ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 603 by chrisfen, Fri Sep 16 16:07:39 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1767 by gezelter, Fri Jul 6 22:01:58 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 48 | Line 49
49  
50   #include <algorithm>
51   #include <set>
52 + #include <map>
53  
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/fCutoffPolicy.h"
56 < #include "UseTheForce/fCoulombicCorrection.h"
57 < #include "UseTheForce/doForces_interface.h"
58 < #include "UseTheForce/notifyCutoffs_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61 <
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
66 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <
70 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 <                   ForceField* ff, Globals* simParams) :
72 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
73 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false) {
79 <
80 <            
81 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
82 <      MoleculeStamp* molStamp;
83 <      int nMolWithSameStamp;
84 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
85 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
86 <      CutoffGroupStamp* cgStamp;    
87 <      RigidBodyStamp* rbStamp;
88 <      int nRigidAtoms = 0;
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
82 <        molStamp = i->first;
83 <        nMolWithSameStamp = i->second;
84 <        
85 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
86 <
87 <        //calculate atoms in molecules
88 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
89 <
90 <
91 <        //calculate atoms in cutoff groups
92 <        int nAtomsInGroups = 0;
93 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
94 <        
95 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
96 <          cgStamp = molStamp->getCutoffGroup(j);
97 <          nAtomsInGroups += cgStamp->getNMembers();
98 <        }
99 <
100 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
101 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
102 <
103 <        //calculate atoms in rigid bodies
104 <        int nAtomsInRigidBodies = 0;
105 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
106 <        
116 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
117 <          rbStamp = molStamp->getRigidBody(j);
118 <          nAtomsInRigidBodies += rbStamp->getNMembers();
119 <        }
120 <
121 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
122 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
123 <        
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94 >      
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107        }
108 <
109 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
110 <      //therefore the total number of cutoff groups in the system is equal to
111 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
112 <      //file plus the number of cutoff groups defined in meta-data file
113 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
114 <
115 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
116 <      //therefore the total number of  integrable objects in the system is equal to
117 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
118 <      //file plus the number of  rigid bodies defined in meta-data file
119 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
120 <
121 <      nGlobalMols_ = molStampIds_.size();
122 <
123 < #ifdef IS_MPI    
124 <      molToProcMap_.resize(nGlobalMols_);
142 < #endif
143 <
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125      }
126 +    
127 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 +    //group therefore the total number of cutoff groups in the system is
129 +    //equal to the total number of atoms minus number of atoms belong to
130 +    //cutoff group defined in meta-data file plus the number of cutoff
131 +    //groups defined in meta-data file
132  
133 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 +    
135 +    //every free atom (atom does not belong to rigid bodies) is an
136 +    //integrable object therefore the total number of integrable objects
137 +    //in the system is equal to the total number of atoms minus number of
138 +    //atoms belong to rigid body defined in meta-data file plus the number
139 +    //of rigid bodies defined in meta-data file
140 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 +      + nGlobalRigidBodies_;
142 +    
143 +    nGlobalMols_ = molStampIds_.size();
144 +    molToProcMap_.resize(nGlobalMols_);
145 +  }
146 +  
147    SimInfo::~SimInfo() {
148 <    std::map<int, Molecule*>::iterator i;
148 >    map<int, Molecule*>::iterator i;
149      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150        delete i->second;
151      }
152      molecules_.clear();
153        
153    delete stamps_;
154      delete sman_;
155      delete simParams_;
156      delete forceField_;
157    }
158  
159  int SimInfo::getNGlobalConstraints() {
160    int nGlobalConstraints;
161 #ifdef IS_MPI
162    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
163                  MPI_COMM_WORLD);    
164 #else
165    nGlobalConstraints =  nConstraints_;
166 #endif
167    return nGlobalConstraints;
168  }
159  
160    bool SimInfo::addMolecule(Molecule* mol) {
161      MoleculeIterator i;
162 <
162 >    
163      i = molecules_.find(mol->getGlobalIndex());
164      if (i == molecules_.end() ) {
165 <
166 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
167 <        
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168        nAtoms_ += mol->getNAtoms();
169        nBonds_ += mol->getNBonds();
170        nBends_ += mol->getNBends();
171        nTorsions_ += mol->getNTorsions();
172 +      nInversions_ += mol->getNInversions();
173        nRigidBodies_ += mol->getNRigidBodies();
174        nIntegrableObjects_ += mol->getNIntegrableObjects();
175        nCutoffGroups_ += mol->getNCutoffGroups();
176        nConstraints_ += mol->getNConstraintPairs();
177 <
178 <      addExcludePairs(mol);
179 <        
177 >      
178 >      addInteractionPairs(mol);
179 >      
180        return true;
181      } else {
182        return false;
183      }
184    }
185 <
185 >  
186    bool SimInfo::removeMolecule(Molecule* mol) {
187      MoleculeIterator i;
188      i = molecules_.find(mol->getGlobalIndex());
# Line 204 | Line 195 | namespace oopse {
195        nBonds_ -= mol->getNBonds();
196        nBends_ -= mol->getNBends();
197        nTorsions_ -= mol->getNTorsions();
198 +      nInversions_ -= mol->getNInversions();
199        nRigidBodies_ -= mol->getNRigidBodies();
200        nIntegrableObjects_ -= mol->getNIntegrableObjects();
201        nCutoffGroups_ -= mol->getNCutoffGroups();
202        nConstraints_ -= mol->getNConstraintPairs();
203  
204 <      removeExcludePairs(mol);
204 >      removeInteractionPairs(mol);
205        molecules_.erase(mol->getGlobalIndex());
206  
207        delete mol;
# Line 218 | Line 210 | namespace oopse {
210      } else {
211        return false;
212      }
221
222
213    }    
214  
215          
# Line 235 | Line 225 | namespace oopse {
225  
226  
227    void SimInfo::calcNdf() {
228 <    int ndf_local;
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230 <    std::vector<StuntDouble*>::iterator j;
230 >    vector<StuntDouble*>::iterator j;
231 >    vector<Atom*>::iterator k;
232 >
233      Molecule* mol;
234      StuntDouble* integrableObject;
235 +    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
# Line 256 | Line 250 | namespace oopse {
250              ndf_local += 3;
251            }
252          }
253 <            
254 <      }//end for (integrableObject)
255 <    }// end for (mol)
253 >      }
254 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 >           atom = mol->nextFluctuatingCharge(k)) {
256 >        if (atom->isFluctuatingCharge()) {
257 >          nfq_local++;
258 >        }
259 >      }
260 >    }
261      
262 +    ndfLocal_ = ndf_local;
263 +
264      // n_constraints is local, so subtract them on each processor
265      ndf_local -= nConstraints_;
266  
267   #ifdef IS_MPI
268      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
269 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
270   #else
271      ndf_ = ndf_local;
272 +    nGlobalFluctuatingCharges_ = nfq_local;
273   #endif
274  
275      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 275 | Line 278 | namespace oopse {
278  
279    }
280  
281 +  int SimInfo::getFdf() {
282 + #ifdef IS_MPI
283 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284 + #else
285 +    fdf_ = fdf_local;
286 + #endif
287 +    return fdf_;
288 +  }
289 +  
290 +  unsigned int SimInfo::getNLocalCutoffGroups(){
291 +    int nLocalCutoffAtoms = 0;
292 +    Molecule* mol;
293 +    MoleculeIterator mi;
294 +    CutoffGroup* cg;
295 +    Molecule::CutoffGroupIterator ci;
296 +    
297 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
298 +      
299 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
300 +           cg = mol->nextCutoffGroup(ci)) {
301 +        nLocalCutoffAtoms += cg->getNumAtom();
302 +        
303 +      }        
304 +    }
305 +    
306 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
307 +  }
308 +    
309    void SimInfo::calcNdfRaw() {
310      int ndfRaw_local;
311  
312      MoleculeIterator i;
313 <    std::vector<StuntDouble*>::iterator j;
313 >    vector<StuntDouble*>::iterator j;
314      Molecule* mol;
315      StuntDouble* integrableObject;
316  
# Line 326 | Line 357 | namespace oopse {
357  
358    }
359  
360 <  void SimInfo::addExcludePairs(Molecule* mol) {
361 <    std::vector<Bond*>::iterator bondIter;
362 <    std::vector<Bend*>::iterator bendIter;
363 <    std::vector<Torsion*>::iterator torsionIter;
360 >  void SimInfo::addInteractionPairs(Molecule* mol) {
361 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
362 >    vector<Bond*>::iterator bondIter;
363 >    vector<Bend*>::iterator bendIter;
364 >    vector<Torsion*>::iterator torsionIter;
365 >    vector<Inversion*>::iterator inversionIter;
366      Bond* bond;
367      Bend* bend;
368      Torsion* torsion;
369 +    Inversion* inversion;
370      int a;
371      int b;
372      int c;
373      int d;
374 +
375 +    // atomGroups can be used to add special interaction maps between
376 +    // groups of atoms that are in two separate rigid bodies.
377 +    // However, most site-site interactions between two rigid bodies
378 +    // are probably not special, just the ones between the physically
379 +    // bonded atoms.  Interactions *within* a single rigid body should
380 +    // always be excluded.  These are done at the bottom of this
381 +    // function.
382 +
383 +    map<int, set<int> > atomGroups;
384 +    Molecule::RigidBodyIterator rbIter;
385 +    RigidBody* rb;
386 +    Molecule::IntegrableObjectIterator ii;
387 +    StuntDouble* integrableObject;
388      
389 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
389 >    for (integrableObject = mol->beginIntegrableObject(ii);
390 >         integrableObject != NULL;
391 >         integrableObject = mol->nextIntegrableObject(ii)) {
392 >      
393 >      if (integrableObject->isRigidBody()) {
394 >        rb = static_cast<RigidBody*>(integrableObject);
395 >        vector<Atom*> atoms = rb->getAtoms();
396 >        set<int> rigidAtoms;
397 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
398 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
399 >        }
400 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
401 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
402 >        }      
403 >      } else {
404 >        set<int> oneAtomSet;
405 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
406 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
407 >      }
408 >    }  
409 >          
410 >    for (bond= mol->beginBond(bondIter); bond != NULL;
411 >         bond = mol->nextBond(bondIter)) {
412 >
413        a = bond->getAtomA()->getGlobalIndex();
414 <      b = bond->getAtomB()->getGlobalIndex();        
415 <      exclude_.addPair(a, b);
414 >      b = bond->getAtomB()->getGlobalIndex();  
415 >    
416 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
417 >        oneTwoInteractions_.addPair(a, b);
418 >      } else {
419 >        excludedInteractions_.addPair(a, b);
420 >      }
421      }
422  
423 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
423 >    for (bend= mol->beginBend(bendIter); bend != NULL;
424 >         bend = mol->nextBend(bendIter)) {
425 >
426        a = bend->getAtomA()->getGlobalIndex();
427        b = bend->getAtomB()->getGlobalIndex();        
428        c = bend->getAtomC()->getGlobalIndex();
429 +      
430 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
431 +        oneTwoInteractions_.addPair(a, b);      
432 +        oneTwoInteractions_.addPair(b, c);
433 +      } else {
434 +        excludedInteractions_.addPair(a, b);
435 +        excludedInteractions_.addPair(b, c);
436 +      }
437  
438 <      exclude_.addPair(a, b);
439 <      exclude_.addPair(a, c);
440 <      exclude_.addPair(b, c);        
438 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
439 >        oneThreeInteractions_.addPair(a, c);      
440 >      } else {
441 >        excludedInteractions_.addPair(a, c);
442 >      }
443      }
444  
445 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
445 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
446 >         torsion = mol->nextTorsion(torsionIter)) {
447 >
448        a = torsion->getAtomA()->getGlobalIndex();
449        b = torsion->getAtomB()->getGlobalIndex();        
450        c = torsion->getAtomC()->getGlobalIndex();        
451 <      d = torsion->getAtomD()->getGlobalIndex();        
451 >      d = torsion->getAtomD()->getGlobalIndex();      
452  
453 <      exclude_.addPair(a, b);
454 <      exclude_.addPair(a, c);
455 <      exclude_.addPair(a, d);
456 <      exclude_.addPair(b, c);
457 <      exclude_.addPair(b, d);
458 <      exclude_.addPair(c, d);        
453 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
454 >        oneTwoInteractions_.addPair(a, b);      
455 >        oneTwoInteractions_.addPair(b, c);
456 >        oneTwoInteractions_.addPair(c, d);
457 >      } else {
458 >        excludedInteractions_.addPair(a, b);
459 >        excludedInteractions_.addPair(b, c);
460 >        excludedInteractions_.addPair(c, d);
461 >      }
462 >
463 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
464 >        oneThreeInteractions_.addPair(a, c);      
465 >        oneThreeInteractions_.addPair(b, d);      
466 >      } else {
467 >        excludedInteractions_.addPair(a, c);
468 >        excludedInteractions_.addPair(b, d);
469 >      }
470 >
471 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
472 >        oneFourInteractions_.addPair(a, d);      
473 >      } else {
474 >        excludedInteractions_.addPair(a, d);
475 >      }
476      }
477  
478 <    Molecule::RigidBodyIterator rbIter;
479 <    RigidBody* rb;
480 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
481 <      std::vector<Atom*> atoms = rb->getAtoms();
482 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
483 <        for (int j = i + 1; j < atoms.size(); ++j) {
478 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
479 >         inversion = mol->nextInversion(inversionIter)) {
480 >
481 >      a = inversion->getAtomA()->getGlobalIndex();
482 >      b = inversion->getAtomB()->getGlobalIndex();        
483 >      c = inversion->getAtomC()->getGlobalIndex();        
484 >      d = inversion->getAtomD()->getGlobalIndex();        
485 >
486 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
487 >        oneTwoInteractions_.addPair(a, b);      
488 >        oneTwoInteractions_.addPair(a, c);
489 >        oneTwoInteractions_.addPair(a, d);
490 >      } else {
491 >        excludedInteractions_.addPair(a, b);
492 >        excludedInteractions_.addPair(a, c);
493 >        excludedInteractions_.addPair(a, d);
494 >      }
495 >
496 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
497 >        oneThreeInteractions_.addPair(b, c);    
498 >        oneThreeInteractions_.addPair(b, d);    
499 >        oneThreeInteractions_.addPair(c, d);      
500 >      } else {
501 >        excludedInteractions_.addPair(b, c);
502 >        excludedInteractions_.addPair(b, d);
503 >        excludedInteractions_.addPair(c, d);
504 >      }
505 >    }
506 >
507 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
508 >         rb = mol->nextRigidBody(rbIter)) {
509 >      vector<Atom*> atoms = rb->getAtoms();
510 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
511 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
512            a = atoms[i]->getGlobalIndex();
513            b = atoms[j]->getGlobalIndex();
514 <          exclude_.addPair(a, b);
514 >          excludedInteractions_.addPair(a, b);
515          }
516        }
517      }        
518  
519    }
520  
521 <  void SimInfo::removeExcludePairs(Molecule* mol) {
522 <    std::vector<Bond*>::iterator bondIter;
523 <    std::vector<Bend*>::iterator bendIter;
524 <    std::vector<Torsion*>::iterator torsionIter;
521 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
522 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
523 >    vector<Bond*>::iterator bondIter;
524 >    vector<Bend*>::iterator bendIter;
525 >    vector<Torsion*>::iterator torsionIter;
526 >    vector<Inversion*>::iterator inversionIter;
527      Bond* bond;
528      Bend* bend;
529      Torsion* torsion;
530 +    Inversion* inversion;
531      int a;
532      int b;
533      int c;
534      int d;
535 +
536 +    map<int, set<int> > atomGroups;
537 +    Molecule::RigidBodyIterator rbIter;
538 +    RigidBody* rb;
539 +    Molecule::IntegrableObjectIterator ii;
540 +    StuntDouble* integrableObject;
541      
542 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
542 >    for (integrableObject = mol->beginIntegrableObject(ii);
543 >         integrableObject != NULL;
544 >         integrableObject = mol->nextIntegrableObject(ii)) {
545 >      
546 >      if (integrableObject->isRigidBody()) {
547 >        rb = static_cast<RigidBody*>(integrableObject);
548 >        vector<Atom*> atoms = rb->getAtoms();
549 >        set<int> rigidAtoms;
550 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
551 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
552 >        }
553 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
554 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
555 >        }      
556 >      } else {
557 >        set<int> oneAtomSet;
558 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
559 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
560 >      }
561 >    }  
562 >
563 >    for (bond= mol->beginBond(bondIter); bond != NULL;
564 >         bond = mol->nextBond(bondIter)) {
565 >      
566        a = bond->getAtomA()->getGlobalIndex();
567 <      b = bond->getAtomB()->getGlobalIndex();        
568 <      exclude_.removePair(a, b);
567 >      b = bond->getAtomB()->getGlobalIndex();  
568 >    
569 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
570 >        oneTwoInteractions_.removePair(a, b);
571 >      } else {
572 >        excludedInteractions_.removePair(a, b);
573 >      }
574      }
575  
576 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
576 >    for (bend= mol->beginBend(bendIter); bend != NULL;
577 >         bend = mol->nextBend(bendIter)) {
578 >
579        a = bend->getAtomA()->getGlobalIndex();
580        b = bend->getAtomB()->getGlobalIndex();        
581        c = bend->getAtomC()->getGlobalIndex();
582 +      
583 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
584 +        oneTwoInteractions_.removePair(a, b);      
585 +        oneTwoInteractions_.removePair(b, c);
586 +      } else {
587 +        excludedInteractions_.removePair(a, b);
588 +        excludedInteractions_.removePair(b, c);
589 +      }
590  
591 <      exclude_.removePair(a, b);
592 <      exclude_.removePair(a, c);
593 <      exclude_.removePair(b, c);        
591 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
592 >        oneThreeInteractions_.removePair(a, c);      
593 >      } else {
594 >        excludedInteractions_.removePair(a, c);
595 >      }
596      }
597  
598 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
598 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
599 >         torsion = mol->nextTorsion(torsionIter)) {
600 >
601        a = torsion->getAtomA()->getGlobalIndex();
602        b = torsion->getAtomB()->getGlobalIndex();        
603        c = torsion->getAtomC()->getGlobalIndex();        
604 <      d = torsion->getAtomD()->getGlobalIndex();        
604 >      d = torsion->getAtomD()->getGlobalIndex();      
605 >  
606 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
607 >        oneTwoInteractions_.removePair(a, b);      
608 >        oneTwoInteractions_.removePair(b, c);
609 >        oneTwoInteractions_.removePair(c, d);
610 >      } else {
611 >        excludedInteractions_.removePair(a, b);
612 >        excludedInteractions_.removePair(b, c);
613 >        excludedInteractions_.removePair(c, d);
614 >      }
615  
616 <      exclude_.removePair(a, b);
617 <      exclude_.removePair(a, c);
618 <      exclude_.removePair(a, d);
619 <      exclude_.removePair(b, c);
620 <      exclude_.removePair(b, d);
621 <      exclude_.removePair(c, d);        
616 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
617 >        oneThreeInteractions_.removePair(a, c);      
618 >        oneThreeInteractions_.removePair(b, d);      
619 >      } else {
620 >        excludedInteractions_.removePair(a, c);
621 >        excludedInteractions_.removePair(b, d);
622 >      }
623 >
624 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
625 >        oneFourInteractions_.removePair(a, d);      
626 >      } else {
627 >        excludedInteractions_.removePair(a, d);
628 >      }
629      }
630  
631 <    Molecule::RigidBodyIterator rbIter;
632 <    RigidBody* rb;
633 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
634 <      std::vector<Atom*> atoms = rb->getAtoms();
635 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
636 <        for (int j = i + 1; j < atoms.size(); ++j) {
631 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
632 >         inversion = mol->nextInversion(inversionIter)) {
633 >
634 >      a = inversion->getAtomA()->getGlobalIndex();
635 >      b = inversion->getAtomB()->getGlobalIndex();        
636 >      c = inversion->getAtomC()->getGlobalIndex();        
637 >      d = inversion->getAtomD()->getGlobalIndex();        
638 >
639 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
640 >        oneTwoInteractions_.removePair(a, b);      
641 >        oneTwoInteractions_.removePair(a, c);
642 >        oneTwoInteractions_.removePair(a, d);
643 >      } else {
644 >        excludedInteractions_.removePair(a, b);
645 >        excludedInteractions_.removePair(a, c);
646 >        excludedInteractions_.removePair(a, d);
647 >      }
648 >
649 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
650 >        oneThreeInteractions_.removePair(b, c);    
651 >        oneThreeInteractions_.removePair(b, d);    
652 >        oneThreeInteractions_.removePair(c, d);      
653 >      } else {
654 >        excludedInteractions_.removePair(b, c);
655 >        excludedInteractions_.removePair(b, d);
656 >        excludedInteractions_.removePair(c, d);
657 >      }
658 >    }
659 >
660 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
661 >         rb = mol->nextRigidBody(rbIter)) {
662 >      vector<Atom*> atoms = rb->getAtoms();
663 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
664 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
665            a = atoms[i]->getGlobalIndex();
666            b = atoms[j]->getGlobalIndex();
667 <          exclude_.removePair(a, b);
667 >          excludedInteractions_.removePair(a, b);
668          }
669        }
670      }        
671 <
671 >    
672    }
673 <
674 <
673 >  
674 >  
675    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
676      int curStampId;
677 <
677 >    
678      //index from 0
679      curStampId = moleculeStamps_.size();
680  
# Line 451 | Line 682 | namespace oopse {
682      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
683    }
684  
454  void SimInfo::update() {
685  
686 <    setupSimType();
687 <
688 < #ifdef IS_MPI
689 <    setupFortranParallel();
690 < #endif
691 <
692 <    setupFortranSim();
693 <
694 <    //setup fortran force field
465 <    /** @deprecate */    
466 <    int isError = 0;
467 <    
468 <    setupElectrostaticSummationMethod( isError );
469 <
470 <    if(isError){
471 <      sprintf( painCave.errMsg,
472 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
473 <      painCave.isFatal = 1;
474 <      simError();
475 <    }
476 <  
477 <    
478 <    setupCutoff();
479 <
686 >  /**
687 >   * update
688 >   *
689 >   *  Performs the global checks and variable settings after the
690 >   *  objects have been created.
691 >   *
692 >   */
693 >  void SimInfo::update() {  
694 >    setupSimVariables();
695      calcNdf();
696      calcNdfRaw();
697      calcNdfTrans();
483
484    fortranInitialized_ = true;
698    }
699 <
700 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
699 >  
700 >  /**
701 >   * getSimulatedAtomTypes
702 >   *
703 >   * Returns an STL set of AtomType* that are actually present in this
704 >   * simulation.  Must query all processors to assemble this information.
705 >   *
706 >   */
707 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
708      SimInfo::MoleculeIterator mi;
709      Molecule* mol;
710      Molecule::AtomIterator ai;
711      Atom* atom;
712 <    std::set<AtomType*> atomTypes;
713 <
712 >    set<AtomType*> atomTypes;
713 >    
714      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
715 <
716 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
715 >      for(atom = mol->beginAtom(ai); atom != NULL;
716 >          atom = mol->nextAtom(ai)) {
717          atomTypes.insert(atom->getAtomType());
718 <      }
719 <        
718 >      }      
719 >    }    
720 >    
721 > #ifdef IS_MPI
722 >
723 >    // loop over the found atom types on this processor, and add their
724 >    // numerical idents to a vector:
725 >    
726 >    vector<int> foundTypes;
727 >    set<AtomType*>::iterator i;
728 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
729 >      foundTypes.push_back( (*i)->getIdent() );
730 >
731 >    // count_local holds the number of found types on this processor
732 >    int count_local = foundTypes.size();
733 >
734 >    int nproc = MPI::COMM_WORLD.Get_size();
735 >
736 >    // we need arrays to hold the counts and displacement vectors for
737 >    // all processors
738 >    vector<int> counts(nproc, 0);
739 >    vector<int> disps(nproc, 0);
740 >
741 >    // fill the counts array
742 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
743 >                              1, MPI::INT);
744 >  
745 >    // use the processor counts to compute the displacement array
746 >    disps[0] = 0;    
747 >    int totalCount = counts[0];
748 >    for (int iproc = 1; iproc < nproc; iproc++) {
749 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
750 >      totalCount += counts[iproc];
751      }
752  
753 +    // we need a (possibly redundant) set of all found types:
754 +    vector<int> ftGlobal(totalCount);
755 +    
756 +    // now spray out the foundTypes to all the other processors:    
757 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
758 +                               &ftGlobal[0], &counts[0], &disps[0],
759 +                               MPI::INT);
760 +
761 +    vector<int>::iterator j;
762 +
763 +    // foundIdents is a stl set, so inserting an already found ident
764 +    // will have no effect.
765 +    set<int> foundIdents;
766 +
767 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
768 +      foundIdents.insert((*j));
769 +    
770 +    // now iterate over the foundIdents and get the actual atom types
771 +    // that correspond to these:
772 +    set<int>::iterator it;
773 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
774 +      atomTypes.insert( forceField_->getAtomType((*it)) );
775 +
776 + #endif
777 +
778      return atomTypes;        
779    }
780  
781 <  void SimInfo::setupSimType() {
782 <    std::set<AtomType*>::iterator i;
783 <    std::set<AtomType*> atomTypes;
784 <    atomTypes = getUniqueAtomTypes();
781 >  void SimInfo::setupSimVariables() {
782 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
783 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
784 >    calcBoxDipole_ = false;
785 >    if ( simParams_->haveAccumulateBoxDipole() )
786 >      if ( simParams_->getAccumulateBoxDipole() ) {
787 >        calcBoxDipole_ = true;      
788 >      }
789      
790 <    int useLennardJones = 0;
791 <    int useElectrostatic = 0;
792 <    int useEAM = 0;
793 <    int useCharge = 0;
794 <    int useDirectional = 0;
795 <    int useDipole = 0;
796 <    int useGayBerne = 0;
517 <    int useSticky = 0;
518 <    int useStickyPower = 0;
519 <    int useShape = 0;
520 <    int useFLARB = 0; //it is not in AtomType yet
521 <    int useDirectionalAtom = 0;    
522 <    int useElectrostatics = 0;
523 <    //usePBC and useRF are from simParams
524 <    int usePBC = simParams_->getPBC();
525 <
790 >    set<AtomType*>::iterator i;
791 >    set<AtomType*> atomTypes;
792 >    atomTypes = getSimulatedAtomTypes();    
793 >    bool usesElectrostatic = false;
794 >    bool usesMetallic = false;
795 >    bool usesDirectional = false;
796 >    bool usesFluctuatingCharges =  false;
797      //loop over all of the atom types
798      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
799 <      useLennardJones |= (*i)->isLennardJones();
800 <      useElectrostatic |= (*i)->isElectrostatic();
801 <      useEAM |= (*i)->isEAM();
802 <      useCharge |= (*i)->isCharge();
532 <      useDirectional |= (*i)->isDirectional();
533 <      useDipole |= (*i)->isDipole();
534 <      useGayBerne |= (*i)->isGayBerne();
535 <      useSticky |= (*i)->isSticky();
536 <      useStickyPower |= (*i)->isStickyPower();
537 <      useShape |= (*i)->isShape();
799 >      usesElectrostatic |= (*i)->isElectrostatic();
800 >      usesMetallic |= (*i)->isMetal();
801 >      usesDirectional |= (*i)->isDirectional();
802 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
803      }
804  
805 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
806 <      useDirectionalAtom = 1;
807 <    }
808 <
809 <    if (useCharge || useDipole) {
810 <      useElectrostatics = 1;
811 <    }
812 <
813 < #ifdef IS_MPI    
549 <    int temp;
550 <
551 <    temp = usePBC;
552 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553 <
554 <    temp = useDirectionalAtom;
555 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
556 <
557 <    temp = useLennardJones;
558 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
559 <
560 <    temp = useElectrostatics;
561 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
562 <
563 <    temp = useCharge;
564 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
565 <
566 <    temp = useDipole;
567 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
568 <
569 <    temp = useSticky;
570 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
571 <
572 <    temp = useStickyPower;
573 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
805 > #ifdef IS_MPI
806 >    bool temp;
807 >    temp = usesDirectional;
808 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
809 >                              MPI::LOR);
810 >        
811 >    temp = usesMetallic;
812 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
813 >                              MPI::LOR);
814      
815 <    temp = useGayBerne;
816 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
815 >    temp = usesElectrostatic;
816 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
817 >                              MPI::LOR);
818  
819 <    temp = useEAM;
820 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
819 >    temp = usesFluctuatingCharges;
820 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
821 >                              MPI::LOR);
822 > #else
823  
824 <    temp = useShape;
825 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
824 >    usesDirectionalAtoms_ = usesDirectional;
825 >    usesMetallicAtoms_ = usesMetallic;
826 >    usesElectrostaticAtoms_ = usesElectrostatic;
827 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
828  
584    temp = useFLARB;
585    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
586
829   #endif
830 +    
831 +    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
832 +    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
833 +    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
834 +  }
835  
589    fInfo_.SIM_uses_PBC = usePBC;    
590    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
591    fInfo_.SIM_uses_LennardJones = useLennardJones;
592    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
593    fInfo_.SIM_uses_Charges = useCharge;
594    fInfo_.SIM_uses_Dipoles = useDipole;
595    fInfo_.SIM_uses_Sticky = useSticky;
596    fInfo_.SIM_uses_StickyPower = useStickyPower;
597    fInfo_.SIM_uses_GayBerne = useGayBerne;
598    fInfo_.SIM_uses_EAM = useEAM;
599    fInfo_.SIM_uses_Shapes = useShape;
600    fInfo_.SIM_uses_FLARB = useFLARB;
836  
837 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
837 >  vector<int> SimInfo::getGlobalAtomIndices() {
838 >    SimInfo::MoleculeIterator mi;
839 >    Molecule* mol;
840 >    Molecule::AtomIterator ai;
841 >    Atom* atom;
842  
843 <      if (simParams_->haveDielectric()) {
844 <        fInfo_.dielect = simParams_->getDielectric();
845 <      } else {
846 <        sprintf(painCave.errMsg,
847 <                "SimSetup Error: No Dielectric constant was set.\n"
848 <                "\tYou are trying to use Reaction Field without"
610 <                "\tsetting a dielectric constant!\n");
611 <        painCave.isFatal = 1;
612 <        simError();
843 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
844 >    
845 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
846 >      
847 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
848 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
849        }
614        
615    } else {
616      fInfo_.dielect = 0.0;
850      }
851 <
851 >    return GlobalAtomIndices;
852    }
853  
621  void SimInfo::setupFortranSim() {
622    int isError;
623    int nExclude;
624    std::vector<int> fortranGlobalGroupMembership;
625    
626    nExclude = exclude_.getSize();
627    isError = 0;
854  
855 <    //globalGroupMembership_ is filled by SimCreator    
856 <    for (int i = 0; i < nGlobalAtoms_; i++) {
857 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
855 >  vector<int> SimInfo::getGlobalGroupIndices() {
856 >    SimInfo::MoleculeIterator mi;
857 >    Molecule* mol;
858 >    Molecule::CutoffGroupIterator ci;
859 >    CutoffGroup* cg;
860 >
861 >    vector<int> GlobalGroupIndices;
862 >    
863 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
864 >      
865 >      //local index of cutoff group is trivial, it only depends on the
866 >      //order of travesing
867 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
868 >           cg = mol->nextCutoffGroup(ci)) {
869 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
870 >      }        
871      }
872 +    return GlobalGroupIndices;
873 +  }
874  
875 +
876 +  void SimInfo::prepareTopology() {
877 +    int nExclude, nOneTwo, nOneThree, nOneFour;
878 +
879      //calculate mass ratio of cutoff group
635    std::vector<double> mfact;
880      SimInfo::MoleculeIterator mi;
881      Molecule* mol;
882      Molecule::CutoffGroupIterator ci;
883      CutoffGroup* cg;
884      Molecule::AtomIterator ai;
885      Atom* atom;
886 <    double totalMass;
886 >    RealType totalMass;
887  
888 <    //to avoid memory reallocation, reserve enough space for mfact
889 <    mfact.reserve(getNCutoffGroups());
888 >    /**
889 >     * The mass factor is the relative mass of an atom to the total
890 >     * mass of the cutoff group it belongs to.  By default, all atoms
891 >     * are their own cutoff groups, and therefore have mass factors of
892 >     * 1.  We need some special handling for massless atoms, which
893 >     * will be treated as carrying the entire mass of the cutoff
894 >     * group.
895 >     */
896 >    massFactors_.clear();
897 >    massFactors_.resize(getNAtoms(), 1.0);
898      
899      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
900 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
900 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
901 >           cg = mol->nextCutoffGroup(ci)) {
902  
903          totalMass = cg->getMass();
904          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
905 <          mfact.push_back(atom->getMass()/totalMass);
905 >          // Check for massless groups - set mfact to 1 if true
906 >          if (totalMass != 0)
907 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
908 >          else
909 >            massFactors_[atom->getLocalIndex()] = 1.0;
910          }
654
911        }      
912      }
913  
914 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
659 <    std::vector<int> identArray;
914 >    // Build the identArray_
915  
916 <    //to avoid memory reallocation, reserve enough space identArray
917 <    identArray.reserve(getNAtoms());
663 <    
916 >    identArray_.clear();
917 >    identArray_.reserve(getNAtoms());    
918      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
919        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
920 <        identArray.push_back(atom->getIdent());
920 >        identArray_.push_back(atom->getIdent());
921        }
922      }    
669
670    //fill molMembershipArray
671    //molMembershipArray is filled by SimCreator    
672    std::vector<int> molMembershipArray(nGlobalAtoms_);
673    for (int i = 0; i < nGlobalAtoms_; i++) {
674      molMembershipArray[i] = globalMolMembership_[i] + 1;
675    }
923      
924 <    //setup fortran simulation
678 <    int nGlobalExcludes = 0;
679 <    int* globalExcludes = NULL;
680 <    int* excludeList = exclude_.getExcludeList();
681 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
682 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
683 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
924 >    //scan topology
925  
926 <    if( isError ){
926 >    nExclude = excludedInteractions_.getSize();
927 >    nOneTwo = oneTwoInteractions_.getSize();
928 >    nOneThree = oneThreeInteractions_.getSize();
929 >    nOneFour = oneFourInteractions_.getSize();
930  
931 <      sprintf( painCave.errMsg,
932 <               "There was an error setting the simulation information in fortran.\n" );
933 <      painCave.isFatal = 1;
934 <      painCave.severity = OOPSE_ERROR;
691 <      simError();
692 <    }
693 <
694 < #ifdef IS_MPI
695 <    sprintf( checkPointMsg,
696 <             "succesfully sent the simulation information to fortran.\n");
697 <    MPIcheckPoint();
698 < #endif // is_mpi
699 <  }
700 <
701 <
702 < #ifdef IS_MPI
703 <  void SimInfo::setupFortranParallel() {
704 <    
705 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
706 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
707 <    std::vector<int> localToGlobalCutoffGroupIndex;
708 <    SimInfo::MoleculeIterator mi;
709 <    Molecule::AtomIterator ai;
710 <    Molecule::CutoffGroupIterator ci;
711 <    Molecule* mol;
712 <    Atom* atom;
713 <    CutoffGroup* cg;
714 <    mpiSimData parallelData;
715 <    int isError;
716 <
717 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
718 <
719 <      //local index(index in DataStorge) of atom is important
720 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
721 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
722 <      }
723 <
724 <      //local index of cutoff group is trivial, it only depends on the order of travesing
725 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
726 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
727 <      }        
728 <        
729 <    }
730 <
731 <    //fill up mpiSimData struct
732 <    parallelData.nMolGlobal = getNGlobalMolecules();
733 <    parallelData.nMolLocal = getNMolecules();
734 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
735 <    parallelData.nAtomsLocal = getNAtoms();
736 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
737 <    parallelData.nGroupsLocal = getNCutoffGroups();
738 <    parallelData.myNode = worldRank;
739 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
740 <
741 <    //pass mpiSimData struct and index arrays to fortran
742 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
743 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
744 <                    &localToGlobalCutoffGroupIndex[0], &isError);
745 <
746 <    if (isError) {
747 <      sprintf(painCave.errMsg,
748 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
749 <      painCave.isFatal = 1;
750 <      simError();
751 <    }
752 <
753 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
754 <    MPIcheckPoint();
755 <
756 <
757 <  }
758 <
759 < #endif
760 <
761 <  double SimInfo::calcMaxCutoffRadius() {
762 <
763 <
764 <    std::set<AtomType*> atomTypes;
765 <    std::set<AtomType*>::iterator i;
766 <    std::vector<double> cutoffRadius;
767 <
768 <    //get the unique atom types
769 <    atomTypes = getUniqueAtomTypes();
770 <
771 <    //query the max cutoff radius among these atom types
772 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
773 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
774 <    }
775 <
776 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
777 < #ifdef IS_MPI
778 <    //pick the max cutoff radius among the processors
779 < #endif
780 <
781 <    return maxCutoffRadius;
782 <  }
783 <
784 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
785 <    
786 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
787 <        
788 <      if (!simParams_->haveRcut()){
789 <        sprintf(painCave.errMsg,
790 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
791 <                "\tOOPSE will use a default value of 15.0 angstroms"
792 <                "\tfor the cutoffRadius.\n");
793 <        painCave.isFatal = 0;
794 <        simError();
795 <        rcut = 15.0;
796 <      } else{
797 <        rcut = simParams_->getRcut();
798 <      }
799 <
800 <      if (!simParams_->haveRsw()){
801 <        sprintf(painCave.errMsg,
802 <                "SimCreator Warning: No value was set for switchingRadius.\n"
803 <                "\tOOPSE will use a default value of\n"
804 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
805 <        painCave.isFatal = 0;
806 <        simError();
807 <        rsw = 0.95 * rcut;
808 <      } else{
809 <        rsw = simParams_->getRsw();
810 <      }
931 >    int* excludeList = excludedInteractions_.getPairList();
932 >    int* oneTwoList = oneTwoInteractions_.getPairList();
933 >    int* oneThreeList = oneThreeInteractions_.getPairList();
934 >    int* oneFourList = oneFourInteractions_.getPairList();
935  
936 <    } else {
813 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
814 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
815 <        
816 <      if (simParams_->haveRcut()) {
817 <        rcut = simParams_->getRcut();
818 <      } else {
819 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
820 <        rcut = calcMaxCutoffRadius();
821 <      }
822 <
823 <      if (simParams_->haveRsw()) {
824 <        rsw  = simParams_->getRsw();
825 <      } else {
826 <        rsw = rcut;
827 <      }
828 <    
829 <    }
936 >    topologyDone_ = true;
937    }
938  
832  void SimInfo::setupCutoff() {    
833    getCutoff(rcut_, rsw_);    
834    double rnblist = rcut_ + 1; // skin of neighbor list
835
836    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
837    
838    int cp =  TRADITIONAL_CUTOFF_POLICY;
839    if (simParams_->haveCutoffPolicy()) {
840      std::string myPolicy = simParams_->getCutoffPolicy();
841      if (myPolicy == "MIX") {
842        cp = MIX_CUTOFF_POLICY;
843      } else {
844        if (myPolicy == "MAX") {
845          cp = MAX_CUTOFF_POLICY;
846        } else {
847          if (myPolicy == "TRADITIONAL") {            
848            cp = TRADITIONAL_CUTOFF_POLICY;
849          } else {
850            // throw error        
851            sprintf( painCave.errMsg,
852                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
853            painCave.isFatal = 1;
854            simError();
855          }    
856        }          
857      }
858    }
859    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
860  }
861
862  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
863    
864    int errorOut;
865    int esm =  NONE;
866    double alphaVal;
867
868    errorOut = isError;
869
870    if (simParams_->haveElectrostaticSummationMethod()) {
871      std::string myCorrection = simParams_->getElectrostaticSummationMethod();
872      if (myMethod == "NONE") {
873        esm = NONE;
874      } else {
875        if (myMethod == "UNDAMPED_WOLF") {
876          esm = UNDAMPED_WOLF;
877        } else {
878          if (myMethod == "DAMPED_WOLF") {            
879            esm = WOLF;
880            if (!simParams_->haveDampingAlpha()) {
881              //throw error
882              sprintf( painCave.errMsg,
883                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", simParams_->getDampingAlpha());
884              painCave.isFatal = 0;
885              simError();
886            }
887            alphaVal = simParams_->getDampingAlpha();
888          } else {
889            if (myMethod == "REACTION_FIELD") {
890              esm = REACTION_FIELD;
891            } else {
892              // throw error        
893              sprintf( painCave.errMsg,
894                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
895              painCave.isFatal = 1;
896              simError();
897            }    
898          }          
899        }
900      }
901    }
902    initFortranFF( &fInfo_.SIM_uses_RF, &esm, &alphaVal, &errorOut );
903  }
904
939    void SimInfo::addProperty(GenericData* genData) {
940      properties_.addProperty(genData);  
941    }
942  
943 <  void SimInfo::removeProperty(const std::string& propName) {
943 >  void SimInfo::removeProperty(const string& propName) {
944      properties_.removeProperty(propName);  
945    }
946  
# Line 914 | Line 948 | namespace oopse {
948      properties_.clearProperties();
949    }
950  
951 <  std::vector<std::string> SimInfo::getPropertyNames() {
951 >  vector<string> SimInfo::getPropertyNames() {
952      return properties_.getPropertyNames();  
953    }
954        
955 <  std::vector<GenericData*> SimInfo::getProperties() {
955 >  vector<GenericData*> SimInfo::getProperties() {
956      return properties_.getProperties();
957    }
958  
959 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
959 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
960      return properties_.getPropertyByName(propName);
961    }
962  
# Line 936 | Line 970 | namespace oopse {
970      Molecule* mol;
971      RigidBody* rb;
972      Atom* atom;
973 +    CutoffGroup* cg;
974      SimInfo::MoleculeIterator mi;
975      Molecule::RigidBodyIterator rbIter;
976 <    Molecule::AtomIterator atomIter;;
976 >    Molecule::AtomIterator atomIter;
977 >    Molecule::CutoffGroupIterator cgIter;
978  
979      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
980          
# Line 949 | Line 985 | namespace oopse {
985        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
986          rb->setSnapshotManager(sman_);
987        }
988 +
989 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
990 +        cg->setSnapshotManager(sman_);
991 +      }
992      }    
993      
994    }
995  
956  Vector3d SimInfo::getComVel(){
957    SimInfo::MoleculeIterator i;
958    Molecule* mol;
996  
997 <    Vector3d comVel(0.0);
961 <    double totalMass = 0.0;
962 <    
963 <
964 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
965 <      double mass = mol->getMass();
966 <      totalMass += mass;
967 <      comVel += mass * mol->getComVel();
968 <    }  
997 >  ostream& operator <<(ostream& o, SimInfo& info) {
998  
970 #ifdef IS_MPI
971    double tmpMass = totalMass;
972    Vector3d tmpComVel(comVel);    
973    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
974    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
975 #endif
976
977    comVel /= totalMass;
978
979    return comVel;
980  }
981
982  Vector3d SimInfo::getCom(){
983    SimInfo::MoleculeIterator i;
984    Molecule* mol;
985
986    Vector3d com(0.0);
987    double totalMass = 0.0;
988    
989    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
990      double mass = mol->getMass();
991      totalMass += mass;
992      com += mass * mol->getCom();
993    }  
994
995 #ifdef IS_MPI
996    double tmpMass = totalMass;
997    Vector3d tmpCom(com);    
998    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
999    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1000 #endif
1001
1002    com /= totalMass;
1003
1004    return com;
1005
1006  }        
1007
1008  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1009
999      return o;
1000    }
1001    
1002 <  
1003 <   /*
1004 <   Returns center of mass and center of mass velocity in one function call.
1005 <   */
1006 <  
1007 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1008 <      SimInfo::MoleculeIterator i;
1009 <      Molecule* mol;
1010 <      
1011 <    
1012 <      double totalMass = 0.0;
1013 <    
1002 >  
1003 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1004 >    return IOIndexToIntegrableObject.at(index);
1005 >  }
1006 >  
1007 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1008 >    IOIndexToIntegrableObject= v;
1009 >  }
1010 > /*
1011 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1012 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1013 >      sdByGlobalIndex_ = v;
1014 >    }
1015  
1016 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1017 <         double mass = mol->getMass();
1018 <         totalMass += mass;
1019 <         com += mass * mol->getCom();
1020 <         comVel += mass * mol->getComVel();          
1021 <      }  
1022 <      
1016 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1017 >      //assert(index < nAtoms_ + nRigidBodies_);
1018 >      return sdByGlobalIndex_.at(index);
1019 >    }  
1020 > */  
1021 >  int SimInfo::getNGlobalConstraints() {
1022 >    int nGlobalConstraints;
1023   #ifdef IS_MPI
1024 <      double tmpMass = totalMass;
1025 <      Vector3d tmpCom(com);  
1026 <      Vector3d tmpComVel(comVel);
1027 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1038 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1039 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1024 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1025 >                  MPI_COMM_WORLD);    
1026 > #else
1027 >    nGlobalConstraints =  nConstraints_;
1028   #endif
1029 <      
1030 <      com /= totalMass;
1043 <      comVel /= totalMass;
1044 <   }        
1045 <  
1046 <   /*
1047 <   Return intertia tensor for entire system and angular momentum Vector.
1029 >    return nGlobalConstraints;
1030 >  }
1031  
1032 + }//end namespace OpenMD
1033  
1050       [  Ixx -Ixy  -Ixz ]
1051  J =| -Iyx  Iyy  -Iyz |
1052       [ -Izx -Iyz   Izz ]
1053    */
1054
1055   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1056      
1057
1058      double xx = 0.0;
1059      double yy = 0.0;
1060      double zz = 0.0;
1061      double xy = 0.0;
1062      double xz = 0.0;
1063      double yz = 0.0;
1064      Vector3d com(0.0);
1065      Vector3d comVel(0.0);
1066      
1067      getComAll(com, comVel);
1068      
1069      SimInfo::MoleculeIterator i;
1070      Molecule* mol;
1071      
1072      Vector3d thisq(0.0);
1073      Vector3d thisv(0.0);
1074
1075      double thisMass = 0.0;
1076    
1077      
1078      
1079  
1080      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1081        
1082         thisq = mol->getCom()-com;
1083         thisv = mol->getComVel()-comVel;
1084         thisMass = mol->getMass();
1085         // Compute moment of intertia coefficients.
1086         xx += thisq[0]*thisq[0]*thisMass;
1087         yy += thisq[1]*thisq[1]*thisMass;
1088         zz += thisq[2]*thisq[2]*thisMass;
1089        
1090         // compute products of intertia
1091         xy += thisq[0]*thisq[1]*thisMass;
1092         xz += thisq[0]*thisq[2]*thisMass;
1093         yz += thisq[1]*thisq[2]*thisMass;
1094            
1095         angularMomentum += cross( thisq, thisv ) * thisMass;
1096            
1097      }  
1098      
1099      
1100      inertiaTensor(0,0) = yy + zz;
1101      inertiaTensor(0,1) = -xy;
1102      inertiaTensor(0,2) = -xz;
1103      inertiaTensor(1,0) = -xy;
1104      inertiaTensor(1,1) = xx + zz;
1105      inertiaTensor(1,2) = -yz;
1106      inertiaTensor(2,0) = -xz;
1107      inertiaTensor(2,1) = -yz;
1108      inertiaTensor(2,2) = xx + yy;
1109      
1110 #ifdef IS_MPI
1111      Mat3x3d tmpI(inertiaTensor);
1112      Vector3d tmpAngMom;
1113      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1114      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1115 #endif
1116              
1117      return;
1118   }
1119
1120   //Returns the angular momentum of the system
1121   Vector3d SimInfo::getAngularMomentum(){
1122      
1123      Vector3d com(0.0);
1124      Vector3d comVel(0.0);
1125      Vector3d angularMomentum(0.0);
1126      
1127      getComAll(com,comVel);
1128      
1129      SimInfo::MoleculeIterator i;
1130      Molecule* mol;
1131      
1132      Vector3d thisr(0.0);
1133      Vector3d thisp(0.0);
1134      
1135      double thisMass;
1136      
1137      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1138        thisMass = mol->getMass();
1139        thisr = mol->getCom()-com;
1140        thisp = (mol->getComVel()-comVel)*thisMass;
1141        
1142        angularMomentum += cross( thisr, thisp );
1143        
1144      }  
1145      
1146 #ifdef IS_MPI
1147      Vector3d tmpAngMom;
1148      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1149 #endif
1150      
1151      return angularMomentum;
1152   }
1153  
1154  
1155 }//end namespace oopse
1156

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 603 by chrisfen, Fri Sep 16 16:07:39 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1767 by gezelter, Fri Jul 6 22:01:58 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines