//scan topology |
901 |
|
902 |
nExclude = excludedInteractions_.getSize(); |
903 |
nOneTwo = oneTwoInteractions_.getSize(); |
904 |
nOneThree = oneThreeInteractions_.getSize(); |
905 |
nOneFour = oneFourInteractions_.getSize(); |
906 |
|
907 |
int* excludeList = excludedInteractions_.getPairList(); |
908 |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
909 |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
910 |
int* oneFourList = oneFourInteractions_.getPairList(); |
911 |
|
912 |
topologyDone_ = true; |
913 |
} |
914 |
|
915 |
void SimInfo::addProperty(GenericData* genData) { |
916 |
properties_.addProperty(genData); |
917 |
} |
918 |
|
919 |
void SimInfo::removeProperty(const string& propName) { |
920 |
properties_.removeProperty(propName); |
921 |
} |
922 |
|
923 |
void SimInfo::clearProperties() { |
924 |
properties_.clearProperties(); |
925 |
} |
926 |
|
927 |
vector<string> SimInfo::getPropertyNames() { |
928 |
return properties_.getPropertyNames(); |
929 |
} |
930 |
|
931 |
vector<GenericData*> SimInfo::getProperties() { |
932 |
return properties_.getProperties(); |
933 |
} |
934 |
|
935 |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
936 |
return properties_.getPropertyByName(propName); |
937 |
} |
938 |
|
939 |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
940 |
if (sman_ == sman) { |
941 |
return; |
942 |
} |
943 |
delete sman_; |
944 |
sman_ = sman; |
945 |
|
946 |
Molecule* mol; |
947 |
RigidBody* rb; |
948 |
Atom* atom; |
949 |
CutoffGroup* cg; |
950 |
SimInfo::MoleculeIterator mi; |
951 |
Molecule::RigidBodyIterator rbIter; |
952 |
Molecule::AtomIterator atomIter; |
953 |
Molecule::CutoffGroupIterator cgIter; |
954 |
|
955 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
956 |
|
957 |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
958 |
atom->setSnapshotManager(sman_); |
959 |
} |
960 |
|
961 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
962 |
rb->setSnapshotManager(sman_); |
963 |
} |
964 |
|
965 |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
966 |
cg->setSnapshotManager(sman_); |
967 |
} |
968 |
} |
969 |
|
970 |
} |
971 |
|
972 |
Vector3d SimInfo::getComVel(){ |
973 |
SimInfo::MoleculeIterator i; |
974 |
Molecule* mol; |
975 |
|
976 |
Vector3d comVel(0.0); |
977 |
RealType totalMass = 0.0; |
978 |
|
979 |
|
980 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
981 |
RealType mass = mol->getMass(); |
982 |
totalMass += mass; |
983 |
comVel += mass * mol->getComVel(); |
984 |
} |
985 |
|
986 |
#ifdef IS_MPI |
987 |
RealType tmpMass = totalMass; |
988 |
Vector3d tmpComVel(comVel); |
989 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
990 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
991 |
#endif |
992 |
|
993 |
comVel /= totalMass; |
994 |
|
995 |
return comVel; |
996 |
} |
997 |
|
998 |
Vector3d SimInfo::getCom(){ |
999 |
SimInfo::MoleculeIterator i; |
1000 |
Molecule* mol; |
1001 |
|
1002 |
Vector3d com(0.0); |
1003 |
RealType totalMass = 0.0; |
1004 |
|
1005 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1006 |
RealType mass = mol->getMass(); |
1007 |
totalMass += mass; |
1008 |
com += mass * mol->getCom(); |
1009 |
} |
1010 |
|
1011 |
#ifdef IS_MPI |
1012 |
RealType tmpMass = totalMass; |
1013 |
Vector3d tmpCom(com); |
1014 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1015 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1016 |
#endif |
1017 |
|
1018 |
com /= totalMass; |
1019 |
|
1020 |
return com; |
1021 |
|
1022 |
} |
1023 |
|
1024 |
ostream& operator <<(ostream& o, SimInfo& info) { |
1025 |
|
1026 |
return o; |
1027 |
} |
1028 |
|
1029 |
|
1030 |
/* |
1031 |
Returns center of mass and center of mass velocity in one function call. |
1032 |
*/ |
1033 |
|
1034 |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1035 |
SimInfo::MoleculeIterator i; |
1036 |
Molecule* mol; |
1037 |
|
1038 |
|
1039 |
RealType totalMass = 0.0; |
1040 |
|
1041 |
|
1042 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1043 |
RealType mass = mol->getMass(); |
1044 |
totalMass += mass; |
1045 |
com += mass * mol->getCom(); |
1046 |
comVel += mass * mol->getComVel(); |
1047 |
} |
1048 |
|
1049 |
#ifdef IS_MPI |
1050 |
RealType tmpMass = totalMass; |
1051 |
Vector3d tmpCom(com); |
1052 |
Vector3d tmpComVel(comVel); |
1053 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1054 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1055 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1056 |
#endif |
1057 |
|
1058 |
com /= totalMass; |
1059 |
comVel /= totalMass; |
1060 |
} |
1061 |
|
1062 |
/* |
1063 |
Return intertia tensor for entire system and angular momentum Vector. |
1064 |
|
1065 |
|
1066 |
[ Ixx -Ixy -Ixz ] |
1067 |
J =| -Iyx Iyy -Iyz | |
1068 |
[ -Izx -Iyz Izz ] |
1069 |
*/ |
1070 |
|
1071 |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1072 |
|
1073 |
|
1074 |
RealType xx = 0.0; |
1075 |
RealType yy = 0.0; |
1076 |
RealType zz = 0.0; |
1077 |
RealType xy = 0.0; |
1078 |
RealType xz = 0.0; |
1079 |
RealType yz = 0.0; |
1080 |
Vector3d com(0.0); |
1081 |
Vector3d comVel(0.0); |
1082 |
|
1083 |
getComAll(com, comVel); |
1084 |
|
1085 |
SimInfo::MoleculeIterator i; |
1086 |
Molecule* mol; |
1087 |
|
1088 |
Vector3d thisq(0.0); |
1089 |
Vector3d thisv(0.0); |
1090 |
|
1091 |
RealType thisMass = 0.0; |
1092 |
|
1093 |
|
1094 |
|
1095 |
|
1096 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1097 |
|
1098 |
thisq = mol->getCom()-com; |
1099 |
thisv = mol->getComVel()-comVel; |
1100 |
thisMass = mol->getMass(); |
1101 |
// Compute moment of intertia coefficients. |
1102 |
xx += thisq[0]*thisq[0]*thisMass; |
1103 |
yy += thisq[1]*thisq[1]*thisMass; |
1104 |
zz += thisq[2]*thisq[2]*thisMass; |
1105 |
|
1106 |
// compute products of intertia |
1107 |
xy += thisq[0]*thisq[1]*thisMass; |
1108 |
xz += thisq[0]*thisq[2]*thisMass; |
1109 |
yz += thisq[1]*thisq[2]*thisMass; |
1110 |
|
1111 |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1112 |
|
1113 |
} |
1114 |
|
1115 |
|
1116 |
inertiaTensor(0,0) = yy + zz; |
1117 |
inertiaTensor(0,1) = -xy; |
1118 |
inertiaTensor(0,2) = -xz; |
1119 |
inertiaTensor(1,0) = -xy; |
1120 |
inertiaTensor(1,1) = xx + zz; |
1121 |
inertiaTensor(1,2) = -yz; |
1122 |
inertiaTensor(2,0) = -xz; |
1123 |
inertiaTensor(2,1) = -yz; |
1124 |
inertiaTensor(2,2) = xx + yy; |
1125 |
|
1126 |
#ifdef IS_MPI |
1127 |
Mat3x3d tmpI(inertiaTensor); |
1128 |
Vector3d tmpAngMom; |
1129 |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1130 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1131 |
#endif |
1132 |
|
1133 |
return; |
1134 |
} |
1135 |
|
1136 |
//Returns the angular momentum of the system |
1137 |
Vector3d SimInfo::getAngularMomentum(){ |
1138 |
|
1139 |
Vector3d com(0.0); |
1140 |
Vector3d comVel(0.0); |
1141 |
Vector3d angularMomentum(0.0); |
1142 |
|
1143 |
getComAll(com,comVel); |
1144 |
|
1145 |
SimInfo::MoleculeIterator i; |
1146 |
Molecule* mol; |
1147 |
|
1148 |
Vector3d thisr(0.0); |
1149 |
Vector3d thisp(0.0); |
1150 |
|
1151 |
RealType thisMass; |
1152 |
|
1153 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1154 |
thisMass = mol->getMass(); |
1155 |
thisr = mol->getCom()-com; |
1156 |
thisp = (mol->getComVel()-comVel)*thisMass; |
1157 |
|
1158 |
angularMomentum += cross( thisr, thisp ); |
1159 |
|
1160 |
} |
1161 |
|
1162 |
#ifdef IS_MPI |
1163 |
Vector3d tmpAngMom; |
1164 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1165 |
#endif |
1166 |
|
1167 |
return angularMomentum; |
1168 |
} |
1169 |
|
1170 |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1171 |
return IOIndexToIntegrableObject.at(index); |
1172 |
} |
1173 |
|
1174 |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1175 |
IOIndexToIntegrableObject= v; |
1176 |
} |
1177 |
|
1178 |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1179 |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1180 |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1181 |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1182 |
*/ |
1183 |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1184 |
Mat3x3d intTensor; |
1185 |
RealType det; |
1186 |
Vector3d dummyAngMom; |
1187 |
RealType sysconstants; |
1188 |
RealType geomCnst; |
1189 |
|
1190 |
geomCnst = 3.0/2.0; |
1191 |
/* Get the inertial tensor and angular momentum for free*/ |
1192 |
getInertiaTensor(intTensor,dummyAngMom); |
1193 |
|
1194 |
det = intTensor.determinant(); |
1195 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1196 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1197 |
return; |
1198 |
} |
1199 |
|
1200 |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1201 |
Mat3x3d intTensor; |
1202 |
Vector3d dummyAngMom; |
1203 |
RealType sysconstants; |
1204 |
RealType geomCnst; |
1205 |
|
1206 |
geomCnst = 3.0/2.0; |
1207 |
/* Get the inertial tensor and angular momentum for free*/ |
1208 |
getInertiaTensor(intTensor,dummyAngMom); |
1209 |
|
1210 |
detI = intTensor.determinant(); |
1211 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1212 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1213 |
return; |
1214 |
} |
1215 |
/* |
1216 |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1217 |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1218 |
sdByGlobalIndex_ = v; |
1219 |
} |
1220 |
|
1221 |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1222 |
//assert(index < nAtoms_ + nRigidBodies_); |
1223 |
return sdByGlobalIndex_.at(index); |
1224 |
} |
1225 |
*/ |
1226 |
int SimInfo::getNGlobalConstraints() { |
1227 |
int nGlobalConstraints; |
1228 |
#ifdef IS_MPI |
1229 |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1230 |
MPI_COMM_WORLD); |
1231 |
#else |
1232 |
nGlobalConstraints = nConstraints_; |
1233 |
#endif |
1234 |
return nGlobalConstraints; |
1235 |
} |
1236 |
|
1237 |
}//end namespace OpenMD |
1238 |
|