ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 764 by gezelter, Mon Nov 21 22:59:21 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 53 | Line 54
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/fCutoffPolicy.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 < #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 < #include "UseTheForce/doForces_interface.h"
61 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 < #include "UseTheForce/DarkSide/switcheroo_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61 <
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
70 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
74 <    std::map<int, std::set<int> >::iterator i = container.find(index);
75 <    std::set<int> result;
76 <    if (i != container.end()) {
77 <        result = i->second;
78 <    }
79 <
80 <    return result;
81 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 <                   ForceField* ff, Globals* simParams) :
73 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
86 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false) {
79 <
93 <            
94 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
95 <      MoleculeStamp* molStamp;
96 <      int nMolWithSameStamp;
97 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
98 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
99 <      CutoffGroupStamp* cgStamp;    
100 <      RigidBodyStamp* rbStamp;
101 <      int nRigidAtoms = 0;
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
82 <        molStamp = i->first;
83 <        nMolWithSameStamp = i->second;
84 <        
85 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
86 <
87 <        //calculate atoms in molecules
88 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
89 <
90 <
91 <        //calculate atoms in cutoff groups
92 <        int nAtomsInGroups = 0;
93 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
94 <        
95 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
96 <          cgStamp = molStamp->getCutoffGroup(j);
97 <          nAtomsInGroups += cgStamp->getNMembers();
98 <        }
99 <
100 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
101 <
102 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
103 <
104 <        //calculate atoms in rigid bodies
105 <        int nAtomsInRigidBodies = 0;
106 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
107 <        
130 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
131 <          rbStamp = molStamp->getRigidBody(j);
132 <          nAtomsInRigidBodies += rbStamp->getNMembers();
133 <        }
134 <
135 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
136 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
137 <        
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      nMolWithSameStamp = (*i)->getNMol();
95 >      
96 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
97 >      
98 >      //calculate atoms in molecules
99 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
100 >      
101 >      //calculate atoms in cutoff groups
102 >      int nAtomsInGroups = 0;
103 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104 >      
105 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 >        cgStamp = molStamp->getCutoffGroupStamp(j);
107 >        nAtomsInGroups += cgStamp->getNMembers();
108        }
109 <
110 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
111 <      //group therefore the total number of cutoff groups in the system is
112 <      //equal to the total number of atoms minus number of atoms belong to
113 <      //cutoff group defined in meta-data file plus the number of cutoff
114 <      //groups defined in meta-data file
115 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
116 <
117 <      //every free atom (atom does not belong to rigid bodies) is an
118 <      //integrable object therefore the total number of integrable objects
119 <      //in the system is equal to the total number of atoms minus number of
120 <      //atoms belong to rigid body defined in meta-data file plus the number
121 <      //of rigid bodies defined in meta-data file
122 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
123 <                                                + nGlobalRigidBodies_;
124 <  
125 <      nGlobalMols_ = molStampIds_.size();
156 <
157 < #ifdef IS_MPI    
158 <      molToProcMap_.resize(nGlobalMols_);
159 < #endif
160 <
109 >      
110 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 >      
112 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113 >      
114 >      //calculate atoms in rigid bodies
115 >      int nAtomsInRigidBodies = 0;
116 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 >      
118 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
119 >        rbStamp = molStamp->getRigidBodyStamp(j);
120 >        nAtomsInRigidBodies += rbStamp->getNMembers();
121 >      }
122 >      
123 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 >      
126      }
127 +    
128 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
129 +    //group therefore the total number of cutoff groups in the system is
130 +    //equal to the total number of atoms minus number of atoms belong to
131 +    //cutoff group defined in meta-data file plus the number of cutoff
132 +    //groups defined in meta-data file
133  
134 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135 +    
136 +    //every free atom (atom does not belong to rigid bodies) is an
137 +    //integrable object therefore the total number of integrable objects
138 +    //in the system is equal to the total number of atoms minus number of
139 +    //atoms belong to rigid body defined in meta-data file plus the number
140 +    //of rigid bodies defined in meta-data file
141 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 +      + nGlobalRigidBodies_;
143 +    
144 +    nGlobalMols_ = molStampIds_.size();
145 +    molToProcMap_.resize(nGlobalMols_);
146 +  }
147 +  
148    SimInfo::~SimInfo() {
149 <    std::map<int, Molecule*>::iterator i;
149 >    map<int, Molecule*>::iterator i;
150      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151        delete i->second;
152      }
153      molecules_.clear();
154        
170    delete stamps_;
155      delete sman_;
156      delete simParams_;
157      delete forceField_;
158    }
159  
176  int SimInfo::getNGlobalConstraints() {
177    int nGlobalConstraints;
178 #ifdef IS_MPI
179    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180                  MPI_COMM_WORLD);    
181 #else
182    nGlobalConstraints =  nConstraints_;
183 #endif
184    return nGlobalConstraints;
185  }
160  
161    bool SimInfo::addMolecule(Molecule* mol) {
162      MoleculeIterator i;
163 <
163 >    
164      i = molecules_.find(mol->getGlobalIndex());
165      if (i == molecules_.end() ) {
166 <
167 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
168 <        
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169        nAtoms_ += mol->getNAtoms();
170        nBonds_ += mol->getNBonds();
171        nBends_ += mol->getNBends();
172        nTorsions_ += mol->getNTorsions();
173 +      nInversions_ += mol->getNInversions();
174        nRigidBodies_ += mol->getNRigidBodies();
175        nIntegrableObjects_ += mol->getNIntegrableObjects();
176        nCutoffGroups_ += mol->getNCutoffGroups();
177        nConstraints_ += mol->getNConstraintPairs();
178 <
179 <      addExcludePairs(mol);
180 <        
178 >      
179 >      addInteractionPairs(mol);
180 >      
181        return true;
182      } else {
183        return false;
184      }
185    }
186 <
186 >  
187    bool SimInfo::removeMolecule(Molecule* mol) {
188      MoleculeIterator i;
189      i = molecules_.find(mol->getGlobalIndex());
# Line 221 | Line 196 | namespace oopse {
196        nBonds_ -= mol->getNBonds();
197        nBends_ -= mol->getNBends();
198        nTorsions_ -= mol->getNTorsions();
199 +      nInversions_ -= mol->getNInversions();
200        nRigidBodies_ -= mol->getNRigidBodies();
201        nIntegrableObjects_ -= mol->getNIntegrableObjects();
202        nCutoffGroups_ -= mol->getNCutoffGroups();
203        nConstraints_ -= mol->getNConstraintPairs();
204  
205 <      removeExcludePairs(mol);
205 >      removeInteractionPairs(mol);
206        molecules_.erase(mol->getGlobalIndex());
207  
208        delete mol;
# Line 235 | Line 211 | namespace oopse {
211      } else {
212        return false;
213      }
238
239
214    }    
215  
216          
# Line 252 | Line 226 | namespace oopse {
226  
227  
228    void SimInfo::calcNdf() {
229 <    int ndf_local;
229 >    int ndf_local, nfq_local;
230      MoleculeIterator i;
231 <    std::vector<StuntDouble*>::iterator j;
231 >    vector<StuntDouble*>::iterator j;
232 >    vector<Atom*>::iterator k;
233 >
234      Molecule* mol;
235 <    StuntDouble* integrableObject;
235 >    StuntDouble* sd;
236 >    Atom* atom;
237  
238      ndf_local = 0;
239 +    nfq_local = 0;
240      
241      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
264      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
265           integrableObject = mol->nextIntegrableObject(j)) {
242  
243 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
244 +           sd = mol->nextIntegrableObject(j)) {
245 +
246          ndf_local += 3;
247  
248 <        if (integrableObject->isDirectional()) {
249 <          if (integrableObject->isLinear()) {
248 >        if (sd->isDirectional()) {
249 >          if (sd->isLinear()) {
250              ndf_local += 2;
251            } else {
252              ndf_local += 3;
253            }
254          }
255 <            
256 <      }//end for (integrableObject)
257 <    }// end for (mol)
255 >      }
256 >
257 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
258 >           atom = mol->nextFluctuatingCharge(k)) {
259 >        if (atom->isFluctuatingCharge()) {
260 >          nfq_local++;
261 >        }
262 >      }
263 >    }
264      
265 +    ndfLocal_ = ndf_local;
266 +
267      // n_constraints is local, so subtract them on each processor
268      ndf_local -= nConstraints_;
269  
270   #ifdef IS_MPI
271 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
271 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
272 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
273 >                              MPI::INT, MPI::SUM);
274   #else
275      ndf_ = ndf_local;
276 +    nGlobalFluctuatingCharges_ = nfq_local;
277   #endif
278  
279      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 292 | Line 282 | namespace oopse {
282  
283    }
284  
285 +  int SimInfo::getFdf() {
286 + #ifdef IS_MPI
287 +    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
288 + #else
289 +    fdf_ = fdf_local;
290 + #endif
291 +    return fdf_;
292 +  }
293 +  
294 +  unsigned int SimInfo::getNLocalCutoffGroups(){
295 +    int nLocalCutoffAtoms = 0;
296 +    Molecule* mol;
297 +    MoleculeIterator mi;
298 +    CutoffGroup* cg;
299 +    Molecule::CutoffGroupIterator ci;
300 +    
301 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
302 +      
303 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
304 +           cg = mol->nextCutoffGroup(ci)) {
305 +        nLocalCutoffAtoms += cg->getNumAtom();
306 +        
307 +      }        
308 +    }
309 +    
310 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
311 +  }
312 +    
313    void SimInfo::calcNdfRaw() {
314      int ndfRaw_local;
315  
316      MoleculeIterator i;
317 <    std::vector<StuntDouble*>::iterator j;
317 >    vector<StuntDouble*>::iterator j;
318      Molecule* mol;
319 <    StuntDouble* integrableObject;
319 >    StuntDouble* sd;
320  
321      // Raw degrees of freedom that we have to set
322      ndfRaw_local = 0;
323      
324      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
307      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
308           integrableObject = mol->nextIntegrableObject(j)) {
325  
326 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
327 +           sd = mol->nextIntegrableObject(j)) {
328 +
329          ndfRaw_local += 3;
330  
331 <        if (integrableObject->isDirectional()) {
332 <          if (integrableObject->isLinear()) {
331 >        if (sd->isDirectional()) {
332 >          if (sd->isLinear()) {
333              ndfRaw_local += 2;
334            } else {
335              ndfRaw_local += 3;
# Line 321 | Line 340 | namespace oopse {
340      }
341      
342   #ifdef IS_MPI
343 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
343 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
344   #else
345      ndfRaw_ = ndfRaw_local;
346   #endif
# Line 334 | Line 353 | namespace oopse {
353  
354  
355   #ifdef IS_MPI
356 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
356 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
357 >                              MPI::INT, MPI::SUM);
358   #else
359      ndfTrans_ = ndfTrans_local;
360   #endif
# Line 343 | Line 363 | namespace oopse {
363  
364    }
365  
366 <  void SimInfo::addExcludePairs(Molecule* mol) {
367 <    std::vector<Bond*>::iterator bondIter;
368 <    std::vector<Bend*>::iterator bendIter;
369 <    std::vector<Torsion*>::iterator torsionIter;
366 >  void SimInfo::addInteractionPairs(Molecule* mol) {
367 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
368 >    vector<Bond*>::iterator bondIter;
369 >    vector<Bend*>::iterator bendIter;
370 >    vector<Torsion*>::iterator torsionIter;
371 >    vector<Inversion*>::iterator inversionIter;
372      Bond* bond;
373      Bend* bend;
374      Torsion* torsion;
375 +    Inversion* inversion;
376      int a;
377      int b;
378      int c;
379      int d;
380  
381 <    std::map<int, std::set<int> > atomGroups;
381 >    // atomGroups can be used to add special interaction maps between
382 >    // groups of atoms that are in two separate rigid bodies.
383 >    // However, most site-site interactions between two rigid bodies
384 >    // are probably not special, just the ones between the physically
385 >    // bonded atoms.  Interactions *within* a single rigid body should
386 >    // always be excluded.  These are done at the bottom of this
387 >    // function.
388  
389 +    map<int, set<int> > atomGroups;
390      Molecule::RigidBodyIterator rbIter;
391      RigidBody* rb;
392      Molecule::IntegrableObjectIterator ii;
393 <    StuntDouble* integrableObject;
393 >    StuntDouble* sd;
394      
395 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
396 <           integrableObject = mol->nextIntegrableObject(ii)) {
397 <
398 <      if (integrableObject->isRigidBody()) {
399 <          rb = static_cast<RigidBody*>(integrableObject);
400 <          std::vector<Atom*> atoms = rb->getAtoms();
401 <          std::set<int> rigidAtoms;
402 <          for (int i = 0; i < atoms.size(); ++i) {
403 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
404 <          }
405 <          for (int i = 0; i < atoms.size(); ++i) {
406 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
407 <          }      
395 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
396 >         sd = mol->nextIntegrableObject(ii)) {
397 >      
398 >      if (sd->isRigidBody()) {
399 >        rb = static_cast<RigidBody*>(sd);
400 >        vector<Atom*> atoms = rb->getAtoms();
401 >        set<int> rigidAtoms;
402 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
403 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
404 >        }
405 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
406 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
407 >        }      
408        } else {
409 <        std::set<int> oneAtomSet;
410 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
411 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
409 >        set<int> oneAtomSet;
410 >        oneAtomSet.insert(sd->getGlobalIndex());
411 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
412        }
413      }  
414 +          
415 +    for (bond= mol->beginBond(bondIter); bond != NULL;
416 +         bond = mol->nextBond(bondIter)) {
417  
385    
386    
387    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
418        a = bond->getAtomA()->getGlobalIndex();
419 <      b = bond->getAtomB()->getGlobalIndex();        
420 <      exclude_.addPair(a, b);
419 >      b = bond->getAtomB()->getGlobalIndex();  
420 >    
421 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
422 >        oneTwoInteractions_.addPair(a, b);
423 >      } else {
424 >        excludedInteractions_.addPair(a, b);
425 >      }
426      }
427  
428 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
428 >    for (bend= mol->beginBend(bendIter); bend != NULL;
429 >         bend = mol->nextBend(bendIter)) {
430 >
431        a = bend->getAtomA()->getGlobalIndex();
432        b = bend->getAtomB()->getGlobalIndex();        
433        c = bend->getAtomC()->getGlobalIndex();
397      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
398      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
399      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
400
401      exclude_.addPairs(rigidSetA, rigidSetB);
402      exclude_.addPairs(rigidSetA, rigidSetC);
403      exclude_.addPairs(rigidSetB, rigidSetC);
434        
435 <      //exclude_.addPair(a, b);
436 <      //exclude_.addPair(a, c);
437 <      //exclude_.addPair(b, c);        
435 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
436 >        oneTwoInteractions_.addPair(a, b);      
437 >        oneTwoInteractions_.addPair(b, c);
438 >      } else {
439 >        excludedInteractions_.addPair(a, b);
440 >        excludedInteractions_.addPair(b, c);
441 >      }
442 >
443 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
444 >        oneThreeInteractions_.addPair(a, c);      
445 >      } else {
446 >        excludedInteractions_.addPair(a, c);
447 >      }
448      }
449  
450 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
450 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
451 >         torsion = mol->nextTorsion(torsionIter)) {
452 >
453        a = torsion->getAtomA()->getGlobalIndex();
454        b = torsion->getAtomB()->getGlobalIndex();        
455        c = torsion->getAtomC()->getGlobalIndex();        
456 <      d = torsion->getAtomD()->getGlobalIndex();        
415 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
416 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
417 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
418 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
456 >      d = torsion->getAtomD()->getGlobalIndex();      
457  
458 <      exclude_.addPairs(rigidSetA, rigidSetB);
459 <      exclude_.addPairs(rigidSetA, rigidSetC);
460 <      exclude_.addPairs(rigidSetA, rigidSetD);
461 <      exclude_.addPairs(rigidSetB, rigidSetC);
462 <      exclude_.addPairs(rigidSetB, rigidSetD);
463 <      exclude_.addPairs(rigidSetC, rigidSetD);
458 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
459 >        oneTwoInteractions_.addPair(a, b);      
460 >        oneTwoInteractions_.addPair(b, c);
461 >        oneTwoInteractions_.addPair(c, d);
462 >      } else {
463 >        excludedInteractions_.addPair(a, b);
464 >        excludedInteractions_.addPair(b, c);
465 >        excludedInteractions_.addPair(c, d);
466 >      }
467  
468 <      /*
469 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
470 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
471 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
472 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
473 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
474 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
475 <        
476 <      
477 <      exclude_.addPair(a, b);
478 <      exclude_.addPair(a, c);
479 <      exclude_.addPair(a, d);
480 <      exclude_.addPair(b, c);
440 <      exclude_.addPair(b, d);
441 <      exclude_.addPair(c, d);        
442 <      */
468 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
469 >        oneThreeInteractions_.addPair(a, c);      
470 >        oneThreeInteractions_.addPair(b, d);      
471 >      } else {
472 >        excludedInteractions_.addPair(a, c);
473 >        excludedInteractions_.addPair(b, d);
474 >      }
475 >
476 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
477 >        oneFourInteractions_.addPair(a, d);      
478 >      } else {
479 >        excludedInteractions_.addPair(a, d);
480 >      }
481      }
482  
483 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
484 <      std::vector<Atom*> atoms = rb->getAtoms();
485 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
486 <        for (int j = i + 1; j < atoms.size(); ++j) {
483 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
484 >         inversion = mol->nextInversion(inversionIter)) {
485 >
486 >      a = inversion->getAtomA()->getGlobalIndex();
487 >      b = inversion->getAtomB()->getGlobalIndex();        
488 >      c = inversion->getAtomC()->getGlobalIndex();        
489 >      d = inversion->getAtomD()->getGlobalIndex();        
490 >
491 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
492 >        oneTwoInteractions_.addPair(a, b);      
493 >        oneTwoInteractions_.addPair(a, c);
494 >        oneTwoInteractions_.addPair(a, d);
495 >      } else {
496 >        excludedInteractions_.addPair(a, b);
497 >        excludedInteractions_.addPair(a, c);
498 >        excludedInteractions_.addPair(a, d);
499 >      }
500 >
501 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
502 >        oneThreeInteractions_.addPair(b, c);    
503 >        oneThreeInteractions_.addPair(b, d);    
504 >        oneThreeInteractions_.addPair(c, d);      
505 >      } else {
506 >        excludedInteractions_.addPair(b, c);
507 >        excludedInteractions_.addPair(b, d);
508 >        excludedInteractions_.addPair(c, d);
509 >      }
510 >    }
511 >
512 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
513 >         rb = mol->nextRigidBody(rbIter)) {
514 >      vector<Atom*> atoms = rb->getAtoms();
515 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
516 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
517            a = atoms[i]->getGlobalIndex();
518            b = atoms[j]->getGlobalIndex();
519 <          exclude_.addPair(a, b);
519 >          excludedInteractions_.addPair(a, b);
520          }
521        }
522      }        
523  
524    }
525  
526 <  void SimInfo::removeExcludePairs(Molecule* mol) {
527 <    std::vector<Bond*>::iterator bondIter;
528 <    std::vector<Bend*>::iterator bendIter;
529 <    std::vector<Torsion*>::iterator torsionIter;
526 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
527 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
528 >    vector<Bond*>::iterator bondIter;
529 >    vector<Bend*>::iterator bendIter;
530 >    vector<Torsion*>::iterator torsionIter;
531 >    vector<Inversion*>::iterator inversionIter;
532      Bond* bond;
533      Bend* bend;
534      Torsion* torsion;
535 +    Inversion* inversion;
536      int a;
537      int b;
538      int c;
539      int d;
540  
541 <    std::map<int, std::set<int> > atomGroups;
471 <
541 >    map<int, set<int> > atomGroups;
542      Molecule::RigidBodyIterator rbIter;
543      RigidBody* rb;
544      Molecule::IntegrableObjectIterator ii;
545 <    StuntDouble* integrableObject;
545 >    StuntDouble* sd;
546      
547 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
548 <           integrableObject = mol->nextIntegrableObject(ii)) {
549 <
550 <      if (integrableObject->isRigidBody()) {
551 <          rb = static_cast<RigidBody*>(integrableObject);
552 <          std::vector<Atom*> atoms = rb->getAtoms();
553 <          std::set<int> rigidAtoms;
554 <          for (int i = 0; i < atoms.size(); ++i) {
555 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
556 <          }
557 <          for (int i = 0; i < atoms.size(); ++i) {
558 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
559 <          }      
547 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
548 >         sd = mol->nextIntegrableObject(ii)) {
549 >      
550 >      if (sd->isRigidBody()) {
551 >        rb = static_cast<RigidBody*>(sd);
552 >        vector<Atom*> atoms = rb->getAtoms();
553 >        set<int> rigidAtoms;
554 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
555 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
556 >        }
557 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
558 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
559 >        }      
560        } else {
561 <        std::set<int> oneAtomSet;
562 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
563 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
561 >        set<int> oneAtomSet;
562 >        oneAtomSet.insert(sd->getGlobalIndex());
563 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
564        }
565      }  
566  
567 <    
568 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
567 >    for (bond= mol->beginBond(bondIter); bond != NULL;
568 >         bond = mol->nextBond(bondIter)) {
569 >      
570        a = bond->getAtomA()->getGlobalIndex();
571 <      b = bond->getAtomB()->getGlobalIndex();        
572 <      exclude_.removePair(a, b);
571 >      b = bond->getAtomB()->getGlobalIndex();  
572 >    
573 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
574 >        oneTwoInteractions_.removePair(a, b);
575 >      } else {
576 >        excludedInteractions_.removePair(a, b);
577 >      }
578      }
579  
580 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
580 >    for (bend= mol->beginBend(bendIter); bend != NULL;
581 >         bend = mol->nextBend(bendIter)) {
582 >
583        a = bend->getAtomA()->getGlobalIndex();
584        b = bend->getAtomB()->getGlobalIndex();        
585        c = bend->getAtomC()->getGlobalIndex();
508
509      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
510      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
511      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
512
513      exclude_.removePairs(rigidSetA, rigidSetB);
514      exclude_.removePairs(rigidSetA, rigidSetC);
515      exclude_.removePairs(rigidSetB, rigidSetC);
586        
587 <      //exclude_.removePair(a, b);
588 <      //exclude_.removePair(a, c);
589 <      //exclude_.removePair(b, c);        
587 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
588 >        oneTwoInteractions_.removePair(a, b);      
589 >        oneTwoInteractions_.removePair(b, c);
590 >      } else {
591 >        excludedInteractions_.removePair(a, b);
592 >        excludedInteractions_.removePair(b, c);
593 >      }
594 >
595 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
596 >        oneThreeInteractions_.removePair(a, c);      
597 >      } else {
598 >        excludedInteractions_.removePair(a, c);
599 >      }
600      }
601  
602 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
602 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
603 >         torsion = mol->nextTorsion(torsionIter)) {
604 >
605        a = torsion->getAtomA()->getGlobalIndex();
606        b = torsion->getAtomB()->getGlobalIndex();        
607        c = torsion->getAtomC()->getGlobalIndex();        
608 <      d = torsion->getAtomD()->getGlobalIndex();        
608 >      d = torsion->getAtomD()->getGlobalIndex();      
609 >  
610 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
611 >        oneTwoInteractions_.removePair(a, b);      
612 >        oneTwoInteractions_.removePair(b, c);
613 >        oneTwoInteractions_.removePair(c, d);
614 >      } else {
615 >        excludedInteractions_.removePair(a, b);
616 >        excludedInteractions_.removePair(b, c);
617 >        excludedInteractions_.removePair(c, d);
618 >      }
619  
620 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
621 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
622 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
623 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
620 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
621 >        oneThreeInteractions_.removePair(a, c);      
622 >        oneThreeInteractions_.removePair(b, d);      
623 >      } else {
624 >        excludedInteractions_.removePair(a, c);
625 >        excludedInteractions_.removePair(b, d);
626 >      }
627  
628 <      exclude_.removePairs(rigidSetA, rigidSetB);
629 <      exclude_.removePairs(rigidSetA, rigidSetC);
630 <      exclude_.removePairs(rigidSetA, rigidSetD);
631 <      exclude_.removePairs(rigidSetB, rigidSetC);
632 <      exclude_.removePairs(rigidSetB, rigidSetD);
633 <      exclude_.removePairs(rigidSetC, rigidSetD);
539 <
540 <      /*
541 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
542 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
543 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
544 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
545 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
546 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
628 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
629 >        oneFourInteractions_.removePair(a, d);      
630 >      } else {
631 >        excludedInteractions_.removePair(a, d);
632 >      }
633 >    }
634  
635 <      
636 <      exclude_.removePair(a, b);
637 <      exclude_.removePair(a, c);
638 <      exclude_.removePair(a, d);
639 <      exclude_.removePair(b, c);
640 <      exclude_.removePair(b, d);
641 <      exclude_.removePair(c, d);        
642 <      */
635 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
636 >         inversion = mol->nextInversion(inversionIter)) {
637 >
638 >      a = inversion->getAtomA()->getGlobalIndex();
639 >      b = inversion->getAtomB()->getGlobalIndex();        
640 >      c = inversion->getAtomC()->getGlobalIndex();        
641 >      d = inversion->getAtomD()->getGlobalIndex();        
642 >
643 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
644 >        oneTwoInteractions_.removePair(a, b);      
645 >        oneTwoInteractions_.removePair(a, c);
646 >        oneTwoInteractions_.removePair(a, d);
647 >      } else {
648 >        excludedInteractions_.removePair(a, b);
649 >        excludedInteractions_.removePair(a, c);
650 >        excludedInteractions_.removePair(a, d);
651 >      }
652 >
653 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
654 >        oneThreeInteractions_.removePair(b, c);    
655 >        oneThreeInteractions_.removePair(b, d);    
656 >        oneThreeInteractions_.removePair(c, d);      
657 >      } else {
658 >        excludedInteractions_.removePair(b, c);
659 >        excludedInteractions_.removePair(b, d);
660 >        excludedInteractions_.removePair(c, d);
661 >      }
662      }
663  
664 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
665 <      std::vector<Atom*> atoms = rb->getAtoms();
666 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
667 <        for (int j = i + 1; j < atoms.size(); ++j) {
664 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
665 >         rb = mol->nextRigidBody(rbIter)) {
666 >      vector<Atom*> atoms = rb->getAtoms();
667 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
668 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
669            a = atoms[i]->getGlobalIndex();
670            b = atoms[j]->getGlobalIndex();
671 <          exclude_.removePair(a, b);
671 >          excludedInteractions_.removePair(a, b);
672          }
673        }
674      }        
675 <
675 >    
676    }
677 <
678 <
677 >  
678 >  
679    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
680      int curStampId;
681 <
681 >    
682      //index from 0
683      curStampId = moleculeStamps_.size();
684  
# Line 579 | Line 686 | namespace oopse {
686      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
687    }
688  
582  void SimInfo::update() {
689  
690 <    setupSimType();
691 <
692 < #ifdef IS_MPI
693 <    setupFortranParallel();
694 < #endif
695 <
696 <    setupFortranSim();
697 <
698 <    //setup fortran force field
593 <    /** @deprecate */    
594 <    int isError = 0;
595 <    
596 <    setupElectrostaticSummationMethod( isError );
597 <    setupSwitchingFunction();
598 <
599 <    if(isError){
600 <      sprintf( painCave.errMsg,
601 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
602 <      painCave.isFatal = 1;
603 <      simError();
604 <    }
605 <  
606 <    
607 <    setupCutoff();
608 <
690 >  /**
691 >   * update
692 >   *
693 >   *  Performs the global checks and variable settings after the
694 >   *  objects have been created.
695 >   *
696 >   */
697 >  void SimInfo::update() {  
698 >    setupSimVariables();
699      calcNdf();
700      calcNdfRaw();
701      calcNdfTrans();
612
613    fortranInitialized_ = true;
702    }
703 <
704 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
703 >  
704 >  /**
705 >   * getSimulatedAtomTypes
706 >   *
707 >   * Returns an STL set of AtomType* that are actually present in this
708 >   * simulation.  Must query all processors to assemble this information.
709 >   *
710 >   */
711 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
712      SimInfo::MoleculeIterator mi;
713      Molecule* mol;
714      Molecule::AtomIterator ai;
715      Atom* atom;
716 <    std::set<AtomType*> atomTypes;
717 <
716 >    set<AtomType*> atomTypes;
717 >    
718      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
719 <
720 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
719 >      for(atom = mol->beginAtom(ai); atom != NULL;
720 >          atom = mol->nextAtom(ai)) {
721          atomTypes.insert(atom->getAtomType());
722 <      }
723 <        
724 <    }
722 >      }      
723 >    }    
724 >    
725 > #ifdef IS_MPI
726  
727 <    return atomTypes;        
728 <  }
633 <
634 <  void SimInfo::setupSimType() {
635 <    std::set<AtomType*>::iterator i;
636 <    std::set<AtomType*> atomTypes;
637 <    atomTypes = getUniqueAtomTypes();
727 >    // loop over the found atom types on this processor, and add their
728 >    // numerical idents to a vector:
729      
730 <    int useLennardJones = 0;
731 <    int useElectrostatic = 0;
732 <    int useEAM = 0;
733 <    int useSC = 0;
643 <    int useCharge = 0;
644 <    int useDirectional = 0;
645 <    int useDipole = 0;
646 <    int useGayBerne = 0;
647 <    int useSticky = 0;
648 <    int useStickyPower = 0;
649 <    int useShape = 0;
650 <    int useFLARB = 0; //it is not in AtomType yet
651 <    int useDirectionalAtom = 0;    
652 <    int useElectrostatics = 0;
653 <    //usePBC and useRF are from simParams
654 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
655 <    int useRF;
656 <    int useSF;
657 <    std::string myMethod;
730 >    vector<int> foundTypes;
731 >    set<AtomType*>::iterator i;
732 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
733 >      foundTypes.push_back( (*i)->getIdent() );
734  
735 <    // set the useRF logical
736 <    useRF = 0;
661 <    useSF = 0;
735 >    // count_local holds the number of found types on this processor
736 >    int count_local = foundTypes.size();
737  
738 +    int nproc = MPI::COMM_WORLD.Get_size();
739  
740 <    if (simParams_->haveElectrostaticSummationMethod()) {
741 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
742 <      toUpper(myMethod);
743 <      if (myMethod == "REACTION_FIELD") {
744 <        useRF=1;
745 <      } else {
746 <        if (myMethod == "SHIFTED_FORCE") {
747 <          useSF = 1;
748 <        }
749 <      }
740 >    // we need arrays to hold the counts and displacement vectors for
741 >    // all processors
742 >    vector<int> counts(nproc, 0);
743 >    vector<int> disps(nproc, 0);
744 >
745 >    // fill the counts array
746 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
747 >                              1, MPI::INT);
748 >  
749 >    // use the processor counts to compute the displacement array
750 >    disps[0] = 0;    
751 >    int totalCount = counts[0];
752 >    for (int iproc = 1; iproc < nproc; iproc++) {
753 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
754 >      totalCount += counts[iproc];
755      }
756  
757 <    //loop over all of the atom types
758 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
759 <      useLennardJones |= (*i)->isLennardJones();
760 <      useElectrostatic |= (*i)->isElectrostatic();
761 <      useEAM |= (*i)->isEAM();
762 <      useSC |= (*i)->isSC();
763 <      useCharge |= (*i)->isCharge();
683 <      useDirectional |= (*i)->isDirectional();
684 <      useDipole |= (*i)->isDipole();
685 <      useGayBerne |= (*i)->isGayBerne();
686 <      useSticky |= (*i)->isSticky();
687 <      useStickyPower |= (*i)->isStickyPower();
688 <      useShape |= (*i)->isShape();
689 <    }
757 >    // we need a (possibly redundant) set of all found types:
758 >    vector<int> ftGlobal(totalCount);
759 >    
760 >    // now spray out the foundTypes to all the other processors:    
761 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
762 >                               &ftGlobal[0], &counts[0], &disps[0],
763 >                               MPI::INT);
764  
765 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
692 <      useDirectionalAtom = 1;
693 <    }
765 >    vector<int>::iterator j;
766  
767 <    if (useCharge || useDipole) {
768 <      useElectrostatics = 1;
769 <    }
767 >    // foundIdents is a stl set, so inserting an already found ident
768 >    // will have no effect.
769 >    set<int> foundIdents;
770  
771 < #ifdef IS_MPI    
772 <    int temp;
771 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
772 >      foundIdents.insert((*j));
773 >    
774 >    // now iterate over the foundIdents and get the actual atom types
775 >    // that correspond to these:
776 >    set<int>::iterator it;
777 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
778 >      atomTypes.insert( forceField_->getAtomType((*it)) );
779 >
780 > #endif
781  
782 <    temp = usePBC;
783 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
782 >    return atomTypes;        
783 >  }
784  
705    temp = useDirectionalAtom;
706    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
785  
786 <    temp = useLennardJones;
787 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
786 >  int getGlobalCountOfType(AtomType* atype) {
787 >    /*
788 >    set<AtomType*> atypes = getSimulatedAtomTypes();
789 >    map<AtomType*, int> counts_;
790  
791 <    temp = useElectrostatics;
792 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
791 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
792 >      for(atom = mol->beginAtom(ai); atom != NULL;
793 >          atom = mol->nextAtom(ai)) {
794 >        atom->getAtomType();
795 >      }      
796 >    }    
797 >    */
798 >    return 0;
799 >  }
800  
801 <    temp = useCharge;
802 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
801 >  void SimInfo::setupSimVariables() {
802 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
803 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
804 >    // parameter is true
805 >    calcBoxDipole_ = false;
806 >    if ( simParams_->haveAccumulateBoxDipole() )
807 >      if ( simParams_->getAccumulateBoxDipole() ) {
808 >        calcBoxDipole_ = true;      
809 >      }
810 >    
811 >    set<AtomType*>::iterator i;
812 >    set<AtomType*> atomTypes;
813 >    atomTypes = getSimulatedAtomTypes();    
814 >    bool usesElectrostatic = false;
815 >    bool usesMetallic = false;
816 >    bool usesDirectional = false;
817 >    bool usesFluctuatingCharges =  false;
818 >    //loop over all of the atom types
819 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
820 >      usesElectrostatic |= (*i)->isElectrostatic();
821 >      usesMetallic |= (*i)->isMetal();
822 >      usesDirectional |= (*i)->isDirectional();
823 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
824 >    }
825  
826 <    temp = useDipole;
827 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
828 <
829 <    temp = useSticky;
830 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
831 <
832 <    temp = useStickyPower;
833 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
826 > #ifdef IS_MPI
827 >    bool temp;
828 >    temp = usesDirectional;
829 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
830 >                              MPI::LOR);
831 >        
832 >    temp = usesMetallic;
833 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
834 >                              MPI::LOR);
835      
836 <    temp = useGayBerne;
837 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
836 >    temp = usesElectrostatic;
837 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
838 >                              MPI::LOR);
839  
840 <    temp = useEAM;
841 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
840 >    temp = usesFluctuatingCharges;
841 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
842 >                              MPI::LOR);
843 > #else
844  
845 <    temp = useSC;
846 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
845 >    usesDirectionalAtoms_ = usesDirectional;
846 >    usesMetallicAtoms_ = usesMetallic;
847 >    usesElectrostaticAtoms_ = usesElectrostatic;
848 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
849 >
850 > #endif
851      
852 <    temp = useShape;
853 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
852 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
853 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
854 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
855 >  }
856  
738    temp = useFLARB;
739    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
857  
858 <    temp = useRF;
859 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
858 >  vector<int> SimInfo::getGlobalAtomIndices() {
859 >    SimInfo::MoleculeIterator mi;
860 >    Molecule* mol;
861 >    Molecule::AtomIterator ai;
862 >    Atom* atom;
863  
864 <    temp = useSF;
865 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
864 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
865 >    
866 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
867 >      
868 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
869 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
870 >      }
871 >    }
872 >    return GlobalAtomIndices;
873 >  }
874  
747 #endif
875  
876 <    fInfo_.SIM_uses_PBC = usePBC;    
877 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
878 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
879 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
880 <    fInfo_.SIM_uses_Charges = useCharge;
754 <    fInfo_.SIM_uses_Dipoles = useDipole;
755 <    fInfo_.SIM_uses_Sticky = useSticky;
756 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
757 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
758 <    fInfo_.SIM_uses_EAM = useEAM;
759 <    fInfo_.SIM_uses_SC = useSC;
760 <    fInfo_.SIM_uses_Shapes = useShape;
761 <    fInfo_.SIM_uses_FLARB = useFLARB;
762 <    fInfo_.SIM_uses_RF = useRF;
763 <    fInfo_.SIM_uses_SF = useSF;
876 >  vector<int> SimInfo::getGlobalGroupIndices() {
877 >    SimInfo::MoleculeIterator mi;
878 >    Molecule* mol;
879 >    Molecule::CutoffGroupIterator ci;
880 >    CutoffGroup* cg;
881  
882 <    if( myMethod == "REACTION_FIELD") {
882 >    vector<int> GlobalGroupIndices;
883 >    
884 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
885        
886 <      if (simParams_->haveDielectric()) {
887 <        fInfo_.dielect = simParams_->getDielectric();
888 <      } else {
889 <        sprintf(painCave.errMsg,
890 <                "SimSetup Error: No Dielectric constant was set.\n"
891 <                "\tYou are trying to use Reaction Field without"
773 <                "\tsetting a dielectric constant!\n");
774 <        painCave.isFatal = 1;
775 <        simError();
776 <      }      
886 >      //local index of cutoff group is trivial, it only depends on the
887 >      //order of travesing
888 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
889 >           cg = mol->nextCutoffGroup(ci)) {
890 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
891 >      }        
892      }
893 <
893 >    return GlobalGroupIndices;
894    }
895  
781  void SimInfo::setupFortranSim() {
782    int isError;
783    int nExclude;
784    std::vector<int> fortranGlobalGroupMembership;
785    
786    nExclude = exclude_.getSize();
787    isError = 0;
896  
897 <    //globalGroupMembership_ is filled by SimCreator    
790 <    for (int i = 0; i < nGlobalAtoms_; i++) {
791 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
792 <    }
897 >  void SimInfo::prepareTopology() {
898  
899      //calculate mass ratio of cutoff group
795    std::vector<double> mfact;
900      SimInfo::MoleculeIterator mi;
901      Molecule* mol;
902      Molecule::CutoffGroupIterator ci;
903      CutoffGroup* cg;
904      Molecule::AtomIterator ai;
905      Atom* atom;
906 <    double totalMass;
906 >    RealType totalMass;
907  
908 <    //to avoid memory reallocation, reserve enough space for mfact
909 <    mfact.reserve(getNCutoffGroups());
908 >    /**
909 >     * The mass factor is the relative mass of an atom to the total
910 >     * mass of the cutoff group it belongs to.  By default, all atoms
911 >     * are their own cutoff groups, and therefore have mass factors of
912 >     * 1.  We need some special handling for massless atoms, which
913 >     * will be treated as carrying the entire mass of the cutoff
914 >     * group.
915 >     */
916 >    massFactors_.clear();
917 >    massFactors_.resize(getNAtoms(), 1.0);
918      
919      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
920 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
920 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
921 >           cg = mol->nextCutoffGroup(ci)) {
922  
923          totalMass = cg->getMass();
924          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
925            // Check for massless groups - set mfact to 1 if true
926 <          if (totalMass != 0)
927 <            mfact.push_back(atom->getMass()/totalMass);
926 >          if (totalMass != 0)
927 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
928            else
929 <            mfact.push_back( 1.0 );
929 >            massFactors_[atom->getLocalIndex()] = 1.0;
930          }
818
931        }      
932      }
933  
934 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
823 <    std::vector<int> identArray;
934 >    // Build the identArray_
935  
936 <    //to avoid memory reallocation, reserve enough space identArray
937 <    identArray.reserve(getNAtoms());
827 <    
936 >    identArray_.clear();
937 >    identArray_.reserve(getNAtoms());    
938      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
939        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
940 <        identArray.push_back(atom->getIdent());
940 >        identArray_.push_back(atom->getIdent());
941        }
942      }    
833
834    //fill molMembershipArray
835    //molMembershipArray is filled by SimCreator    
836    std::vector<int> molMembershipArray(nGlobalAtoms_);
837    for (int i = 0; i < nGlobalAtoms_; i++) {
838      molMembershipArray[i] = globalMolMembership_[i] + 1;
839    }
943      
944 <    //setup fortran simulation
842 <    int nGlobalExcludes = 0;
843 <    int* globalExcludes = NULL;
844 <    int* excludeList = exclude_.getExcludeList();
845 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
846 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
847 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
848 <
849 <    if( isError ){
850 <
851 <      sprintf( painCave.errMsg,
852 <               "There was an error setting the simulation information in fortran.\n" );
853 <      painCave.isFatal = 1;
854 <      painCave.severity = OOPSE_ERROR;
855 <      simError();
856 <    }
857 <
858 < #ifdef IS_MPI
859 <    sprintf( checkPointMsg,
860 <             "succesfully sent the simulation information to fortran.\n");
861 <    MPIcheckPoint();
862 < #endif // is_mpi
863 <  }
864 <
865 <
866 < #ifdef IS_MPI
867 <  void SimInfo::setupFortranParallel() {
868 <    
869 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
870 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
871 <    std::vector<int> localToGlobalCutoffGroupIndex;
872 <    SimInfo::MoleculeIterator mi;
873 <    Molecule::AtomIterator ai;
874 <    Molecule::CutoffGroupIterator ci;
875 <    Molecule* mol;
876 <    Atom* atom;
877 <    CutoffGroup* cg;
878 <    mpiSimData parallelData;
879 <    int isError;
880 <
881 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
882 <
883 <      //local index(index in DataStorge) of atom is important
884 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
885 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
886 <      }
887 <
888 <      //local index of cutoff group is trivial, it only depends on the order of travesing
889 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
890 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
891 <      }        
892 <        
893 <    }
894 <
895 <    //fill up mpiSimData struct
896 <    parallelData.nMolGlobal = getNGlobalMolecules();
897 <    parallelData.nMolLocal = getNMolecules();
898 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
899 <    parallelData.nAtomsLocal = getNAtoms();
900 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
901 <    parallelData.nGroupsLocal = getNCutoffGroups();
902 <    parallelData.myNode = worldRank;
903 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
904 <
905 <    //pass mpiSimData struct and index arrays to fortran
906 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
907 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
908 <                    &localToGlobalCutoffGroupIndex[0], &isError);
909 <
910 <    if (isError) {
911 <      sprintf(painCave.errMsg,
912 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
913 <      painCave.isFatal = 1;
914 <      simError();
915 <    }
916 <
917 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
918 <    MPIcheckPoint();
919 <
920 <
921 <  }
922 <
923 < #endif
924 <
925 <  void SimInfo::setupCutoff() {          
926 <    
927 <    // Check the cutoff policy
928 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
929 <    if (simParams_->haveCutoffPolicy()) {
930 <      std::string myPolicy = simParams_->getCutoffPolicy();
931 <      toUpper(myPolicy);
932 <      if (myPolicy == "MIX") {
933 <        cp = MIX_CUTOFF_POLICY;
934 <      } else {
935 <        if (myPolicy == "MAX") {
936 <          cp = MAX_CUTOFF_POLICY;
937 <        } else {
938 <          if (myPolicy == "TRADITIONAL") {            
939 <            cp = TRADITIONAL_CUTOFF_POLICY;
940 <          } else {
941 <            // throw error        
942 <            sprintf( painCave.errMsg,
943 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
944 <            painCave.isFatal = 1;
945 <            simError();
946 <          }    
947 <        }          
948 <      }
949 <    }          
950 <    notifyFortranCutoffPolicy(&cp);
951 <
952 <    // Check the Skin Thickness for neighborlists
953 <    double skin;
954 <    if (simParams_->haveSkinThickness()) {
955 <      skin = simParams_->getSkinThickness();
956 <      notifyFortranSkinThickness(&skin);
957 <    }            
958 <        
959 <    // Check if the cutoff was set explicitly:
960 <    if (simParams_->haveCutoffRadius()) {
961 <      rcut_ = simParams_->getCutoffRadius();
962 <      if (simParams_->haveSwitchingRadius()) {
963 <        rsw_  = simParams_->getSwitchingRadius();
964 <      } else {
965 <        rsw_ = rcut_;
966 <      }
967 <      notifyFortranCutoffs(&rcut_, &rsw_);
968 <      
969 <    } else {
970 <      
971 <      // For electrostatic atoms, we'll assume a large safe value:
972 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
973 <        sprintf(painCave.errMsg,
974 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
975 <                "\tOOPSE will use a default value of 15.0 angstroms"
976 <                "\tfor the cutoffRadius.\n");
977 <        painCave.isFatal = 0;
978 <        simError();
979 <        rcut_ = 15.0;
980 <      
981 <        if (simParams_->haveElectrostaticSummationMethod()) {
982 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
983 <          toUpper(myMethod);
984 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
985 <            if (simParams_->haveSwitchingRadius()){
986 <              sprintf(painCave.errMsg,
987 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
988 <                      "\teven though the electrostaticSummationMethod was\n"
989 <                      "\tset to %s\n", myMethod.c_str());
990 <              painCave.isFatal = 1;
991 <              simError();            
992 <            }
993 <          }
994 <        }
995 <      
996 <        if (simParams_->haveSwitchingRadius()){
997 <          rsw_ = simParams_->getSwitchingRadius();
998 <        } else {        
999 <          sprintf(painCave.errMsg,
1000 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1001 <                  "\tOOPSE will use a default value of\n"
1002 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1003 <          painCave.isFatal = 0;
1004 <          simError();
1005 <          rsw_ = 0.85 * rcut_;
1006 <        }
1007 <        notifyFortranCutoffs(&rcut_, &rsw_);
1008 <      } else {
1009 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1010 <        // We'll punt and let fortran figure out the cutoffs later.
1011 <        
1012 <        notifyFortranYouAreOnYourOwn();
1013 <
1014 <      }
1015 <    }
944 >    topologyDone_ = true;
945    }
946  
1018  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1019    
1020    int errorOut;
1021    int esm =  NONE;
1022    int sm = UNDAMPED;
1023    double alphaVal;
1024    double dielectric;
1025
1026    errorOut = isError;
1027    alphaVal = simParams_->getDampingAlpha();
1028    dielectric = simParams_->getDielectric();
1029
1030    if (simParams_->haveElectrostaticSummationMethod()) {
1031      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1032      toUpper(myMethod);
1033      if (myMethod == "NONE") {
1034        esm = NONE;
1035      } else {
1036        if (myMethod == "SWITCHING_FUNCTION") {
1037          esm = SWITCHING_FUNCTION;
1038        } else {
1039          if (myMethod == "SHIFTED_POTENTIAL") {
1040            esm = SHIFTED_POTENTIAL;
1041          } else {
1042            if (myMethod == "SHIFTED_FORCE") {            
1043              esm = SHIFTED_FORCE;
1044            } else {
1045              if (myMethod == "REACTION_FIELD") {            
1046                esm = REACTION_FIELD;
1047              } else {
1048                // throw error        
1049                sprintf( painCave.errMsg,
1050                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1051                         "\t(Input file specified %s .)\n"
1052                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1053                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1054                         "\t\"reaction_field\".\n", myMethod.c_str() );
1055                painCave.isFatal = 1;
1056                simError();
1057              }    
1058            }          
1059          }
1060        }
1061      }
1062    }
1063    
1064    if (simParams_->haveElectrostaticScreeningMethod()) {
1065      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1066      toUpper(myScreen);
1067      if (myScreen == "UNDAMPED") {
1068        sm = UNDAMPED;
1069      } else {
1070        if (myScreen == "DAMPED") {
1071          sm = DAMPED;
1072          if (!simParams_->haveDampingAlpha()) {
1073            //throw error
1074            sprintf( painCave.errMsg,
1075                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1076                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1077            painCave.isFatal = 0;
1078            simError();
1079          }
1080        } else {
1081          // throw error        
1082          sprintf( painCave.errMsg,
1083                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1084                   "\t(Input file specified %s .)\n"
1085                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1086                   "or \"damped\".\n", myScreen.c_str() );
1087          painCave.isFatal = 1;
1088          simError();
1089        }
1090      }
1091    }
1092    
1093    // let's pass some summation method variables to fortran
1094    setElectrostaticSummationMethod( &esm );
1095    notifyFortranElectrostaticMethod( &esm );
1096    setScreeningMethod( &sm );
1097    setDampingAlpha( &alphaVal );
1098    setReactionFieldDielectric( &dielectric );
1099    initFortranFF( &errorOut );
1100  }
1101
1102  void SimInfo::setupSwitchingFunction() {    
1103    int ft = CUBIC;
1104
1105    if (simParams_->haveSwitchingFunctionType()) {
1106      std::string funcType = simParams_->getSwitchingFunctionType();
1107      toUpper(funcType);
1108      if (funcType == "CUBIC") {
1109        ft = CUBIC;
1110      } else {
1111        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1112          ft = FIFTH_ORDER_POLY;
1113        } else {
1114          // throw error        
1115          sprintf( painCave.errMsg,
1116                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1117          painCave.isFatal = 1;
1118          simError();
1119        }          
1120      }
1121    }
1122
1123    // send switching function notification to switcheroo
1124    setFunctionType(&ft);
1125
1126  }
1127
947    void SimInfo::addProperty(GenericData* genData) {
948      properties_.addProperty(genData);  
949    }
950  
951 <  void SimInfo::removeProperty(const std::string& propName) {
951 >  void SimInfo::removeProperty(const string& propName) {
952      properties_.removeProperty(propName);  
953    }
954  
# Line 1137 | Line 956 | namespace oopse {
956      properties_.clearProperties();
957    }
958  
959 <  std::vector<std::string> SimInfo::getPropertyNames() {
959 >  vector<string> SimInfo::getPropertyNames() {
960      return properties_.getPropertyNames();  
961    }
962        
963 <  std::vector<GenericData*> SimInfo::getProperties() {
963 >  vector<GenericData*> SimInfo::getProperties() {
964      return properties_.getProperties();
965    }
966  
967 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
967 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
968      return properties_.getPropertyByName(propName);
969    }
970  
# Line 1159 | Line 978 | namespace oopse {
978      Molecule* mol;
979      RigidBody* rb;
980      Atom* atom;
981 +    CutoffGroup* cg;
982      SimInfo::MoleculeIterator mi;
983      Molecule::RigidBodyIterator rbIter;
984 <    Molecule::AtomIterator atomIter;;
984 >    Molecule::AtomIterator atomIter;
985 >    Molecule::CutoffGroupIterator cgIter;
986  
987      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
988          
989 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
989 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
990 >           atom = mol->nextAtom(atomIter)) {
991          atom->setSnapshotManager(sman_);
992        }
993          
994 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
994 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
995 >           rb = mol->nextRigidBody(rbIter)) {
996          rb->setSnapshotManager(sman_);
997        }
998 +
999 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1000 +           cg = mol->nextCutoffGroup(cgIter)) {
1001 +        cg->setSnapshotManager(sman_);
1002 +      }
1003      }    
1004      
1005    }
1006  
1179  Vector3d SimInfo::getComVel(){
1180    SimInfo::MoleculeIterator i;
1181    Molecule* mol;
1007  
1008 <    Vector3d comVel(0.0);
1184 <    double totalMass = 0.0;
1185 <    
1186 <
1187 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1188 <      double mass = mol->getMass();
1189 <      totalMass += mass;
1190 <      comVel += mass * mol->getComVel();
1191 <    }  
1008 >  ostream& operator <<(ostream& o, SimInfo& info) {
1009  
1193 #ifdef IS_MPI
1194    double tmpMass = totalMass;
1195    Vector3d tmpComVel(comVel);    
1196    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1197    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1198 #endif
1199
1200    comVel /= totalMass;
1201
1202    return comVel;
1203  }
1204
1205  Vector3d SimInfo::getCom(){
1206    SimInfo::MoleculeIterator i;
1207    Molecule* mol;
1208
1209    Vector3d com(0.0);
1210    double totalMass = 0.0;
1211    
1212    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1213      double mass = mol->getMass();
1214      totalMass += mass;
1215      com += mass * mol->getCom();
1216    }  
1217
1218 #ifdef IS_MPI
1219    double tmpMass = totalMass;
1220    Vector3d tmpCom(com);    
1221    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1222    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1223 #endif
1224
1225    com /= totalMass;
1226
1227    return com;
1228
1229  }        
1230
1231  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1232
1010      return o;
1011    }
1012    
1013 <  
1014 <   /*
1015 <   Returns center of mass and center of mass velocity in one function call.
1016 <   */
1017 <  
1018 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1019 <      SimInfo::MoleculeIterator i;
1020 <      Molecule* mol;
1021 <      
1022 <    
1023 <      double totalMass = 0.0;
1024 <    
1013 >  
1014 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1015 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1016 >      sprintf(painCave.errMsg,
1017 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1018 >              "\tindex exceeds number of known objects!\n");
1019 >      painCave.isFatal = 1;
1020 >      simError();
1021 >      return NULL;
1022 >    } else
1023 >      return IOIndexToIntegrableObject.at(index);
1024 >  }
1025 >  
1026 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1027 >    IOIndexToIntegrableObject= v;
1028 >  }
1029  
1030 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1031 <         double mass = mol->getMass();
1251 <         totalMass += mass;
1252 <         com += mass * mol->getCom();
1253 <         comVel += mass * mol->getComVel();          
1254 <      }  
1255 <      
1030 >  int SimInfo::getNGlobalConstraints() {
1031 >    int nGlobalConstraints;
1032   #ifdef IS_MPI
1033 <      double tmpMass = totalMass;
1034 <      Vector3d tmpCom(com);  
1035 <      Vector3d tmpComVel(comVel);
1036 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1261 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1262 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1033 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1034 >                              MPI::INT, MPI::SUM);
1035 > #else
1036 >    nGlobalConstraints =  nConstraints_;
1037   #endif
1038 <      
1039 <      com /= totalMass;
1266 <      comVel /= totalMass;
1267 <   }        
1268 <  
1269 <   /*
1270 <   Return intertia tensor for entire system and angular momentum Vector.
1038 >    return nGlobalConstraints;
1039 >  }
1040  
1041 + }//end namespace OpenMD
1042  
1273       [  Ixx -Ixy  -Ixz ]
1274  J =| -Iyx  Iyy  -Iyz |
1275       [ -Izx -Iyz   Izz ]
1276    */
1277
1278   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1279      
1280
1281      double xx = 0.0;
1282      double yy = 0.0;
1283      double zz = 0.0;
1284      double xy = 0.0;
1285      double xz = 0.0;
1286      double yz = 0.0;
1287      Vector3d com(0.0);
1288      Vector3d comVel(0.0);
1289      
1290      getComAll(com, comVel);
1291      
1292      SimInfo::MoleculeIterator i;
1293      Molecule* mol;
1294      
1295      Vector3d thisq(0.0);
1296      Vector3d thisv(0.0);
1297
1298      double thisMass = 0.0;
1299    
1300      
1301      
1302  
1303      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1304        
1305         thisq = mol->getCom()-com;
1306         thisv = mol->getComVel()-comVel;
1307         thisMass = mol->getMass();
1308         // Compute moment of intertia coefficients.
1309         xx += thisq[0]*thisq[0]*thisMass;
1310         yy += thisq[1]*thisq[1]*thisMass;
1311         zz += thisq[2]*thisq[2]*thisMass;
1312        
1313         // compute products of intertia
1314         xy += thisq[0]*thisq[1]*thisMass;
1315         xz += thisq[0]*thisq[2]*thisMass;
1316         yz += thisq[1]*thisq[2]*thisMass;
1317            
1318         angularMomentum += cross( thisq, thisv ) * thisMass;
1319            
1320      }  
1321      
1322      
1323      inertiaTensor(0,0) = yy + zz;
1324      inertiaTensor(0,1) = -xy;
1325      inertiaTensor(0,2) = -xz;
1326      inertiaTensor(1,0) = -xy;
1327      inertiaTensor(1,1) = xx + zz;
1328      inertiaTensor(1,2) = -yz;
1329      inertiaTensor(2,0) = -xz;
1330      inertiaTensor(2,1) = -yz;
1331      inertiaTensor(2,2) = xx + yy;
1332      
1333 #ifdef IS_MPI
1334      Mat3x3d tmpI(inertiaTensor);
1335      Vector3d tmpAngMom;
1336      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1337      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1338 #endif
1339              
1340      return;
1341   }
1342
1343   //Returns the angular momentum of the system
1344   Vector3d SimInfo::getAngularMomentum(){
1345      
1346      Vector3d com(0.0);
1347      Vector3d comVel(0.0);
1348      Vector3d angularMomentum(0.0);
1349      
1350      getComAll(com,comVel);
1351      
1352      SimInfo::MoleculeIterator i;
1353      Molecule* mol;
1354      
1355      Vector3d thisr(0.0);
1356      Vector3d thisp(0.0);
1357      
1358      double thisMass;
1359      
1360      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1361        thisMass = mol->getMass();
1362        thisr = mol->getCom()-com;
1363        thisp = (mol->getComVel()-comVel)*thisMass;
1364        
1365        angularMomentum += cross( thisr, thisp );
1366        
1367      }  
1368      
1369 #ifdef IS_MPI
1370      Vector3d tmpAngMom;
1371      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1372 #endif
1373      
1374      return angularMomentum;
1375   }
1376  
1377  
1378 }//end namespace oopse
1379

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 764 by gezelter, Mon Nov 21 22:59:21 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines