ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 48 | Line 49
49  
50   #include <algorithm>
51   #include <set>
52 + #include <map>
53  
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/doForces_interface.h"
56 < #include "UseTheForce/notifyCutoffs_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61 <
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "UseTheForce/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
64 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <
70 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 <                                ForceField* ff, Globals* simParams) :
72 <                                forceField_(ff), simParams_(simParams),
73 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <                                sman_(NULL), fortranInitialized_(false) {
79 <
80 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81      MoleculeStamp* molStamp;
82      int nMolWithSameStamp;
83      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85      CutoffGroupStamp* cgStamp;    
86      RigidBodyStamp* rbStamp;
87      int nRigidAtoms = 0;
88      
89 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
90 <        molStamp = i->first;
91 <        nMolWithSameStamp = i->second;
92 <        
93 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
94 <
95 <        //calculate atoms in molecules
96 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
97 <
98 <
99 <        //calculate atoms in cutoff groups
100 <        int nAtomsInGroups = 0;
101 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
102 <        
103 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
104 <            cgStamp = molStamp->getCutoffGroup(j);
105 <            nAtomsInGroups += cgStamp->getNMembers();
106 <        }
107 <
108 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
109 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
110 <
111 <        //calculate atoms in rigid bodies
112 <        int nAtomsInRigidBodies = 0;
113 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
114 <        
115 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
116 <            rbStamp = molStamp->getRigidBody(j);
117 <            nAtomsInRigidBodies += rbStamp->getNMembers();
118 <        }
119 <
120 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
121 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
122 <        
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94 >      
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107 >      }
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125      }
126 +    
127 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 +    //group therefore the total number of cutoff groups in the system is
129 +    //equal to the total number of atoms minus number of atoms belong to
130 +    //cutoff group defined in meta-data file plus the number of cutoff
131 +    //groups defined in meta-data file
132  
124    //every free atom (atom does not belong to cutoff groups) is a cutoff group
125    //therefore the total number of cutoff groups in the system is equal to
126    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127    //file plus the number of cutoff groups defined in meta-data file
133      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 <
135 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
136 <    //therefore the total number of  integrable objects in the system is equal to
137 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
138 <    //file plus the number of  rigid bodies defined in meta-data file
139 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
140 <
134 >    
135 >    //every free atom (atom does not belong to rigid bodies) is an
136 >    //integrable object therefore the total number of integrable objects
137 >    //in the system is equal to the total number of atoms minus number of
138 >    //atoms belong to rigid body defined in meta-data file plus the number
139 >    //of rigid bodies defined in meta-data file
140 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 >      + nGlobalRigidBodies_;
142 >    
143      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
144      molToProcMap_.resize(nGlobalMols_);
145 < #endif
146 <
147 < }
148 <
144 < SimInfo::~SimInfo() {
145 <    std::map<int, Molecule*>::iterator i;
145 >  }
146 >  
147 >  SimInfo::~SimInfo() {
148 >    map<int, Molecule*>::iterator i;
149      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150 <        delete i->second;
150 >      delete i->second;
151      }
152      molecules_.clear();
153 <    
151 <    MemoryUtils::deletePointers(moleculeStamps_);
152 <    
153 >      
154      delete sman_;
155      delete simParams_;
156      delete forceField_;
157 < }
157 >  }
158  
158 int SimInfo::getNGlobalConstraints() {
159    int nGlobalConstraints;
160 #ifdef IS_MPI
161    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
162                  MPI_COMM_WORLD);    
163 #else
164    nGlobalConstraints =  nConstraints_;
165 #endif
166    return nGlobalConstraints;
167 }
159  
160 < bool SimInfo::addMolecule(Molecule* mol) {
160 >  bool SimInfo::addMolecule(Molecule* mol) {
161      MoleculeIterator i;
162 <
162 >    
163      i = molecules_.find(mol->getGlobalIndex());
164      if (i == molecules_.end() ) {
165 <
166 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
167 <        
168 <        nAtoms_ += mol->getNAtoms();
169 <        nBonds_ += mol->getNBonds();
170 <        nBends_ += mol->getNBends();
171 <        nTorsions_ += mol->getNTorsions();
172 <        nRigidBodies_ += mol->getNRigidBodies();
173 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
174 <        nCutoffGroups_ += mol->getNCutoffGroups();
175 <        nConstraints_ += mol->getNConstraintPairs();
176 <
177 <        addExcludePairs(mol);
178 <        
179 <        return true;
180 <    } else {
181 <        return false;
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168 >      nAtoms_ += mol->getNAtoms();
169 >      nBonds_ += mol->getNBonds();
170 >      nBends_ += mol->getNBends();
171 >      nTorsions_ += mol->getNTorsions();
172 >      nInversions_ += mol->getNInversions();
173 >      nRigidBodies_ += mol->getNRigidBodies();
174 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
175 >      nCutoffGroups_ += mol->getNCutoffGroups();
176 >      nConstraints_ += mol->getNConstraintPairs();
177 >      
178 >      addInteractionPairs(mol);
179 >      
180 >      return true;
181 >    } else {
182 >      return false;
183      }
184 < }
185 <
186 < bool SimInfo::removeMolecule(Molecule* mol) {
184 >  }
185 >  
186 >  bool SimInfo::removeMolecule(Molecule* mol) {
187      MoleculeIterator i;
188      i = molecules_.find(mol->getGlobalIndex());
189  
190      if (i != molecules_.end() ) {
191  
192 <        assert(mol == i->second);
192 >      assert(mol == i->second);
193          
194 <        nAtoms_ -= mol->getNAtoms();
195 <        nBonds_ -= mol->getNBonds();
196 <        nBends_ -= mol->getNBends();
197 <        nTorsions_ -= mol->getNTorsions();
198 <        nRigidBodies_ -= mol->getNRigidBodies();
199 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
