1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file SimInfo.cpp |
44 |
* @author tlin |
45 |
* @date 11/02/2004 |
46 |
* @version 1.0 |
47 |
*/ |
48 |
|
49 |
#include <algorithm> |
50 |
#include <set> |
51 |
#include <map> |
52 |
|
53 |
#include "brains/SimInfo.hpp" |
54 |
#include "math/Vector3.hpp" |
55 |
#include "primitives/Molecule.hpp" |
56 |
#include "primitives/StuntDouble.hpp" |
57 |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
58 |
#include "utils/MemoryUtils.hpp" |
59 |
#include "utils/simError.h" |
60 |
#include "selection/SelectionManager.hpp" |
61 |
#include "io/ForceFieldOptions.hpp" |
62 |
#include "UseTheForce/ForceField.hpp" |
63 |
#include "nonbonded/SwitchingFunction.hpp" |
64 |
|
65 |
#ifdef IS_MPI |
66 |
#include "UseTheForce/mpiComponentPlan.h" |
67 |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
68 |
#endif |
69 |
|
70 |
using namespace std; |
71 |
namespace OpenMD { |
72 |
|
73 |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
74 |
forceField_(ff), simParams_(simParams), |
75 |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
76 |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
77 |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
78 |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
79 |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
80 |
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
81 |
calcBoxDipole_(false), useAtomicVirial_(true) { |
82 |
|
83 |
MoleculeStamp* molStamp; |
84 |
int nMolWithSameStamp; |
85 |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
86 |
int nGroups = 0; //total cutoff groups defined in meta-data file |
87 |
CutoffGroupStamp* cgStamp; |
88 |
RigidBodyStamp* rbStamp; |
89 |
int nRigidAtoms = 0; |
90 |
|
91 |
vector<Component*> components = simParams->getComponents(); |
92 |
|
93 |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
94 |
molStamp = (*i)->getMoleculeStamp(); |
95 |
nMolWithSameStamp = (*i)->getNMol(); |
96 |
|
97 |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
98 |
|
99 |
//calculate atoms in molecules |
100 |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
101 |
|
102 |
//calculate atoms in cutoff groups |
103 |
int nAtomsInGroups = 0; |
104 |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
105 |
|
106 |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
107 |
cgStamp = molStamp->getCutoffGroupStamp(j); |
108 |
nAtomsInGroups += cgStamp->getNMembers(); |
109 |
} |
110 |
|
111 |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
112 |
|
113 |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
114 |
|
115 |
//calculate atoms in rigid bodies |
116 |
int nAtomsInRigidBodies = 0; |
117 |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
118 |
|
119 |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
120 |
rbStamp = molStamp->getRigidBodyStamp(j); |
121 |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
122 |
} |
123 |
|
124 |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
125 |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
126 |
|
127 |
} |
128 |
|
129 |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
130 |
//group therefore the total number of cutoff groups in the system is |
131 |
//equal to the total number of atoms minus number of atoms belong to |
132 |
//cutoff group defined in meta-data file plus the number of cutoff |
133 |
//groups defined in meta-data file |
134 |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
135 |
|
136 |
//every free atom (atom does not belong to rigid bodies) is an |
137 |
//integrable object therefore the total number of integrable objects |
138 |
//in the system is equal to the total number of atoms minus number of |
139 |
//atoms belong to rigid body defined in meta-data file plus the number |
140 |
//of rigid bodies defined in meta-data file |
141 |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
142 |
+ nGlobalRigidBodies_; |
143 |
|
144 |
nGlobalMols_ = molStampIds_.size(); |
145 |
molToProcMap_.resize(nGlobalMols_); |
146 |
} |
147 |
|
148 |
SimInfo::~SimInfo() { |
149 |
map<int, Molecule*>::iterator i; |
150 |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
151 |
delete i->second; |
152 |
} |
153 |
molecules_.clear(); |
154 |
|
155 |
delete sman_; |
156 |
delete simParams_; |
157 |
delete forceField_; |
158 |
} |
159 |
|
160 |
|
161 |
bool SimInfo::addMolecule(Molecule* mol) { |
162 |
MoleculeIterator i; |
163 |
|
164 |
i = molecules_.find(mol->getGlobalIndex()); |
165 |
if (i == molecules_.end() ) { |
166 |
|
167 |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
168 |
|
169 |
nAtoms_ += mol->getNAtoms(); |
170 |
nBonds_ += mol->getNBonds(); |
171 |
nBends_ += mol->getNBends(); |
172 |
nTorsions_ += mol->getNTorsions(); |
173 |
nInversions_ += mol->getNInversions(); |
174 |
nRigidBodies_ += mol->getNRigidBodies(); |
175 |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
176 |
nCutoffGroups_ += mol->getNCutoffGroups(); |
177 |
nConstraints_ += mol->getNConstraintPairs(); |
178 |
|
179 |
addInteractionPairs(mol); |
180 |
|
181 |
return true; |
182 |
} else { |
183 |
return false; |
184 |
} |
185 |
} |
186 |
|
187 |
bool SimInfo::removeMolecule(Molecule* mol) { |
188 |
MoleculeIterator i; |
189 |
i = molecules_.find(mol->getGlobalIndex()); |
190 |
|
191 |
if (i != molecules_.end() ) { |
192 |
|
193 |
assert(mol == i->second); |
194 |
|
195 |
nAtoms_ -= mol->getNAtoms(); |
196 |
nBonds_ -= mol->getNBonds(); |
197 |
nBends_ -= mol->getNBends(); |
198 |
nTorsions_ -= mol->getNTorsions(); |
199 |
nInversions_ -= mol->getNInversions(); |
200 |
nRigidBodies_ -= mol->getNRigidBodies(); |
201 |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
202 |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
203 |
nConstraints_ -= mol->getNConstraintPairs(); |
204 |
|
205 |
removeInteractionPairs(mol); |
206 |
molecules_.erase(mol->getGlobalIndex()); |
207 |
|
208 |
delete mol; |
209 |
|
210 |
return true; |
211 |
} else { |
212 |
return false; |
213 |
} |
214 |
} |
215 |
|
216 |
|
217 |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
218 |
i = molecules_.begin(); |
219 |
return i == molecules_.end() ? NULL : i->second; |
220 |
} |
221 |
|
222 |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
223 |
++i; |
224 |
return i == molecules_.end() ? NULL : i->second; |
225 |
} |
226 |
|
227 |
|
228 |
void SimInfo::calcNdf() { |
229 |
int ndf_local; |
230 |
MoleculeIterator i; |
231 |
vector<StuntDouble*>::iterator j; |
232 |
Molecule* mol; |
233 |
StuntDouble* integrableObject; |
234 |
|
235 |
ndf_local = 0; |
236 |
|
237 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
238 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
239 |
integrableObject = mol->nextIntegrableObject(j)) { |
240 |
|
241 |
ndf_local += 3; |
242 |
|
243 |
if (integrableObject->isDirectional()) { |
244 |
if (integrableObject->isLinear()) { |
245 |
ndf_local += 2; |
246 |
} else { |
247 |
ndf_local += 3; |
248 |
} |
249 |
} |
250 |
|
251 |
} |
252 |
} |
253 |
|
254 |
// n_constraints is local, so subtract them on each processor |
255 |
ndf_local -= nConstraints_; |
256 |
|
257 |
#ifdef IS_MPI |
258 |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
259 |
#else |
260 |
ndf_ = ndf_local; |
261 |
#endif |
262 |
|
263 |
// nZconstraints_ is global, as are the 3 COM translations for the |
264 |
// entire system: |
265 |
ndf_ = ndf_ - 3 - nZconstraint_; |
266 |
|
267 |
} |
268 |
|
269 |
int SimInfo::getFdf() { |
270 |
#ifdef IS_MPI |
271 |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
272 |
#else |
273 |
fdf_ = fdf_local; |
274 |
#endif |
275 |
return fdf_; |
276 |
} |
277 |
|
278 |
void SimInfo::calcNdfRaw() { |
279 |
int ndfRaw_local; |
280 |
|
281 |
MoleculeIterator i; |
282 |
vector<StuntDouble*>::iterator j; |
283 |
Molecule* mol; |
284 |
StuntDouble* integrableObject; |
285 |
|
286 |
// Raw degrees of freedom that we have to set |
287 |
ndfRaw_local = 0; |
288 |
|
289 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
290 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
291 |
integrableObject = mol->nextIntegrableObject(j)) { |
292 |
|
293 |
ndfRaw_local += 3; |
294 |
|
295 |
if (integrableObject->isDirectional()) { |
296 |
if (integrableObject->isLinear()) { |
297 |
ndfRaw_local += 2; |
298 |
} else { |
299 |
ndfRaw_local += 3; |
300 |
} |
301 |
} |
302 |
|
303 |
} |
304 |
} |
305 |
|
306 |
#ifdef IS_MPI |
307 |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
308 |
#else |
309 |
ndfRaw_ = ndfRaw_local; |
310 |
#endif |
311 |
} |
312 |
|
313 |
void SimInfo::calcNdfTrans() { |
314 |
int ndfTrans_local; |
315 |
|
316 |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
317 |
|
318 |
|
319 |
#ifdef IS_MPI |
320 |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
321 |
#else |
322 |
ndfTrans_ = ndfTrans_local; |
323 |
#endif |
324 |
|
325 |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
326 |
|
327 |
} |
328 |
|
329 |
void SimInfo::addInteractionPairs(Molecule* mol) { |
330 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
331 |
vector<Bond*>::iterator bondIter; |
332 |
vector<Bend*>::iterator bendIter; |
333 |
vector<Torsion*>::iterator torsionIter; |
334 |
vector<Inversion*>::iterator inversionIter; |
335 |
Bond* bond; |
336 |
Bend* bend; |
337 |
Torsion* torsion; |
338 |
Inversion* inversion; |
339 |
int a; |
340 |
int b; |
341 |
int c; |
342 |
int d; |
343 |
|
344 |
// atomGroups can be used to add special interaction maps between |
345 |
// groups of atoms that are in two separate rigid bodies. |
346 |
// However, most site-site interactions between two rigid bodies |
347 |
// are probably not special, just the ones between the physically |
348 |
// bonded atoms. Interactions *within* a single rigid body should |
349 |
// always be excluded. These are done at the bottom of this |
350 |
// function. |
351 |
|
352 |
map<int, set<int> > atomGroups; |
353 |
Molecule::RigidBodyIterator rbIter; |
354 |
RigidBody* rb; |
355 |
Molecule::IntegrableObjectIterator ii; |
356 |
StuntDouble* integrableObject; |
357 |
|
358 |
for (integrableObject = mol->beginIntegrableObject(ii); |
359 |
integrableObject != NULL; |
360 |
integrableObject = mol->nextIntegrableObject(ii)) { |
361 |
|
362 |
if (integrableObject->isRigidBody()) { |
363 |
rb = static_cast<RigidBody*>(integrableObject); |
364 |
vector<Atom*> atoms = rb->getAtoms(); |
365 |
set<int> rigidAtoms; |
366 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
367 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
368 |
} |
369 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
370 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
371 |
} |
372 |
} else { |
373 |
set<int> oneAtomSet; |
374 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
375 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
376 |
} |
377 |
} |
378 |
|
379 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
380 |
bond = mol->nextBond(bondIter)) { |
381 |
|
382 |
a = bond->getAtomA()->getGlobalIndex(); |
383 |
b = bond->getAtomB()->getGlobalIndex(); |
384 |
|
385 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
386 |
oneTwoInteractions_.addPair(a, b); |
387 |
} else { |
388 |
excludedInteractions_.addPair(a, b); |
389 |
} |
390 |
} |
391 |
|
392 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
393 |
bend = mol->nextBend(bendIter)) { |
394 |
|
395 |
a = bend->getAtomA()->getGlobalIndex(); |
396 |
b = bend->getAtomB()->getGlobalIndex(); |
397 |
c = bend->getAtomC()->getGlobalIndex(); |
398 |
|
399 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
400 |
oneTwoInteractions_.addPair(a, b); |
401 |
oneTwoInteractions_.addPair(b, c); |
402 |
} else { |
403 |
excludedInteractions_.addPair(a, b); |
404 |
excludedInteractions_.addPair(b, c); |
405 |
} |
406 |
|
407 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
408 |
oneThreeInteractions_.addPair(a, c); |
409 |
} else { |
410 |
excludedInteractions_.addPair(a, c); |
411 |
} |
412 |
} |
413 |
|
414 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
415 |
torsion = mol->nextTorsion(torsionIter)) { |
416 |
|
417 |
a = torsion->getAtomA()->getGlobalIndex(); |
418 |
b = torsion->getAtomB()->getGlobalIndex(); |
419 |
c = torsion->getAtomC()->getGlobalIndex(); |
420 |
d = torsion->getAtomD()->getGlobalIndex(); |
421 |
|
422 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
423 |
oneTwoInteractions_.addPair(a, b); |
424 |
oneTwoInteractions_.addPair(b, c); |
425 |
oneTwoInteractions_.addPair(c, d); |
426 |
} else { |
427 |
excludedInteractions_.addPair(a, b); |
428 |
excludedInteractions_.addPair(b, c); |
429 |
excludedInteractions_.addPair(c, d); |
430 |
} |
431 |
|
432 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
433 |
oneThreeInteractions_.addPair(a, c); |
434 |
oneThreeInteractions_.addPair(b, d); |
435 |
} else { |
436 |
excludedInteractions_.addPair(a, c); |
437 |
excludedInteractions_.addPair(b, d); |
438 |
} |
439 |
|
440 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
441 |
oneFourInteractions_.addPair(a, d); |
442 |
} else { |
443 |
excludedInteractions_.addPair(a, d); |
444 |
} |
445 |
} |
446 |
|
447 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
448 |
inversion = mol->nextInversion(inversionIter)) { |
449 |
|
450 |
a = inversion->getAtomA()->getGlobalIndex(); |
451 |
b = inversion->getAtomB()->getGlobalIndex(); |
452 |
c = inversion->getAtomC()->getGlobalIndex(); |
453 |
d = inversion->getAtomD()->getGlobalIndex(); |
454 |
|
455 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
456 |
oneTwoInteractions_.addPair(a, b); |
457 |
oneTwoInteractions_.addPair(a, c); |
458 |
oneTwoInteractions_.addPair(a, d); |
459 |
} else { |
460 |
excludedInteractions_.addPair(a, b); |
461 |
excludedInteractions_.addPair(a, c); |
462 |
excludedInteractions_.addPair(a, d); |
463 |
} |
464 |
|
465 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
466 |
oneThreeInteractions_.addPair(b, c); |
467 |
oneThreeInteractions_.addPair(b, d); |
468 |
oneThreeInteractions_.addPair(c, d); |
469 |
} else { |
470 |
excludedInteractions_.addPair(b, c); |
471 |
excludedInteractions_.addPair(b, d); |
472 |
excludedInteractions_.addPair(c, d); |
473 |
} |
474 |
} |
475 |
|
476 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
477 |
rb = mol->nextRigidBody(rbIter)) { |
478 |
vector<Atom*> atoms = rb->getAtoms(); |
479 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
480 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
481 |
a = atoms[i]->getGlobalIndex(); |
482 |
b = atoms[j]->getGlobalIndex(); |
483 |
excludedInteractions_.addPair(a, b); |
484 |
} |
485 |
} |
486 |
} |
487 |
|
488 |
} |
489 |
|
490 |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
491 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
492 |
vector<Bond*>::iterator bondIter; |
493 |
vector<Bend*>::iterator bendIter; |
494 |
vector<Torsion*>::iterator torsionIter; |
495 |
vector<Inversion*>::iterator inversionIter; |
496 |
Bond* bond; |
497 |
Bend* bend; |
498 |
Torsion* torsion; |
499 |
Inversion* inversion; |
500 |
int a; |
501 |
int b; |
502 |
int c; |
503 |
int d; |
504 |
|
505 |
map<int, set<int> > atomGroups; |
506 |
Molecule::RigidBodyIterator rbIter; |
507 |
RigidBody* rb; |
508 |
Molecule::IntegrableObjectIterator ii; |
509 |
StuntDouble* integrableObject; |
510 |
|
511 |
for (integrableObject = mol->beginIntegrableObject(ii); |
512 |
integrableObject != NULL; |
513 |
integrableObject = mol->nextIntegrableObject(ii)) { |
514 |
|
515 |
if (integrableObject->isRigidBody()) { |
516 |
rb = static_cast<RigidBody*>(integrableObject); |
517 |
vector<Atom*> atoms = rb->getAtoms(); |
518 |
set<int> rigidAtoms; |
519 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
520 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
521 |
} |
522 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
523 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
524 |
} |
525 |
} else { |
526 |
set<int> oneAtomSet; |
527 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
528 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
529 |
} |
530 |
} |
531 |
|
532 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
533 |
bond = mol->nextBond(bondIter)) { |
534 |
|
535 |
a = bond->getAtomA()->getGlobalIndex(); |
536 |
b = bond->getAtomB()->getGlobalIndex(); |
537 |
|
538 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
539 |
oneTwoInteractions_.removePair(a, b); |
540 |
} else { |
541 |
excludedInteractions_.removePair(a, b); |
542 |
} |
543 |
} |
544 |
|
545 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
546 |
bend = mol->nextBend(bendIter)) { |
547 |
|
548 |
a = bend->getAtomA()->getGlobalIndex(); |
549 |
b = bend->getAtomB()->getGlobalIndex(); |
550 |
c = bend->getAtomC()->getGlobalIndex(); |
551 |
|
552 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
553 |
oneTwoInteractions_.removePair(a, b); |
554 |
oneTwoInteractions_.removePair(b, c); |
555 |
} else { |
556 |
excludedInteractions_.removePair(a, b); |
557 |
excludedInteractions_.removePair(b, c); |
558 |
} |
559 |
|
560 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
561 |
oneThreeInteractions_.removePair(a, c); |
562 |
} else { |
563 |
excludedInteractions_.removePair(a, c); |
564 |
} |
565 |
} |
566 |
|
567 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
568 |
torsion = mol->nextTorsion(torsionIter)) { |
569 |
|
570 |
a = torsion->getAtomA()->getGlobalIndex(); |
571 |
b = torsion->getAtomB()->getGlobalIndex(); |
572 |
c = torsion->getAtomC()->getGlobalIndex(); |
573 |
d = torsion->getAtomD()->getGlobalIndex(); |
574 |
|
575 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
576 |
oneTwoInteractions_.removePair(a, b); |
577 |
oneTwoInteractions_.removePair(b, c); |
578 |
oneTwoInteractions_.removePair(c, d); |
579 |
} else { |
580 |
excludedInteractions_.removePair(a, b); |
581 |
excludedInteractions_.removePair(b, c); |
582 |
excludedInteractions_.removePair(c, d); |
583 |
} |
584 |
|
585 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
586 |
oneThreeInteractions_.removePair(a, c); |
587 |
oneThreeInteractions_.removePair(b, d); |
588 |
} else { |
589 |
excludedInteractions_.removePair(a, c); |
590 |
excludedInteractions_.removePair(b, d); |
591 |
} |
592 |
|
593 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
594 |
oneFourInteractions_.removePair(a, d); |
595 |
} else { |
596 |
excludedInteractions_.removePair(a, d); |
597 |
} |
598 |
} |
599 |
|
600 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
601 |
inversion = mol->nextInversion(inversionIter)) { |
602 |
|
603 |
a = inversion->getAtomA()->getGlobalIndex(); |
604 |
b = inversion->getAtomB()->getGlobalIndex(); |
605 |
c = inversion->getAtomC()->getGlobalIndex(); |
606 |
d = inversion->getAtomD()->getGlobalIndex(); |
607 |
|
608 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
609 |
oneTwoInteractions_.removePair(a, b); |
610 |
oneTwoInteractions_.removePair(a, c); |
611 |
oneTwoInteractions_.removePair(a, d); |
612 |
} else { |
613 |
excludedInteractions_.removePair(a, b); |
614 |
excludedInteractions_.removePair(a, c); |
615 |
excludedInteractions_.removePair(a, d); |
616 |
} |
617 |
|
618 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
619 |
oneThreeInteractions_.removePair(b, c); |
620 |
oneThreeInteractions_.removePair(b, d); |
621 |
oneThreeInteractions_.removePair(c, d); |
622 |
} else { |
623 |
excludedInteractions_.removePair(b, c); |
624 |
excludedInteractions_.removePair(b, d); |
625 |
excludedInteractions_.removePair(c, d); |
626 |
} |
627 |
} |
628 |
|
629 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
630 |
rb = mol->nextRigidBody(rbIter)) { |
631 |
vector<Atom*> atoms = rb->getAtoms(); |
632 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
633 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
634 |
a = atoms[i]->getGlobalIndex(); |
635 |
b = atoms[j]->getGlobalIndex(); |
636 |
excludedInteractions_.removePair(a, b); |
637 |
} |
638 |
} |
639 |
} |
640 |
|
641 |
} |
642 |
|
643 |
|
644 |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
645 |
int curStampId; |
646 |
|
647 |
//index from 0 |
648 |
curStampId = moleculeStamps_.size(); |
649 |
|
650 |
moleculeStamps_.push_back(molStamp); |
651 |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
652 |
} |
653 |
|
654 |
|
655 |
/** |
656 |
* update |
657 |
* |
658 |
* Performs the global checks and variable settings after the |
659 |
* objects have been created. |
660 |
* |
661 |
*/ |
662 |
void SimInfo::update() { |
663 |
setupSimVariables(); |
664 |
calcNdf(); |
665 |
calcNdfRaw(); |
666 |
calcNdfTrans(); |
667 |
} |
668 |
|
669 |
/** |
670 |
* getSimulatedAtomTypes |
671 |
* |
672 |
* Returns an STL set of AtomType* that are actually present in this |
673 |
* simulation. Must query all processors to assemble this information. |
674 |
* |
675 |
*/ |
676 |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
677 |
SimInfo::MoleculeIterator mi; |
678 |
Molecule* mol; |
679 |
Molecule::AtomIterator ai; |
680 |
Atom* atom; |
681 |
set<AtomType*> atomTypes; |
682 |
|
683 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
684 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
685 |
atomTypes.insert(atom->getAtomType()); |
686 |
} |
687 |
} |
688 |
|
689 |
#ifdef IS_MPI |
690 |
|
691 |
// loop over the found atom types on this processor, and add their |
692 |
// numerical idents to a vector: |
693 |
|
694 |
vector<int> foundTypes; |
695 |
set<AtomType*>::iterator i; |
696 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
697 |
foundTypes.push_back( (*i)->getIdent() ); |
698 |
|
699 |
// count_local holds the number of found types on this processor |
700 |
int count_local = foundTypes.size(); |
701 |
|
702 |
// count holds the total number of found types on all processors |
703 |
// (some will be redundant with the ones found locally): |
704 |
int count; |
705 |
MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
706 |
|
707 |
// create a vector to hold the globally found types, and resize it: |
708 |
vector<int> ftGlobal; |
709 |
ftGlobal.resize(count); |
710 |
vector<int> counts; |
711 |
|
712 |
int nproc = MPI::COMM_WORLD.Get_size(); |
713 |
counts.resize(nproc); |
714 |
vector<int> disps; |
715 |
disps.resize(nproc); |
716 |
|
717 |
// now spray out the foundTypes to all the other processors: |
718 |
|
719 |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
720 |
&ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
721 |
|
722 |
// foundIdents is a stl set, so inserting an already found ident |
723 |
// will have no effect. |
724 |
set<int> foundIdents; |
725 |
vector<int>::iterator j; |
726 |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
727 |
foundIdents.insert((*j)); |
728 |
|
729 |
// now iterate over the foundIdents and get the actual atom types |
730 |
// that correspond to these: |
731 |
set<int>::iterator it; |
732 |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
733 |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
734 |
|
735 |
#endif |
736 |
|
737 |
return atomTypes; |
738 |
} |
739 |
|
740 |
void SimInfo::setupSimVariables() { |
741 |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
742 |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
743 |
calcBoxDipole_ = false; |
744 |
if ( simParams_->haveAccumulateBoxDipole() ) |
745 |
if ( simParams_->getAccumulateBoxDipole() ) { |
746 |
calcBoxDipole_ = true; |
747 |
} |
748 |
|
749 |
set<AtomType*>::iterator i; |
750 |
set<AtomType*> atomTypes; |
751 |
atomTypes = getSimulatedAtomTypes(); |
752 |
int usesElectrostatic = 0; |
753 |
int usesMetallic = 0; |
754 |
int usesDirectional = 0; |
755 |
//loop over all of the atom types |
756 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
757 |
usesElectrostatic |= (*i)->isElectrostatic(); |
758 |
usesMetallic |= (*i)->isMetal(); |
759 |
usesDirectional |= (*i)->isDirectional(); |
760 |
} |
761 |
|
762 |
#ifdef IS_MPI |
763 |
int temp; |
764 |
temp = usesDirectional; |
765 |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
766 |
|
767 |
temp = usesMetallic; |
768 |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
769 |
|
770 |
temp = usesElectrostatic; |
771 |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
772 |
#endif |
773 |
fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
774 |
fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
775 |
fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
776 |
fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
777 |
fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
778 |
fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
779 |
} |
780 |
|
781 |
void SimInfo::setupFortran() { |
782 |
int isError; |
783 |
int nExclude, nOneTwo, nOneThree, nOneFour; |
784 |
vector<int> fortranGlobalGroupMembership; |
785 |
|
786 |
isError = 0; |
787 |
|
788 |
//globalGroupMembership_ is filled by SimCreator |
789 |
for (int i = 0; i < nGlobalAtoms_; i++) { |
790 |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
791 |
} |
792 |
|
793 |
//calculate mass ratio of cutoff group |
794 |
vector<RealType> mfact; |
795 |
SimInfo::MoleculeIterator mi; |
796 |
Molecule* mol; |
797 |
Molecule::CutoffGroupIterator ci; |
798 |
CutoffGroup* cg; |
799 |
Molecule::AtomIterator ai; |
800 |
Atom* atom; |
801 |
RealType totalMass; |
802 |
|
803 |
//to avoid memory reallocation, reserve enough space for mfact |
804 |
mfact.reserve(getNCutoffGroups()); |
805 |
|
806 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
807 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
808 |
|
809 |
totalMass = cg->getMass(); |
810 |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
811 |
// Check for massless groups - set mfact to 1 if true |
812 |
if (totalMass != 0) |
813 |
mfact.push_back(atom->getMass()/totalMass); |
814 |
else |
815 |
mfact.push_back( 1.0 ); |
816 |
} |
817 |
} |
818 |
} |
819 |
|
820 |
//fill ident array of local atoms (it is actually ident of |
821 |
//AtomType, it is so confusing !!!) |
822 |
vector<int> identArray; |
823 |
|
824 |
//to avoid memory reallocation, reserve enough space identArray |
825 |
identArray.reserve(getNAtoms()); |
826 |
|
827 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
828 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
829 |
identArray.push_back(atom->getIdent()); |
830 |
} |
831 |
} |
832 |
|
833 |
//fill molMembershipArray |
834 |
//molMembershipArray is filled by SimCreator |
835 |
vector<int> molMembershipArray(nGlobalAtoms_); |
836 |
for (int i = 0; i < nGlobalAtoms_; i++) { |
837 |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
838 |
} |
839 |
|
840 |
//setup fortran simulation |
841 |
|
842 |
nExclude = excludedInteractions_.getSize(); |
843 |
nOneTwo = oneTwoInteractions_.getSize(); |
844 |
nOneThree = oneThreeInteractions_.getSize(); |
845 |
nOneFour = oneFourInteractions_.getSize(); |
846 |
|
847 |
int* excludeList = excludedInteractions_.getPairList(); |
848 |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
849 |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
850 |
int* oneFourList = oneFourInteractions_.getPairList(); |
851 |
|
852 |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
853 |
&nExclude, excludeList, |
854 |
&nOneTwo, oneTwoList, |
855 |
&nOneThree, oneThreeList, |
856 |
&nOneFour, oneFourList, |
857 |
&molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
858 |
&fortranGlobalGroupMembership[0], &isError); |
859 |
|
860 |
if( isError ){ |
861 |
|
862 |
sprintf( painCave.errMsg, |
863 |
"There was an error setting the simulation information in fortran.\n" ); |
864 |
painCave.isFatal = 1; |
865 |
painCave.severity = OPENMD_ERROR; |
866 |
simError(); |
867 |
} |
868 |
|
869 |
|
870 |
sprintf( checkPointMsg, |
871 |
"succesfully sent the simulation information to fortran.\n"); |
872 |
|
873 |
errorCheckPoint(); |
874 |
|
875 |
// Setup number of neighbors in neighbor list if present |
876 |
if (simParams_->haveNeighborListNeighbors()) { |
877 |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
878 |
setNeighbors(&nlistNeighbors); |
879 |
} |
880 |
|
881 |
#ifdef IS_MPI |
882 |
//SimInfo is responsible for creating localToGlobalAtomIndex and |
883 |
//localToGlobalGroupIndex |
884 |
vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
885 |
vector<int> localToGlobalCutoffGroupIndex; |
886 |
mpiSimData parallelData; |
887 |
|
888 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
889 |
|
890 |
//local index(index in DataStorge) of atom is important |
891 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
892 |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
893 |
} |
894 |
|
895 |
//local index of cutoff group is trivial, it only depends on the order of travesing |
896 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
897 |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
898 |
} |
899 |
|
900 |
} |
901 |
|
902 |
//fill up mpiSimData struct |
903 |
parallelData.nMolGlobal = getNGlobalMolecules(); |
904 |
parallelData.nMolLocal = getNMolecules(); |
905 |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
906 |
parallelData.nAtomsLocal = getNAtoms(); |
907 |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
908 |
parallelData.nGroupsLocal = getNCutoffGroups(); |
909 |
parallelData.myNode = worldRank; |
910 |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
911 |
|
912 |
//pass mpiSimData struct and index arrays to fortran |
913 |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
914 |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
915 |
&localToGlobalCutoffGroupIndex[0], &isError); |
916 |
|
917 |
if (isError) { |
918 |
sprintf(painCave.errMsg, |
919 |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
920 |
painCave.isFatal = 1; |
921 |
simError(); |
922 |
} |
923 |
|
924 |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
925 |
errorCheckPoint(); |
926 |
#endif |
927 |
fortranInitialized_ = true; |
928 |
} |
929 |
|
930 |
void SimInfo::addProperty(GenericData* genData) { |
931 |
properties_.addProperty(genData); |
932 |
} |
933 |
|
934 |
void SimInfo::removeProperty(const string& propName) { |
935 |
properties_.removeProperty(propName); |
936 |
} |
937 |
|
938 |
void SimInfo::clearProperties() { |
939 |
properties_.clearProperties(); |
940 |
} |
941 |
|
942 |
vector<string> SimInfo::getPropertyNames() { |
943 |
return properties_.getPropertyNames(); |
944 |
} |
945 |
|
946 |
vector<GenericData*> SimInfo::getProperties() { |
947 |
return properties_.getProperties(); |
948 |
} |
949 |
|
950 |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
951 |
return properties_.getPropertyByName(propName); |
952 |
} |
953 |
|
954 |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
955 |
if (sman_ == sman) { |
956 |
return; |
957 |
} |
958 |
delete sman_; |
959 |
sman_ = sman; |
960 |
|
961 |
Molecule* mol; |
962 |
RigidBody* rb; |
963 |
Atom* atom; |
964 |
SimInfo::MoleculeIterator mi; |
965 |
Molecule::RigidBodyIterator rbIter; |
966 |
Molecule::AtomIterator atomIter;; |
967 |
|
968 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
969 |
|
970 |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
971 |
atom->setSnapshotManager(sman_); |
972 |
} |
973 |
|
974 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
975 |
rb->setSnapshotManager(sman_); |
976 |
} |
977 |
} |
978 |
|
979 |
} |
980 |
|
981 |
Vector3d SimInfo::getComVel(){ |
982 |
SimInfo::MoleculeIterator i; |
983 |
Molecule* mol; |
984 |
|
985 |
Vector3d comVel(0.0); |
986 |
RealType totalMass = 0.0; |
987 |
|
988 |
|
989 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
990 |
RealType mass = mol->getMass(); |
991 |
totalMass += mass; |
992 |
comVel += mass * mol->getComVel(); |
993 |
} |
994 |
|
995 |
#ifdef IS_MPI |
996 |
RealType tmpMass = totalMass; |
997 |
Vector3d tmpComVel(comVel); |
998 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
999 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1000 |
#endif |
1001 |
|
1002 |
comVel /= totalMass; |
1003 |
|
1004 |
return comVel; |
1005 |
} |
1006 |
|
1007 |
Vector3d SimInfo::getCom(){ |
1008 |
SimInfo::MoleculeIterator i; |
1009 |
Molecule* mol; |
1010 |
|
1011 |
Vector3d com(0.0); |
1012 |
RealType totalMass = 0.0; |
1013 |
|
1014 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1015 |
RealType mass = mol->getMass(); |
1016 |
totalMass += mass; |
1017 |
com += mass * mol->getCom(); |
1018 |
} |
1019 |
|
1020 |
#ifdef IS_MPI |
1021 |
RealType tmpMass = totalMass; |
1022 |
Vector3d tmpCom(com); |
1023 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1024 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1025 |
#endif |
1026 |
|
1027 |
com /= totalMass; |
1028 |
|
1029 |
return com; |
1030 |
|
1031 |
} |
1032 |
|
1033 |
ostream& operator <<(ostream& o, SimInfo& info) { |
1034 |
|
1035 |
return o; |
1036 |
} |
1037 |
|
1038 |
|
1039 |
/* |
1040 |
Returns center of mass and center of mass velocity in one function call. |
1041 |
*/ |
1042 |
|
1043 |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1044 |
SimInfo::MoleculeIterator i; |
1045 |
Molecule* mol; |
1046 |
|
1047 |
|
1048 |
RealType totalMass = 0.0; |
1049 |
|
1050 |
|
1051 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1052 |
RealType mass = mol->getMass(); |
1053 |
totalMass += mass; |
1054 |
com += mass * mol->getCom(); |
1055 |
comVel += mass * mol->getComVel(); |
1056 |
} |
1057 |
|
1058 |
#ifdef IS_MPI |
1059 |
RealType tmpMass = totalMass; |
1060 |
Vector3d tmpCom(com); |
1061 |
Vector3d tmpComVel(comVel); |
1062 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1063 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1064 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1065 |
#endif |
1066 |
|
1067 |
com /= totalMass; |
1068 |
comVel /= totalMass; |
1069 |
} |
1070 |
|
1071 |
/* |
1072 |
Return intertia tensor for entire system and angular momentum Vector. |
1073 |
|
1074 |
|
1075 |
[ Ixx -Ixy -Ixz ] |
1076 |
J =| -Iyx Iyy -Iyz | |
1077 |
[ -Izx -Iyz Izz ] |
1078 |
*/ |
1079 |
|
1080 |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1081 |
|
1082 |
|
1083 |
RealType xx = 0.0; |
1084 |
RealType yy = 0.0; |
1085 |
RealType zz = 0.0; |
1086 |
RealType xy = 0.0; |
1087 |
RealType xz = 0.0; |
1088 |
RealType yz = 0.0; |
1089 |
Vector3d com(0.0); |
1090 |
Vector3d comVel(0.0); |
1091 |
|
1092 |
getComAll(com, comVel); |
1093 |
|
1094 |
SimInfo::MoleculeIterator i; |
1095 |
Molecule* mol; |
1096 |
|
1097 |
Vector3d thisq(0.0); |
1098 |
Vector3d thisv(0.0); |
1099 |
|
1100 |
RealType thisMass = 0.0; |
1101 |
|
1102 |
|
1103 |
|
1104 |
|
1105 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1106 |
|
1107 |
thisq = mol->getCom()-com; |
1108 |
thisv = mol->getComVel()-comVel; |
1109 |
thisMass = mol->getMass(); |
1110 |
// Compute moment of intertia coefficients. |
1111 |
xx += thisq[0]*thisq[0]*thisMass; |
1112 |
yy += thisq[1]*thisq[1]*thisMass; |
1113 |
zz += thisq[2]*thisq[2]*thisMass; |
1114 |
|
1115 |
// compute products of intertia |
1116 |
xy += thisq[0]*thisq[1]*thisMass; |
1117 |
xz += thisq[0]*thisq[2]*thisMass; |
1118 |
yz += thisq[1]*thisq[2]*thisMass; |
1119 |
|
1120 |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1121 |
|
1122 |
} |
1123 |
|
1124 |
|
1125 |
inertiaTensor(0,0) = yy + zz; |
1126 |
inertiaTensor(0,1) = -xy; |
1127 |
inertiaTensor(0,2) = -xz; |
1128 |
inertiaTensor(1,0) = -xy; |
1129 |
inertiaTensor(1,1) = xx + zz; |
1130 |
inertiaTensor(1,2) = -yz; |
1131 |
inertiaTensor(2,0) = -xz; |
1132 |
inertiaTensor(2,1) = -yz; |
1133 |
inertiaTensor(2,2) = xx + yy; |
1134 |
|
1135 |
#ifdef IS_MPI |
1136 |
Mat3x3d tmpI(inertiaTensor); |
1137 |
Vector3d tmpAngMom; |
1138 |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1139 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1140 |
#endif |
1141 |
|
1142 |
return; |
1143 |
} |
1144 |
|
1145 |
//Returns the angular momentum of the system |
1146 |
Vector3d SimInfo::getAngularMomentum(){ |
1147 |
|
1148 |
Vector3d com(0.0); |
1149 |
Vector3d comVel(0.0); |
1150 |
Vector3d angularMomentum(0.0); |
1151 |
|
1152 |
getComAll(com,comVel); |
1153 |
|
1154 |
SimInfo::MoleculeIterator i; |
1155 |
Molecule* mol; |
1156 |
|
1157 |
Vector3d thisr(0.0); |
1158 |
Vector3d thisp(0.0); |
1159 |
|
1160 |
RealType thisMass; |
1161 |
|
1162 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1163 |
thisMass = mol->getMass(); |
1164 |
thisr = mol->getCom()-com; |
1165 |
thisp = (mol->getComVel()-comVel)*thisMass; |
1166 |
|
1167 |
angularMomentum += cross( thisr, thisp ); |
1168 |
|
1169 |
} |
1170 |
|
1171 |
#ifdef IS_MPI |
1172 |
Vector3d tmpAngMom; |
1173 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1174 |
#endif |
1175 |
|
1176 |
return angularMomentum; |
1177 |
} |
1178 |
|
1179 |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1180 |
return IOIndexToIntegrableObject.at(index); |
1181 |
} |
1182 |
|
1183 |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1184 |
IOIndexToIntegrableObject= v; |
1185 |
} |
1186 |
|
1187 |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1188 |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1189 |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1190 |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1191 |
*/ |
1192 |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1193 |
Mat3x3d intTensor; |
1194 |
RealType det; |
1195 |
Vector3d dummyAngMom; |
1196 |
RealType sysconstants; |
1197 |
RealType geomCnst; |
1198 |
|
1199 |
geomCnst = 3.0/2.0; |
1200 |
/* Get the inertial tensor and angular momentum for free*/ |
1201 |
getInertiaTensor(intTensor,dummyAngMom); |
1202 |
|
1203 |
det = intTensor.determinant(); |
1204 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1205 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1206 |
return; |
1207 |
} |
1208 |
|
1209 |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1210 |
Mat3x3d intTensor; |
1211 |
Vector3d dummyAngMom; |
1212 |
RealType sysconstants; |
1213 |
RealType geomCnst; |
1214 |
|
1215 |
geomCnst = 3.0/2.0; |
1216 |
/* Get the inertial tensor and angular momentum for free*/ |
1217 |
getInertiaTensor(intTensor,dummyAngMom); |
1218 |
|
1219 |
detI = intTensor.determinant(); |
1220 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1221 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1222 |
return; |
1223 |
} |
1224 |
/* |
1225 |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1226 |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1227 |
sdByGlobalIndex_ = v; |
1228 |
} |
1229 |
|
1230 |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1231 |
//assert(index < nAtoms_ + nRigidBodies_); |
1232 |
return sdByGlobalIndex_.at(index); |
1233 |
} |
1234 |
*/ |
1235 |
int SimInfo::getNGlobalConstraints() { |
1236 |
int nGlobalConstraints; |
1237 |
#ifdef IS_MPI |
1238 |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1239 |
MPI_COMM_WORLD); |
1240 |
#else |
1241 |
nGlobalConstraints = nConstraints_; |
1242 |
#endif |
1243 |
return nGlobalConstraints; |
1244 |
} |
1245 |
|
1246 |
}//end namespace OpenMD |
1247 |
|