200 <        nCutoffGroups_ -= mol->getNCutoffGroups();
201 <        nConstraints_ -= mol->getNConstraintPairs();
194 >      nAtoms_ -= mol->getNAtoms();
195 >      nBonds_ -= mol->getNBonds();
196 >      nBends_ -= mol->getNBends();
197 >      nTorsions_ -= mol->getNTorsions();
198 >      nInversions_ -= mol->getNInversions();
199 >      nRigidBodies_ -= mol->getNRigidBodies();
200 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
201 >      nCutoffGroups_ -= mol->getNCutoffGroups();
202 >      nConstraints_ -= mol->getNConstraintPairs();
203  
204 <        removeExcludePairs(mol);
205 <        molecules_.erase(mol->getGlobalIndex());
204 >      removeInteractionPairs(mol);
205 >      molecules_.erase(mol->getGlobalIndex());
206  
207 <        delete mol;
207 >      delete mol;
208          
209 <        return true;
209 >      return true;
210      } else {
211 <        return false;
211 >      return false;
212      }
213 +  }    
214  
221
222 }    
223
215          
216 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
216 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
217      i = molecules_.begin();
218      return i == molecules_.end() ? NULL : i->second;
219 < }    
219 >  }    
220  
221 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
221 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
222      ++i;
223      return i == molecules_.end() ? NULL : i->second;    
224 < }
224 >  }
225  
226  
227 < void SimInfo::calcNdf() {
227 >  void SimInfo::calcNdf() {
228      int ndf_local;
229      MoleculeIterator i;
230 <    std::vector<StuntDouble*>::iterator j;
230 >    vector<StuntDouble*>::iterator j;
231      Molecule* mol;
232      StuntDouble* integrableObject;
233  
234      ndf_local = 0;
235      
236      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
237 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
238 <               integrableObject = mol->nextIntegrableObject(j)) {
237 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
238 >           integrableObject = mol->nextIntegrableObject(j)) {
239  
240 <            ndf_local += 3;
240 >        ndf_local += 3;
241  
242 <            if (integrableObject->isDirectional()) {
243 <                if (integrableObject->isLinear()) {
244 <                    ndf_local += 2;
245 <                } else {
246 <                    ndf_local += 3;
247 <                }
248 <            }
242 >        if (integrableObject->isDirectional()) {
243 >          if (integrableObject->isLinear()) {
244 >            ndf_local += 2;
245 >          } else {
246 >            ndf_local += 3;
247 >          }
248 >        }
249              
250 <        }//end for (integrableObject)
251 <    }// end for (mol)
250 >      }
251 >    }
252      
253      // n_constraints is local, so subtract them on each processor
254      ndf_local -= nConstraints_;
# Line 272 | Line 263 | void SimInfo::calcNdf() {
263      // entire system:
264      ndf_ = ndf_ - 3 - nZconstraint_;
265  
266 < }
266 >  }
267  
268 < void SimInfo::calcNdfRaw() {
268 >  int SimInfo::getFdf() {
269 > #ifdef IS_MPI
270 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
271 > #else
272 >    fdf_ = fdf_local;
273 > #endif
274 >    return fdf_;
275 >  }
276 >  
277 >  unsigned int SimInfo::getNLocalCutoffGroups(){
278 >    int nLocalCutoffAtoms = 0;
279 >    Molecule* mol;
280 >    MoleculeIterator mi;
281 >    CutoffGroup* cg;
282 >    Molecule::CutoffGroupIterator ci;
283 >    
284 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
285 >      
286 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
287 >           cg = mol->nextCutoffGroup(ci)) {
288 >        nLocalCutoffAtoms += cg->getNumAtom();
289 >        
290 >      }        
291 >    }
292 >    
293 >    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
294 >  }
295 >    
296 >  void SimInfo::calcNdfRaw() {
297      int ndfRaw_local;
298  
299      MoleculeIterator i;
300 <    std::vector<StuntDouble*>::iterator j;
300 >    vector<StuntDouble*>::iterator j;
301      Molecule* mol;
302      StuntDouble* integrableObject;
303  
# Line 286 | Line 305 | void SimInfo::calcNdfRaw() {
305      ndfRaw_local = 0;
306      
307      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
308 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
309 <               integrableObject = mol->nextIntegrableObject(j)) {
308 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
309 >           integrableObject = mol->nextIntegrableObject(j)) {
310  
311 <            ndfRaw_local += 3;
311 >        ndfRaw_local += 3;
312  
313 <            if (integrableObject->isDirectional()) {
314 <                if (integrableObject->isLinear()) {
315 <                    ndfRaw_local += 2;
316 <                } else {
317 <                    ndfRaw_local += 3;
318 <                }
319 <            }
313 >        if (integrableObject->isDirectional()) {
314 >          if (integrableObject->isLinear()) {
315 >            ndfRaw_local += 2;
316 >          } else {
317 >            ndfRaw_local += 3;
318 >          }
319 >        }
320              
321 <        }
321 >      }
322      }
323      
324   #ifdef IS_MPI
# Line 307 | Line 326 | void SimInfo::calcNdfRaw() {
326   #else
327      ndfRaw_ = ndfRaw_local;
328   #endif
329 < }
329 >  }
330  
331 < void SimInfo::calcNdfTrans() {
331 >  void SimInfo::calcNdfTrans() {
332      int ndfTrans_local;
333  
334      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 323 | Line 342 | void SimInfo::calcNdfTrans() {
342  
343      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
344  
345 < }
345 >  }
346  
347 < void SimInfo::addExcludePairs(Molecule* mol) {
348 <    std::vector<Bond*>::iterator bondIter;
349 <    std::vector<Bend*>::iterator bendIter;
350 <    std::vector<Torsion*>::iterator torsionIter;
347 >  void SimInfo::addInteractionPairs(Molecule* mol) {
348 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
349 >    vector<Bond*>::iterator bondIter;
350 >    vector<Bend*>::iterator bendIter;
351 >    vector<Torsion*>::iterator torsionIter;
352 >    vector<Inversion*>::iterator inversionIter;
353      Bond* bond;
354      Bend* bend;
355      Torsion* torsion;
356 +    Inversion* inversion;
357      int a;
358      int b;
359      int c;
360      int d;
339    
340    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
341        a = bond->getAtomA()->getGlobalIndex();
342        b = bond->getAtomB()->getGlobalIndex();        
343        exclude_.addPair(a, b);
344    }
361  
362 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
363 <        a = bend->getAtomA()->getGlobalIndex();
364 <        b = bend->getAtomB()->getGlobalIndex();        
365 <        c = bend->getAtomC()->getGlobalIndex();
362 >    // atomGroups can be used to add special interaction maps between
363 >    // groups of atoms that are in two separate rigid bodies.
364 >    // However, most site-site interactions between two rigid bodies
365 >    // are probably not special, just the ones between the physically
366 >    // bonded atoms.  Interactions *within* a single rigid body should
367 >    // always be excluded.  These are done at the bottom of this
368 >    // function.
369  
370 <        exclude_.addPair(a, b);
371 <        exclude_.addPair(a, c);
372 <        exclude_.addPair(b, c);        
373 <    }
374 <
375 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
376 <        a = torsion->getAtomA()->getGlobalIndex();
377 <        b = torsion->getAtomB()->getGlobalIndex();        
378 <        c = torsion->getAtomC()->getGlobalIndex();        
379 <        d = torsion->getAtomD()->getGlobalIndex();        
370 >    map<int, set<int> > atomGroups;
371 >    Molecule::RigidBodyIterator rbIter;
372 >    RigidBody* rb;
373 >    Molecule::IntegrableObjectIterator ii;
374 >    StuntDouble* integrableObject;
375 >    
376 >    for (integrableObject = mol->beginIntegrableObject(ii);
377 >         integrableObject != NULL;
378 >         integrableObject = mol->nextIntegrableObject(ii)) {
379 >      
380 >      if (integrableObject->isRigidBody()) {
381 >        rb = static_cast<RigidBody*>(integrableObject);
382 >        vector<Atom*> atoms = rb->getAtoms();
383 >        set<int> rigidAtoms;
384 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
385 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
386 >        }
387 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
388 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
389 >        }      
390 >      } else {
391 >        set<int> oneAtomSet;
392 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
393 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
394 >      }
395 >    }  
396 >          
397 >    for (bond= mol->beginBond(bondIter); bond != NULL;
398 >         bond = mol->nextBond(bondIter)) {
399  
400 <        exclude_.addPair(a, b);
401 <        exclude_.addPair(a, c);
402 <        exclude_.addPair(a, d);
403 <        exclude_.addPair(b, c);
404 <        exclude_.addPair(b, d);
405 <        exclude_.addPair(c, d);        
400 >      a = bond->getAtomA()->getGlobalIndex();
401 >      b = bond->getAtomB()->getGlobalIndex();  
402 >    
403 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
404 >        oneTwoInteractions_.addPair(a, b);
405 >      } else {
406 >        excludedInteractions_.addPair(a, b);
407 >      }
408      }
409  
410 <    
411 < }
410 >    for (bend= mol->beginBend(bendIter); bend != NULL;
411 >         bend = mol->nextBend(bendIter)) {
412  
413 < void SimInfo::removeExcludePairs(Molecule* mol) {
414 <    std::vector<Bond*>::iterator bondIter;
415 <    std::vector<Bend*>::iterator bendIter;
416 <    std::vector<Torsion*>::iterator torsionIter;
413 >      a = bend->getAtomA()->getGlobalIndex();
414 >      b = bend->getAtomB()->getGlobalIndex();        
415 >      c = bend->getAtomC()->getGlobalIndex();
416 >      
417 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
418 >        oneTwoInteractions_.addPair(a, b);      
419 >        oneTwoInteractions_.addPair(b, c);
420 >      } else {
421 >        excludedInteractions_.addPair(a, b);
422 >        excludedInteractions_.addPair(b, c);
423 >      }
424 >
425 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
426 >        oneThreeInteractions_.addPair(a, c);      
427 >      } else {
428 >        excludedInteractions_.addPair(a, c);
429 >      }
430 >    }
431 >
432 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
433 >         torsion = mol->nextTorsion(torsionIter)) {
434 >
435 >      a = torsion->getAtomA()->getGlobalIndex();
436 >      b = torsion->getAtomB()->getGlobalIndex();        
437 >      c = torsion->getAtomC()->getGlobalIndex();        
438 >      d = torsion->getAtomD()->getGlobalIndex();      
439 >
440 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
441 >        oneTwoInteractions_.addPair(a, b);      
442 >        oneTwoInteractions_.addPair(b, c);
443 >        oneTwoInteractions_.addPair(c, d);
444 >      } else {
445 >        excludedInteractions_.addPair(a, b);
446 >        excludedInteractions_.addPair(b, c);
447 >        excludedInteractions_.addPair(c, d);
448 >      }
449 >
450 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
451 >        oneThreeInteractions_.addPair(a, c);      
452 >        oneThreeInteractions_.addPair(b, d);      
453 >      } else {
454 >        excludedInteractions_.addPair(a, c);
455 >        excludedInteractions_.addPair(b, d);
456 >      }
457 >
458 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
459 >        oneFourInteractions_.addPair(a, d);      
460 >      } else {
461 >        excludedInteractions_.addPair(a, d);
462 >      }
463 >    }
464 >
465 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
466 >         inversion = mol->nextInversion(inversionIter)) {
467 >
468 >      a = inversion->getAtomA()->getGlobalIndex();
469 >      b = inversion->getAtomB()->getGlobalIndex();        
470 >      c = inversion->getAtomC()->getGlobalIndex();        
471 >      d = inversion->getAtomD()->getGlobalIndex();        
472 >
473 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
474 >        oneTwoInteractions_.addPair(a, b);      
475 >        oneTwoInteractions_.addPair(a, c);
476 >        oneTwoInteractions_.addPair(a, d);
477 >      } else {
478 >        excludedInteractions_.addPair(a, b);
479 >        excludedInteractions_.addPair(a, c);
480 >        excludedInteractions_.addPair(a, d);
481 >      }
482 >
483 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
484 >        oneThreeInteractions_.addPair(b, c);    
485 >        oneThreeInteractions_.addPair(b, d);    
486 >        oneThreeInteractions_.addPair(c, d);      
487 >      } else {
488 >        excludedInteractions_.addPair(b, c);
489 >        excludedInteractions_.addPair(b, d);
490 >        excludedInteractions_.addPair(c, d);
491 >      }
492 >    }
493 >
494 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
495 >         rb = mol->nextRigidBody(rbIter)) {
496 >      vector<Atom*> atoms = rb->getAtoms();
497 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
498 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
499 >          a = atoms[i]->getGlobalIndex();
500 >          b = atoms[j]->getGlobalIndex();
501 >          excludedInteractions_.addPair(a, b);
502 >        }
503 >      }
504 >    }        
505 >
506 >  }
507 >
508 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
509 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
510 >    vector<Bond*>::iterator bondIter;
511 >    vector<Bend*>::iterator bendIter;
512 >    vector<Torsion*>::iterator torsionIter;
513 >    vector<Inversion*>::iterator inversionIter;
514      Bond* bond;
515      Bend* bend;
516      Torsion* torsion;
517 +    Inversion* inversion;
518      int a;
519      int b;
520      int c;
521      int d;
522 +
523 +    map<int, set<int> > atomGroups;
524 +    Molecule::RigidBodyIterator rbIter;
525 +    RigidBody* rb;
526 +    Molecule::IntegrableObjectIterator ii;
527 +    StuntDouble* integrableObject;
528      
529 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
530 <        a = bond->getAtomA()->getGlobalIndex();
531 <        b = bond->getAtomB()->getGlobalIndex();        
532 <        exclude_.removePair(a, b);
529 >    for (integrableObject = mol->beginIntegrableObject(ii);
530 >         integrableObject != NULL;
531 >         integrableObject = mol->nextIntegrableObject(ii)) {
532 >      
533 >      if (integrableObject->isRigidBody()) {
534 >        rb = static_cast<RigidBody*>(integrableObject);
535 >        vector<Atom*> atoms = rb->getAtoms();
536 >        set<int> rigidAtoms;
537 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
538 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
539 >        }
540 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
541 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
542 >        }      
543 >      } else {
544 >        set<int> oneAtomSet;
545 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
546 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
547 >      }
548 >    }  
549 >
550 >    for (bond= mol->beginBond(bondIter); bond != NULL;
551 >         bond = mol->nextBond(bondIter)) {
552 >      
553 >      a = bond->getAtomA()->getGlobalIndex();
554 >      b = bond->getAtomB()->getGlobalIndex();  
555 >    
556 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
557 >        oneTwoInteractions_.removePair(a, b);
558 >      } else {
559 >        excludedInteractions_.removePair(a, b);
560 >      }
561      }
562  
563 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
564 <        a = bend->getAtomA()->getGlobalIndex();
393 <        b = bend->getAtomB()->getGlobalIndex();        
394 <        c = bend->getAtomC()->getGlobalIndex();
563 >    for (bend= mol->beginBend(bendIter); bend != NULL;
564 >         bend = mol->nextBend(bendIter)) {
565  
566 <        exclude_.removePair(a, b);
567 <        exclude_.removePair(a, c);
568 <        exclude_.removePair(b, c);        
566 >      a = bend->getAtomA()->getGlobalIndex();
567 >      b = bend->getAtomB()->getGlobalIndex();        
568 >      c = bend->getAtomC()->getGlobalIndex();
569 >      
570 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
571 >        oneTwoInteractions_.removePair(a, b);      
572 >        oneTwoInteractions_.removePair(b, c);
573 >      } else {
574 >        excludedInteractions_.removePair(a, b);
575 >        excludedInteractions_.removePair(b, c);
576 >      }
577 >
578 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
579 >        oneThreeInteractions_.removePair(a, c);      
580 >      } else {
581 >        excludedInteractions_.removePair(a, c);
582 >      }
583      }
584  
585 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
586 <        a = torsion->getAtomA()->getGlobalIndex();
403 <        b = torsion->getAtomB()->getGlobalIndex();        
404 <        c = torsion->getAtomC()->getGlobalIndex();        
405 <        d = torsion->getAtomD()->getGlobalIndex();        
585 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
586 >         torsion = mol->nextTorsion(torsionIter)) {
587  
588 <        exclude_.removePair(a, b);
589 <        exclude_.removePair(a, c);
590 <        exclude_.removePair(a, d);
591 <        exclude_.removePair(b, c);
592 <        exclude_.removePair(b, d);
593 <        exclude_.removePair(c, d);        
588 >      a = torsion->getAtomA()->getGlobalIndex();
589 >      b = torsion->getAtomB()->getGlobalIndex();        
590 >      c = torsion->getAtomC()->getGlobalIndex();        
591 >      d = torsion->getAtomD()->getGlobalIndex();      
592 >  
593 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
594 >        oneTwoInteractions_.removePair(a, b);      
595 >        oneTwoInteractions_.removePair(b, c);
596 >        oneTwoInteractions_.removePair(c, d);
597 >      } else {
598 >        excludedInteractions_.removePair(a, b);
599 >        excludedInteractions_.removePair(b, c);
600 >        excludedInteractions_.removePair(c, d);
601 >      }
602 >
603 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
604 >        oneThreeInteractions_.removePair(a, c);      
605 >        oneThreeInteractions_.removePair(b, d);      
606 >      } else {
607 >        excludedInteractions_.removePair(a, c);
608 >        excludedInteractions_.removePair(b, d);
609 >      }
610 >
611 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
612 >        oneFourInteractions_.removePair(a, d);      
613 >      } else {
614 >        excludedInteractions_.removePair(a, d);
615 >      }
616      }
617  
618 < }
618 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
619 >         inversion = mol->nextInversion(inversionIter)) {
620  
621 +      a = inversion->getAtomA()->getGlobalIndex();
622 +      b = inversion->getAtomB()->getGlobalIndex();        
623 +      c = inversion->getAtomC()->getGlobalIndex();        
624 +      d = inversion->getAtomD()->getGlobalIndex();        
625  
626 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
627 <    int curStampId;
626 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
627 >        oneTwoInteractions_.removePair(a, b);      
628 >        oneTwoInteractions_.removePair(a, c);
629 >        oneTwoInteractions_.removePair(a, d);
630 >      } else {
631 >        excludedInteractions_.removePair(a, b);
632 >        excludedInteractions_.removePair(a, c);
633 >        excludedInteractions_.removePair(a, d);
634 >      }
635  
636 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
637 +        oneThreeInteractions_.removePair(b, c);    
638 +        oneThreeInteractions_.removePair(b, d);    
639 +        oneThreeInteractions_.removePair(c, d);      
640 +      } else {
641 +        excludedInteractions_.removePair(b, c);
642 +        excludedInteractions_.removePair(b, d);
643 +        excludedInteractions_.removePair(c, d);
644 +      }
645 +    }
646 +
647 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
648 +         rb = mol->nextRigidBody(rbIter)) {
649 +      vector<Atom*> atoms = rb->getAtoms();
650 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
651 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
652 +          a = atoms[i]->getGlobalIndex();
653 +          b = atoms[j]->getGlobalIndex();
654 +          excludedInteractions_.removePair(a, b);
655 +        }
656 +      }
657 +    }        
658 +    
659 +  }
660 +  
661 +  
662 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
663 +    int curStampId;
664 +    
665      //index from 0
666      curStampId = moleculeStamps_.size();
667  
668      moleculeStamps_.push_back(molStamp);
669      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
670 < }
670 >  }
671  
428 void SimInfo::update() {
672  
673 <    setupSimType();
674 <
675 < #ifdef IS_MPI
676 <    setupFortranParallel();
677 < #endif
678 <
679 <    setupFortranSim();
680 <
681 <    //setup fortran force field
439 <    /** @deprecate */    
440 <    int isError = 0;
441 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
442 <    if(isError){
443 <        sprintf( painCave.errMsg,
444 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
445 <        painCave.isFatal = 1;
446 <        simError();
447 <    }
448 <  
449 <    
450 <    setupCutoff();
451 <
673 >  /**
674 >   * update
675 >   *
676 >   *  Performs the global checks and variable settings after the
677 >   *  objects have been created.
678 >   *
679 >   */
680 >  void SimInfo::update() {  
681 >    setupSimVariables();
682      calcNdf();
683      calcNdfRaw();
684      calcNdfTrans();
685 <
686 <    fortranInitialized_ = true;
687 < }
688 <
689 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
685 >  }
686 >  
687 >  /**
688 >   * getSimulatedAtomTypes
689 >   *
690 >   * Returns an STL set of AtomType* that are actually present in this
691 >   * simulation.  Must query all processors to assemble this information.
692 >   *
693 >   */
694 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
695      SimInfo::MoleculeIterator mi;
696      Molecule* mol;
697      Molecule::AtomIterator ai;
698      Atom* atom;
699 <    std::set<AtomType*> atomTypes;
700 <
699 >    set<AtomType*> atomTypes;
700 >    
701      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
702 +      for(atom = mol->beginAtom(ai); atom != NULL;
703 +          atom = mol->nextAtom(ai)) {
704 +        atomTypes.insert(atom->getAtomType());
705 +      }      
706 +    }    
707 +    
708 + #ifdef IS_MPI
709  
710 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
711 <            atomTypes.insert(atom->getAtomType());
712 <        }
713 <        
710 >    // loop over the found atom types on this processor, and add their
711 >    // numerical idents to a vector:
712 >    
713 >    vector<int> foundTypes;
714 >    set<AtomType*>::iterator i;
715 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
716 >      foundTypes.push_back( (*i)->getIdent() );
717 >
718 >    // count_local holds the number of found types on this processor
719 >    int count_local = foundTypes.size();
720 >
721 >    int nproc = MPI::COMM_WORLD.Get_size();
722 >
723 >    // we need arrays to hold the counts and displacement vectors for
724 >    // all processors
725 >    vector<int> counts(nproc, 0);
726 >    vector<int> disps(nproc, 0);
727 >
728 >    // fill the counts array
729 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
730 >                              1, MPI::INT);
731 >  
732 >    // use the processor counts to compute the displacement array
733 >    disps[0] = 0;    
734 >    int totalCount = counts[0];
735 >    for (int iproc = 1; iproc < nproc; iproc++) {
736 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
737 >      totalCount += counts[iproc];
738      }
739  
740 <    return atomTypes;        
741 < }
740 >    // we need a (possibly redundant) set of all found types:
741 >    vector<int> ftGlobal(totalCount);
742 >    
743 >    // now spray out the foundTypes to all the other processors:    
744 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
745 >                               &ftGlobal[0], &counts[0], &disps[0],
746 >                               MPI::INT);
747  
748 < void SimInfo::setupSimType() {
749 <    std::set<AtomType*>::iterator i;
750 <    std::set<AtomType*> atomTypes;
751 <    atomTypes = getUniqueAtomTypes();
748 >    vector<int>::iterator j;
749 >
750 >    // foundIdents is a stl set, so inserting an already found ident
751 >    // will have no effect.
752 >    set<int> foundIdents;
753 >
754 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
755 >      foundIdents.insert((*j));
756      
757 <    int useLennardJones = 0;
758 <    int useElectrostatic = 0;
759 <    int useEAM = 0;
760 <    int useCharge = 0;
761 <    int useDirectional = 0;
762 <    int useDipole = 0;
763 <    int useGayBerne = 0;
489 <    int useSticky = 0;
490 <    int useShape = 0;
491 <    int useFLARB = 0; //it is not in AtomType yet
492 <    int useDirectionalAtom = 0;    
493 <    int useElectrostatics = 0;
494 <    //usePBC and useRF are from simParams
495 <    int usePBC = simParams_->getPBC();
496 <    int useRF = simParams_->getUseRF();
757 >    // now iterate over the foundIdents and get the actual atom types
758 >    // that correspond to these:
759 >    set<int>::iterator it;
760 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
761 >      atomTypes.insert( forceField_->getAtomType((*it)) );
762 >
763 > #endif
764  
765 +    return atomTypes;        
766 +  }
767 +
768 +  void SimInfo::setupSimVariables() {
769 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
770 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
771 +    calcBoxDipole_ = false;
772 +    if ( simParams_->haveAccumulateBoxDipole() )
773 +      if ( simParams_->getAccumulateBoxDipole() ) {
774 +        calcBoxDipole_ = true;      
775 +      }
776 +    
777 +    set<AtomType*>::iterator i;
778 +    set<AtomType*> atomTypes;
779 +    atomTypes = getSimulatedAtomTypes();    
780 +    int usesElectrostatic = 0;
781 +    int usesMetallic = 0;
782 +    int usesDirectional = 0;
783      //loop over all of the atom types
784      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
785 <        useLennardJones |= (*i)->isLennardJones();
786 <        useElectrostatic |= (*i)->isElectrostatic();
787 <        useEAM |= (*i)->isEAM();
503 <        useCharge |= (*i)->isCharge();
504 <        useDirectional |= (*i)->isDirectional();
505 <        useDipole |= (*i)->isDipole();
506 <        useGayBerne |= (*i)->isGayBerne();
507 <        useSticky |= (*i)->isSticky();
508 <        useShape |= (*i)->isShape();
785 >      usesElectrostatic |= (*i)->isElectrostatic();
786 >      usesMetallic |= (*i)->isMetal();
787 >      usesDirectional |= (*i)->isDirectional();
788      }
789 <
511 <    if (useSticky || useDipole || useGayBerne || useShape) {
512 <        useDirectionalAtom = 1;
513 <    }
514 <
515 <    if (useCharge || useDipole) {
516 <        useElectrostatics = 1;
517 <    }
518 <
789 >    
790   #ifdef IS_MPI    
791      int temp;
792 +    temp = usesDirectional;
793 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
794 +    
795 +    temp = usesMetallic;
796 +    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
797 +    
798 +    temp = usesElectrostatic;
799 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
800 + #else
801  
802 <    temp = usePBC;
803 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
802 >    usesDirectionalAtoms_ = usesDirectional;
803 >    usesMetallicAtoms_ = usesMetallic;
804 >    usesElectrostaticAtoms_ = usesElectrostatic;
805  
806 <    temp = useDirectionalAtom;
807 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
806 > #endif
807 >    
808 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
809 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
810 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
811 >  }
812  
528    temp = useLennardJones;
529    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813  
814 <    temp = useElectrostatics;
815 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
814 >  vector<int> SimInfo::getGlobalAtomIndices() {
815 >    SimInfo::MoleculeIterator mi;
816 >    Molecule* mol;
817 >    Molecule::AtomIterator ai;
818 >    Atom* atom;
819  
820 <    temp = useCharge;
535 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
536 <
537 <    temp = useDipole;
538 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
539 <
540 <    temp = useSticky;
541 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
542 <
543 <    temp = useGayBerne;
544 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
545 <
546 <    temp = useEAM;
547 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
548 <
549 <    temp = useShape;
550 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
551 <
552 <    temp = useFLARB;
553 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
554 <
555 <    temp = useRF;
556 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
820 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
821      
822 < #endif
822 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
823 >      
824 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
825 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
826 >      }
827 >    }
828 >    return GlobalAtomIndices;
829 >  }
830  
560    fInfo_.SIM_uses_PBC = usePBC;    
561    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
562    fInfo_.SIM_uses_LennardJones = useLennardJones;
563    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
564    fInfo_.SIM_uses_Charges = useCharge;
565    fInfo_.SIM_uses_Dipoles = useDipole;
566    fInfo_.SIM_uses_Sticky = useSticky;
567    fInfo_.SIM_uses_GayBerne = useGayBerne;
568    fInfo_.SIM_uses_EAM = useEAM;
569    fInfo_.SIM_uses_Shapes = useShape;
570    fInfo_.SIM_uses_FLARB = useFLARB;
571    fInfo_.SIM_uses_RF = useRF;
831  
832 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
832 >  vector<int> SimInfo::getGlobalGroupIndices() {
833 >    SimInfo::MoleculeIterator mi;
834 >    Molecule* mol;
835 >    Molecule::CutoffGroupIterator ci;
836 >    CutoffGroup* cg;
837  
838 <        if (simParams_->haveDielectric()) {
839 <            fInfo_.dielect = simParams_->getDielectric();
840 <        } else {
841 <            sprintf(painCave.errMsg,
842 <                    "SimSetup Error: No Dielectric constant was set.\n"
843 <                    "\tYou are trying to use Reaction Field without"
844 <                    "\tsetting a dielectric constant!\n");
845 <            painCave.isFatal = 1;
846 <            simError();
847 <        }
585 <        
586 <    } else {
587 <        fInfo_.dielect = 0.0;
838 >    vector<int> GlobalGroupIndices;
839 >    
840 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
841 >      
842 >      //local index of cutoff group is trivial, it only depends on the
843 >      //order of travesing
844 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
845 >           cg = mol->nextCutoffGroup(ci)) {
846 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
847 >      }        
848      }
849 +    return GlobalGroupIndices;
850 +  }
851  
590 }
852  
853 < void SimInfo::setupFortranSim() {
854 <    int isError;
594 <    int nExclude;
595 <    std::vector<int> fortranGlobalGroupMembership;
596 <    
597 <    nExclude = exclude_.getSize();
598 <    isError = 0;
853 >  void SimInfo::prepareTopology() {
854 >    int nExclude, nOneTwo, nOneThree, nOneFour;
855  
600    //globalGroupMembership_ is filled by SimCreator    
601    for (int i = 0; i < nGlobalAtoms_; i++) {
602        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
603    }
604
856      //calculate mass ratio of cutoff group
606    std::vector<double> mfact;
857      SimInfo::MoleculeIterator mi;
858      Molecule* mol;
859      Molecule::CutoffGroupIterator ci;
860      CutoffGroup* cg;
861      Molecule::AtomIterator ai;
862      Atom* atom;
863 <    double totalMass;
863 >    RealType totalMass;
864  
865 <    //to avoid memory reallocation, reserve enough space for mfact
866 <    mfact.reserve(getNCutoffGroups());
865 >    /**
866 >     * The mass factor is the relative mass of an atom to the total
867 >     * mass of the cutoff group it belongs to.  By default, all atoms
868 >     * are their own cutoff groups, and therefore have mass factors of
869 >     * 1.  We need some special handling for massless atoms, which
870 >     * will be treated as carrying the entire mass of the cutoff
871 >     * group.
872 >     */
873 >    massFactors_.clear();
874 >    massFactors_.resize(getNAtoms(), 1.0);
875      
876      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
877 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
877 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
878 >           cg = mol->nextCutoffGroup(ci)) {
879  
880 <            totalMass = cg->getMass();
881 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
882 <                        mfact.push_back(atom->getMass()/totalMass);
883 <            }
884 <
885 <        }      
880 >        totalMass = cg->getMass();
881 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
882 >          // Check for massless groups - set mfact to 1 if true
883 >          if (totalMass != 0)
884 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
885 >          else
886 >            massFactors_[atom->getLocalIndex()] = 1.0;
887 >        }
888 >      }      
889      }
890  
891 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
630 <    std::vector<int> identArray;
891 >    // Build the identArray_
892  
893 <    //to avoid memory reallocation, reserve enough space identArray
894 <    identArray.reserve(getNAtoms());
634 <    
893 >    identArray_.clear();
894 >    identArray_.reserve(getNAtoms());    
895      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
896 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
897 <            identArray.push_back(atom->getIdent());
898 <        }
896 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
897 >        identArray_.push_back(atom->getIdent());
898 >      }
899      }    
640
641    //fill molMembershipArray
642    //molMembershipArray is filled by SimCreator    
643    std::vector<int> molMembershipArray(nGlobalAtoms_);
644    for (int i = 0; i < nGlobalAtoms_; i++) {
645        molMembershipArray[i] = globalMolMembership_[i] + 1;
646    }
900      
901 <    //setup fortran simulation
649 <    //gloalExcludes and molMembershipArray should go away (They are never used)
650 <    //why the hell fortran need to know molecule?
651 <    //OOPSE = Object-Obfuscated Parallel Simulation Engine
652 <    int nGlobalExcludes = 0;
653 <    int* globalExcludes = NULL;
654 <    int* excludeList = exclude_.getExcludeList();
655 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
656 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
657 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
901 >    //scan topology
902  
903 <    if( isError ){
903 >    nExclude = excludedInteractions_.getSize();
904 >    nOneTwo = oneTwoInteractions_.getSize();
905 >    nOneThree = oneThreeInteractions_.getSize();
906 >    nOneFour = oneFourInteractions_.getSize();
907  
908 <        sprintf( painCave.errMsg,
909 <                 "There was an error setting the simulation information in fortran.\n" );
910 <        painCave.isFatal = 1;
911 <        painCave.severity = OOPSE_ERROR;
665 <        simError();
666 <    }
908 >    int* excludeList = excludedInteractions_.getPairList();
909 >    int* oneTwoList = oneTwoInteractions_.getPairList();
910 >    int* oneThreeList = oneThreeInteractions_.getPairList();
911 >    int* oneFourList = oneFourInteractions_.getPairList();
912  
913 < #ifdef IS_MPI
914 <    sprintf( checkPointMsg,
670 <       "succesfully sent the simulation information to fortran.\n");
671 <    MPIcheckPoint();
672 < #endif // is_mpi
673 < }
913 >    topologyDone_ = true;
914 >  }
915  
916 +  void SimInfo::addProperty(GenericData* genData) {
917 +    properties_.addProperty(genData);  
918 +  }
919  
920 < #ifdef IS_MPI
921 < void SimInfo::setupFortranParallel() {
922 <    
679 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
680 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
681 <    std::vector<int> localToGlobalCutoffGroupIndex;
682 <    SimInfo::MoleculeIterator mi;
683 <    Molecule::AtomIterator ai;
684 <    Molecule::CutoffGroupIterator ci;
685 <    Molecule* mol;
686 <    Atom* atom;
687 <    CutoffGroup* cg;
688 <    mpiSimData parallelData;
689 <    int isError;
920 >  void SimInfo::removeProperty(const string& propName) {
921 >    properties_.removeProperty(propName);  
922 >  }
923  
924 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
924 >  void SimInfo::clearProperties() {
925 >    properties_.clearProperties();
926 >  }
927  
928 <        //local index(index in DataStorge) of atom is important
929 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
930 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
931 <        }
928 >  vector<string> SimInfo::getPropertyNames() {
929 >    return properties_.getPropertyNames();  
930 >  }
931 >      
932 >  vector<GenericData*> SimInfo::getProperties() {
933 >    return properties_.getProperties();
934 >  }
935  
936 <        //local index of cutoff group is trivial, it only depends on the order of travesing
937 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
938 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
701 <        }        
702 <        
703 <    }
936 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
937 >    return properties_.getPropertyByName(propName);
938 >  }
939  
940 <    //fill up mpiSimData struct
941 <    parallelData.nMolGlobal = getNGlobalMolecules();
942 <    parallelData.nMolLocal = getNMolecules();
943 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
944 <    parallelData.nAtomsLocal = getNAtoms();
710 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
711 <    parallelData.nGroupsLocal = getNCutoffGroups();
712 <    parallelData.myNode = worldRank;
713 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
714 <
715 <    //pass mpiSimData struct and index arrays to fortran
716 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
717 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
718 <                    &localToGlobalCutoffGroupIndex[0], &isError);
719 <
720 <    if (isError) {
721 <        sprintf(painCave.errMsg,
722 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
723 <        painCave.isFatal = 1;
724 <        simError();
725 <    }
726 <
727 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
728 <    MPIcheckPoint();
729 <
730 <
731 < }
732 <
733 < #endif
734 <
735 < double SimInfo::calcMaxCutoffRadius() {
736 <
737 <
738 <    std::set<AtomType*> atomTypes;
739 <    std::set<AtomType*>::iterator i;
740 <    std::vector<double> cutoffRadius;
741 <
742 <    //get the unique atom types
743 <    atomTypes = getUniqueAtomTypes();
744 <
745 <    //query the max cutoff radius among these atom types
746 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
747 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
748 <    }
749 <
750 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
751 < #ifdef IS_MPI
752 <    //pick the max cutoff radius among the processors
753 < #endif
754 <
755 <    return maxCutoffRadius;
756 < }
757 <
758 < void SimInfo::getCutoff(double& rcut, double& rsw) {
759 <    
760 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
761 <        
762 <        if (!simParams_->haveRcut()){
763 <            sprintf(painCave.errMsg,
764 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
765 <                "\tOOPSE will use a default value of 15.0 angstroms"
766 <                "\tfor the cutoffRadius.\n");
767 <            painCave.isFatal = 0;
768 <            simError();
769 <            rcut = 15.0;
770 <        } else{
771 <            rcut = simParams_->getRcut();
772 <        }
773 <
774 <        if (!simParams_->haveRsw()){
775 <            sprintf(painCave.errMsg,
776 <                "SimCreator Warning: No value was set for switchingRadius.\n"
777 <                "\tOOPSE will use a default value of\n"
778 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
779 <            painCave.isFatal = 0;
780 <            simError();
781 <            rsw = 0.95 * rcut;
782 <        } else{
783 <            rsw = simParams_->getRsw();
784 <        }
785 <
786 <    } else {
787 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
788 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
789 <        
790 <        if (simParams_->haveRcut()) {
791 <            rcut = simParams_->getRcut();
792 <        } else {
793 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
794 <            rcut = calcMaxCutoffRadius();
795 <        }
796 <
797 <        if (simParams_->haveRsw()) {
798 <            rsw  = simParams_->getRsw();
799 <        } else {
800 <            rsw = rcut;
801 <        }
802 <    
803 <    }
804 < }
805 <
806 < void SimInfo::setupCutoff() {
807 <    getCutoff(rcut_, rsw_);    
808 <    double rnblist = rcut_ + 1; // skin of neighbor list
809 <
810 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
811 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
812 < }
813 <
814 < void SimInfo::addProperty(GenericData* genData) {
815 <    properties_.addProperty(genData);  
816 < }
817 <
818 < void SimInfo::removeProperty(const std::string& propName) {
819 <    properties_.removeProperty(propName);  
820 < }
821 <
822 < void SimInfo::clearProperties() {
823 <    properties_.clearProperties();
824 < }
825 <
826 < std::vector<std::string> SimInfo::getPropertyNames() {
827 <    return properties_.getPropertyNames();  
828 < }
829 <      
830 < std::vector<GenericData*> SimInfo::getProperties() {
831 <    return properties_.getProperties();
832 < }
833 <
834 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
835 <    return properties_.getPropertyByName(propName);
836 < }
837 <
838 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
839 <    //if (sman_ == sman_) {
840 <    //    return;
841 <    //}
842 <    
843 <    //delete sman_;
940 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
941 >    if (sman_ == sman) {
942 >      return;
943 >    }    
944 >    delete sman_;
945      sman_ = sman;
946  
947      Molecule* mol;
948      RigidBody* rb;
949      Atom* atom;
950 +    CutoffGroup* cg;
951      SimInfo::MoleculeIterator mi;
952      Molecule::RigidBodyIterator rbIter;
953 <    Molecule::AtomIterator atomIter;;
953 >    Molecule::AtomIterator atomIter;
954 >    Molecule::CutoffGroupIterator cgIter;
955  
956      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
957          
958 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
959 <            atom->setSnapshotManager(sman_);
960 <        }
958 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
959 >        atom->setSnapshotManager(sman_);
960 >      }
961          
962 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
963 <            rb->setSnapshotManager(sman_);
964 <        }
962 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
963 >        rb->setSnapshotManager(sman_);
964 >      }
965 >
966 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
967 >        cg->setSnapshotManager(sman_);
968 >      }
969      }    
970      
971 < }
971 >  }
972  
973 < Vector3d SimInfo::getComVel(){
973 >  Vector3d SimInfo::getComVel(){
974      SimInfo::MoleculeIterator i;
975      Molecule* mol;
976  
977      Vector3d comVel(0.0);
978 <    double totalMass = 0.0;
978 >    RealType totalMass = 0.0;
979      
980  
981      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
982 <        double mass = mol->getMass();
983 <        totalMass += mass;
984 <        comVel += mass * mol->getComVel();
982 >      RealType mass = mol->getMass();
983 >      totalMass += mass;
984 >      comVel += mass * mol->getComVel();
985      }  
986  
987   #ifdef IS_MPI
988 <    double tmpMass = totalMass;
988 >    RealType tmpMass = totalMass;
989      Vector3d tmpComVel(comVel);    
990 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
991 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
990 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
991 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
992   #endif
993  
994      comVel /= totalMass;
995  
996      return comVel;
997 < }
997 >  }
998  
999 < Vector3d SimInfo::getCom(){
999 >  Vector3d SimInfo::getCom(){
1000      SimInfo::MoleculeIterator i;
1001      Molecule* mol;
1002  
1003      Vector3d com(0.0);
1004 <    double totalMass = 0.0;
1004 >    RealType totalMass = 0.0;
1005      
1006      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1007 <        double mass = mol->getMass();
1008 <        totalMass += mass;
1009 <        com += mass * mol->getCom();
1007 >      RealType mass = mol->getMass();
1008 >      totalMass += mass;
1009 >      com += mass * mol->getCom();
1010      }  
1011  
1012   #ifdef IS_MPI
1013 <    double tmpMass = totalMass;
1013 >    RealType tmpMass = totalMass;
1014      Vector3d tmpCom(com);    
1015 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1016 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1015 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1016 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1017   #endif
1018  
1019      com /= totalMass;
1020  
1021      return com;
1022  
1023 < }        
1023 >  }        
1024  
1025 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1025 >  ostream& operator <<(ostream& o, SimInfo& info) {
1026  
1027      return o;
1028 < }
1028 >  }
1029 >  
1030 >  
1031 >   /*
1032 >   Returns center of mass and center of mass velocity in one function call.
1033 >   */
1034 >  
1035 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1036 >      SimInfo::MoleculeIterator i;
1037 >      Molecule* mol;
1038 >      
1039 >    
1040 >      RealType totalMass = 0.0;
1041 >    
1042  
1043 < }//end namespace oopse
1043 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1044 >         RealType mass = mol->getMass();
1045 >         totalMass += mass;
1046 >         com += mass * mol->getCom();
1047 >         comVel += mass * mol->getComVel();          
1048 >      }  
1049 >      
1050 > #ifdef IS_MPI
1051 >      RealType tmpMass = totalMass;
1052 >      Vector3d tmpCom(com);  
1053 >      Vector3d tmpComVel(comVel);
1054 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1055 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1056 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1057 > #endif
1058 >      
1059 >      com /= totalMass;
1060 >      comVel /= totalMass;
1061 >   }        
1062 >  
1063 >   /*
1064 >   Return intertia tensor for entire system and angular momentum Vector.
1065  
1066 +
1067 +       [  Ixx -Ixy  -Ixz ]
1068 +    J =| -Iyx  Iyy  -Iyz |
1069 +       [ -Izx -Iyz   Izz ]
1070 +    */
1071 +
1072 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1073 +      
1074 +
1075 +      RealType xx = 0.0;
1076 +      RealType yy = 0.0;
1077 +      RealType zz = 0.0;
1078 +      RealType xy = 0.0;
1079 +      RealType xz = 0.0;
1080 +      RealType yz = 0.0;
1081 +      Vector3d com(0.0);
1082 +      Vector3d comVel(0.0);
1083 +      
1084 +      getComAll(com, comVel);
1085 +      
1086 +      SimInfo::MoleculeIterator i;
1087 +      Molecule* mol;
1088 +      
1089 +      Vector3d thisq(0.0);
1090 +      Vector3d thisv(0.0);
1091 +
1092 +      RealType thisMass = 0.0;
1093 +    
1094 +      
1095 +      
1096 +  
1097 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1098 +        
1099 +         thisq = mol->getCom()-com;
1100 +         thisv = mol->getComVel()-comVel;
1101 +         thisMass = mol->getMass();
1102 +         // Compute moment of intertia coefficients.
1103 +         xx += thisq[0]*thisq[0]*thisMass;
1104 +         yy += thisq[1]*thisq[1]*thisMass;
1105 +         zz += thisq[2]*thisq[2]*thisMass;
1106 +        
1107 +         // compute products of intertia
1108 +         xy += thisq[0]*thisq[1]*thisMass;
1109 +         xz += thisq[0]*thisq[2]*thisMass;
1110 +         yz += thisq[1]*thisq[2]*thisMass;
1111 +            
1112 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1113 +            
1114 +      }  
1115 +      
1116 +      
1117 +      inertiaTensor(0,0) = yy + zz;
1118 +      inertiaTensor(0,1) = -xy;
1119 +      inertiaTensor(0,2) = -xz;
1120 +      inertiaTensor(1,0) = -xy;
1121 +      inertiaTensor(1,1) = xx + zz;
1122 +      inertiaTensor(1,2) = -yz;
1123 +      inertiaTensor(2,0) = -xz;
1124 +      inertiaTensor(2,1) = -yz;
1125 +      inertiaTensor(2,2) = xx + yy;
1126 +      
1127 + #ifdef IS_MPI
1128 +      Mat3x3d tmpI(inertiaTensor);
1129 +      Vector3d tmpAngMom;
1130 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1131 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1132 + #endif
1133 +              
1134 +      return;
1135 +   }
1136 +
1137 +   //Returns the angular momentum of the system
1138 +   Vector3d SimInfo::getAngularMomentum(){
1139 +      
1140 +      Vector3d com(0.0);
1141 +      Vector3d comVel(0.0);
1142 +      Vector3d angularMomentum(0.0);
1143 +      
1144 +      getComAll(com,comVel);
1145 +      
1146 +      SimInfo::MoleculeIterator i;
1147 +      Molecule* mol;
1148 +      
1149 +      Vector3d thisr(0.0);
1150 +      Vector3d thisp(0.0);
1151 +      
1152 +      RealType thisMass;
1153 +      
1154 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1155 +        thisMass = mol->getMass();
1156 +        thisr = mol->getCom()-com;
1157 +        thisp = (mol->getComVel()-comVel)*thisMass;
1158 +        
1159 +        angularMomentum += cross( thisr, thisp );
1160 +        
1161 +      }  
1162 +      
1163 + #ifdef IS_MPI
1164 +      Vector3d tmpAngMom;
1165 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1166 + #endif
1167 +      
1168 +      return angularMomentum;
1169 +   }
1170 +  
1171 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1172 +    return IOIndexToIntegrableObject.at(index);
1173 +  }
1174 +  
1175 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1176 +    IOIndexToIntegrableObject= v;
1177 +  }
1178 +
1179 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1180 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1181 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1182 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1183 +  */
1184 +  void SimInfo::getGyrationalVolume(RealType &volume){
1185 +    Mat3x3d intTensor;
1186 +    RealType det;
1187 +    Vector3d dummyAngMom;
1188 +    RealType sysconstants;
1189 +    RealType geomCnst;
1190 +
1191 +    geomCnst = 3.0/2.0;
1192 +    /* Get the inertial tensor and angular momentum for free*/
1193 +    getInertiaTensor(intTensor,dummyAngMom);
1194 +    
1195 +    det = intTensor.determinant();
1196 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1197 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1198 +    return;
1199 +  }
1200 +
1201 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1202 +    Mat3x3d intTensor;
1203 +    Vector3d dummyAngMom;
1204 +    RealType sysconstants;
1205 +    RealType geomCnst;
1206 +
1207 +    geomCnst = 3.0/2.0;
1208 +    /* Get the inertial tensor and angular momentum for free*/
1209 +    getInertiaTensor(intTensor,dummyAngMom);
1210 +    
1211 +    detI = intTensor.determinant();
1212 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1213 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1214 +    return;
1215 +  }
1216 + /*
1217 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1218 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1219 +      sdByGlobalIndex_ = v;
1220 +    }
1221 +
1222 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1223 +      //assert(index < nAtoms_ + nRigidBodies_);
1224 +      return sdByGlobalIndex_.at(index);
1225 +    }  
1226 + */  
1227 +  int SimInfo::getNGlobalConstraints() {
1228 +    int nGlobalConstraints;
1229 + #ifdef IS_MPI
1230 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1231 +                  MPI_COMM_WORLD);    
1232 + #else
1233 +    nGlobalConstraints =  nConstraints_;
1234 + #endif
1235 +    return nGlobalConstraints;
1236 +  }
1237 +
1238 + }//end namespace OpenMD
1239 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines