ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1849 by gezelter, Wed Feb 20 13:52:51 2013 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimInfo.cpp
45 > * @author    tlin
46 > * @date  11/02/2004
47 > * @version 1.0
48 > */
49  
50 < #include <iostream>
51 < using namespace std;
50 > #include <algorithm>
51 > #include <set>
52 > #include <map>
53  
54   #include "brains/SimInfo.hpp"
55 < #define __C
56 < #include "brains/fSimulation.h"
55 > #include "math/Vector3.hpp"
56 > #include "primitives/Molecule.hpp"
57 > #include "primitives/StuntDouble.hpp"
58 > #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60 <
61 < #include "UseTheForce/fortranWrappers.hpp"
62 <
63 < #include "math/MatVec3.h"
16 <
60 > #include "selection/SelectionManager.hpp"
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "brains/mpiSimulation.hpp"
65 > #include <mpi.h>
66   #endif
67  
68 < inline double roundMe( double x ){
69 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
70 < }
71 <          
72 < inline double min( double a, double b ){
73 <  return (a < b ) ? a : b;
74 < }
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      nMolWithSameStamp = (*i)->getNMol();
95 >      
96 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
97 >      
98 >      //calculate atoms in molecules
99 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
100 >      
101 >      //calculate atoms in cutoff groups
102 >      int nAtomsInGroups = 0;
103 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104 >      
105 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 >        cgStamp = molStamp->getCutoffGroupStamp(j);
107 >        nAtomsInGroups += cgStamp->getNMembers();
108 >      }
109 >      
110 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 >      
112 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113 >      
114 >      //calculate atoms in rigid bodies
115 >      int nAtomsInRigidBodies = 0;
116 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 >      
118 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
119 >        rbStamp = molStamp->getRigidBodyStamp(j);
120 >        nAtomsInRigidBodies += rbStamp->getNMembers();
121 >      }
122 >      
123 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 >      
126 >    }
127 >    
128 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
129 >    //group therefore the total number of cutoff groups in the system is
130 >    //equal to the total number of atoms minus number of atoms belong to
131 >    //cutoff group defined in meta-data file plus the number of cutoff
132 >    //groups defined in meta-data file
133  
134 < SimInfo* currentInfo;
134 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135 >    
136 >    //every free atom (atom does not belong to rigid bodies) is an
137 >    //integrable object therefore the total number of integrable objects
138 >    //in the system is equal to the total number of atoms minus number of
139 >    //atoms belong to rigid body defined in meta-data file plus the number
140 >    //of rigid bodies defined in meta-data file
141 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 >      + nGlobalRigidBodies_;
143 >    
144 >    nGlobalMols_ = molStampIds_.size();
145 >    molToProcMap_.resize(nGlobalMols_);
146 >  }
147 >  
148 >  SimInfo::~SimInfo() {
149 >    map<int, Molecule*>::iterator i;
150 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151 >      delete i->second;
152 >    }
153 >    molecules_.clear();
154 >      
155 >    delete sman_;
156 >    delete simParams_;
157 >    delete forceField_;
158 >  }
159  
31 SimInfo::SimInfo(){
160  
161 <  n_constraints = 0;
162 <  nZconstraints = 0;
163 <  n_oriented = 0;
164 <  n_dipoles = 0;
165 <  ndf = 0;
166 <  ndfRaw = 0;
167 <  nZconstraints = 0;
168 <  the_integrator = NULL;
169 <  setTemp = 0;
170 <  thermalTime = 0.0;
171 <  currentTime = 0.0;
172 <  rCut = 0.0;
173 <  rSw = 0.0;
174 <
175 <  haveRcut = 0;
176 <  haveRsw = 0;
177 <  boxIsInit = 0;
161 >  bool SimInfo::addMolecule(Molecule* mol) {
162 >    MoleculeIterator i;
163 >    
164 >    i = molecules_.find(mol->getGlobalIndex());
165 >    if (i == molecules_.end() ) {
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169 >      nAtoms_ += mol->getNAtoms();
170 >      nBonds_ += mol->getNBonds();
171 >      nBends_ += mol->getNBends();
172 >      nTorsions_ += mol->getNTorsions();
173 >      nInversions_ += mol->getNInversions();
174 >      nRigidBodies_ += mol->getNRigidBodies();
175 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
176 >      nCutoffGroups_ += mol->getNCutoffGroups();
177 >      nConstraints_ += mol->getNConstraintPairs();
178 >      
179 >      addInteractionPairs(mol);
180 >      
181 >      return true;
182 >    } else {
183 >      return false;
184 >    }
185 >  }
186    
187 <  resetTime = 1e99;
187 >  bool SimInfo::removeMolecule(Molecule* mol) {
188 >    MoleculeIterator i;
189 >    i = molecules_.find(mol->getGlobalIndex());
190  
191 <  orthoRhombic = 0;
54 <  orthoTolerance = 1E-6;
55 <  useInitXSstate = true;
191 >    if (i != molecules_.end() ) {
192  
193 <  usePBC = 0;
194 <  useLJ = 0;
195 <  useSticky = 0;
196 <  useCharges = 0;
197 <  useDipoles = 0;
198 <  useReactionField = 0;
199 <  useGB = 0;
200 <  useEAM = 0;
201 <  useSolidThermInt = 0;
202 <  useLiquidThermInt = 0;
193 >      assert(mol == i->second);
194 >        
195 >      nAtoms_ -= mol->getNAtoms();
196 >      nBonds_ -= mol->getNBonds();
197 >      nBends_ -= mol->getNBends();
198 >      nTorsions_ -= mol->getNTorsions();
199 >      nInversions_ -= mol->getNInversions();
200 >      nRigidBodies_ -= mol->getNRigidBodies();
201 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
202 >      nCutoffGroups_ -= mol->getNCutoffGroups();
203 >      nConstraints_ -= mol->getNConstraintPairs();
204  
205 <  haveCutoffGroups = false;
205 >      removeInteractionPairs(mol);
206 >      molecules_.erase(mol->getGlobalIndex());
207  
208 <  excludes = Exclude::Instance();
208 >      delete mol;
209 >        
210 >      return true;
211 >    } else {
212 >      return false;
213 >    }
214 >  }    
215  
216 <  myConfiguration = new SimState();
216 >        
217 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
218 >    i = molecules_.begin();
219 >    return i == molecules_.end() ? NULL : i->second;
220 >  }    
221  
222 <  has_minimizer = false;
223 <  the_minimizer =NULL;
222 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
223 >    ++i;
224 >    return i == molecules_.end() ? NULL : i->second;    
225 >  }
226  
77  ngroup = 0;
227  
228 <  wrapMeSimInfo( this );
229 < }
228 >  void SimInfo::calcNdf() {
229 >    int ndf_local, nfq_local;
230 >    MoleculeIterator i;
231 >    vector<StuntDouble*>::iterator j;
232 >    vector<Atom*>::iterator k;
233  
234 +    Molecule* mol;
235 +    StuntDouble* sd;
236 +    Atom* atom;
237  
238 < SimInfo::~SimInfo(){
238 >    ndf_local = 0;
239 >    nfq_local = 0;
240 >    
241 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
242  
243 <  delete myConfiguration;
243 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
244 >           sd = mol->nextIntegrableObject(j)) {
245  
246 <  map<string, GenericData*>::iterator i;
88 <  
89 <  for(i = properties.begin(); i != properties.end(); i++)
90 <    delete (*i).second;
246 >        ndf_local += 3;
247  
248 < }
248 >        if (sd->isDirectional()) {
249 >          if (sd->isLinear()) {
250 >            ndf_local += 2;
251 >          } else {
252 >            ndf_local += 3;
253 >          }
254 >        }
255 >      }
256  
257 < void SimInfo::setBox(double newBox[3]) {
258 <  
259 <  int i, j;
260 <  double tempMat[3][3];
257 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
258 >           atom = mol->nextFluctuatingCharge(k)) {
259 >        if (atom->isFluctuatingCharge()) {
260 >          nfq_local++;
261 >        }
262 >      }
263 >    }
264 >    
265 >    ndfLocal_ = ndf_local;
266  
267 <  for(i=0; i<3; i++)
268 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
267 >    // n_constraints is local, so subtract them on each processor
268 >    ndf_local -= nConstraints_;
269  
270 <  tempMat[0][0] = newBox[0];
271 <  tempMat[1][1] = newBox[1];
272 <  tempMat[2][2] = newBox[2];
270 > #ifdef IS_MPI
271 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
272 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
273 >                              MPI::INT, MPI::SUM);
274 > #else
275 >    ndf_ = ndf_local;
276 >    nGlobalFluctuatingCharges_ = nfq_local;
277 > #endif
278  
279 <  setBoxM( tempMat );
279 >    // nZconstraints_ is global, as are the 3 COM translations for the
280 >    // entire system:
281 >    ndf_ = ndf_ - 3 - nZconstraint_;
282  
283 < }
283 >  }
284  
285 < void SimInfo::setBoxM( double theBox[3][3] ){
285 >  int SimInfo::getFdf() {
286 > #ifdef IS_MPI
287 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
288 > #else
289 >    fdf_ = fdf_local;
290 > #endif
291 >    return fdf_;
292 >  }
293    
294 <  int i, j;
295 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
296 <                         // ordering in the array is as follows:
297 <                         // [ 0 3 6 ]
298 <                         // [ 1 4 7 ]
299 <                         // [ 2 5 8 ]
300 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
301 <
302 <  if( !boxIsInit ) boxIsInit = 1;
303 <
304 <  for(i=0; i < 3; i++)
305 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
306 <  
307 <  calcBoxL();
126 <  calcHmatInv();
127 <
128 <  for(i=0; i < 3; i++) {
129 <    for (j=0; j < 3; j++) {
130 <      FortranHmat[3*j + i] = Hmat[i][j];
131 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
294 >  unsigned int SimInfo::getNLocalCutoffGroups(){
295 >    int nLocalCutoffAtoms = 0;
296 >    Molecule* mol;
297 >    MoleculeIterator mi;
298 >    CutoffGroup* cg;
299 >    Molecule::CutoffGroupIterator ci;
300 >    
301 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
302 >      
303 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
304 >           cg = mol->nextCutoffGroup(ci)) {
305 >        nLocalCutoffAtoms += cg->getNumAtom();
306 >        
307 >      }        
308      }
309 +    
310 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
311    }
312 +    
313 +  void SimInfo::calcNdfRaw() {
314 +    int ndfRaw_local;
315  
316 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
317 <
318 < }
319 <
316 >    MoleculeIterator i;
317 >    vector<StuntDouble*>::iterator j;
318 >    Molecule* mol;
319 >    StuntDouble* sd;
320  
321 < void SimInfo::getBoxM (double theBox[3][3]) {
321 >    // Raw degrees of freedom that we have to set
322 >    ndfRaw_local = 0;
323 >    
324 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
325  
326 <  int i, j;
327 <  for(i=0; i<3; i++)
144 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
145 < }
326 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
327 >           sd = mol->nextIntegrableObject(j)) {
328  
329 +        ndfRaw_local += 3;
330  
331 < void SimInfo::scaleBox(double scale) {
332 <  double theBox[3][3];
333 <  int i, j;
331 >        if (sd->isDirectional()) {
332 >          if (sd->isLinear()) {
333 >            ndfRaw_local += 2;
334 >          } else {
335 >            ndfRaw_local += 3;
336 >          }
337 >        }
338 >            
339 >      }
340 >    }
341 >    
342 > #ifdef IS_MPI
343 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
344 > #else
345 >    ndfRaw_ = ndfRaw_local;
346 > #endif
347 >  }
348  
349 <  // cerr << "Scaling box by " << scale << "\n";
349 >  void SimInfo::calcNdfTrans() {
350 >    int ndfTrans_local;
351  
352 <  for(i=0; i<3; i++)
155 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
352 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
353  
157  setBoxM(theBox);
354  
355 < }
355 > #ifdef IS_MPI
356 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
357 >                              MPI::INT, MPI::SUM);
358 > #else
359 >    ndfTrans_ = ndfTrans_local;
360 > #endif
361  
362 < void SimInfo::calcHmatInv( void ) {
363 <  
364 <  int oldOrtho;
164 <  int i,j;
165 <  double smallDiag;
166 <  double tol;
167 <  double sanity[3][3];
362 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
363 >
364 >  }
365  
366 <  invertMat3( Hmat, HmatInv );
366 >  void SimInfo::addInteractionPairs(Molecule* mol) {
367 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
368 >    vector<Bond*>::iterator bondIter;
369 >    vector<Bend*>::iterator bendIter;
370 >    vector<Torsion*>::iterator torsionIter;
371 >    vector<Inversion*>::iterator inversionIter;
372 >    Bond* bond;
373 >    Bend* bend;
374 >    Torsion* torsion;
375 >    Inversion* inversion;
376 >    int a;
377 >    int b;
378 >    int c;
379 >    int d;
380  
381 <  // check to see if Hmat is orthorhombic
382 <  
383 <  oldOrtho = orthoRhombic;
381 >    // atomGroups can be used to add special interaction maps between
382 >    // groups of atoms that are in two separate rigid bodies.
383 >    // However, most site-site interactions between two rigid bodies
384 >    // are probably not special, just the ones between the physically
385 >    // bonded atoms.  Interactions *within* a single rigid body should
386 >    // always be excluded.  These are done at the bottom of this
387 >    // function.
388  
389 <  smallDiag = fabs(Hmat[0][0]);
390 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
391 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
392 <  tol = smallDiag * orthoTolerance;
393 <
394 <  orthoRhombic = 1;
395 <  
396 <  for (i = 0; i < 3; i++ ) {
397 <    for (j = 0 ; j < 3; j++) {
398 <      if (i != j) {
399 <        if (orthoRhombic) {
400 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
401 <        }        
389 >    map<int, set<int> > atomGroups;
390 >    Molecule::RigidBodyIterator rbIter;
391 >    RigidBody* rb;
392 >    Molecule::IntegrableObjectIterator ii;
393 >    StuntDouble* sd;
394 >    
395 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
396 >         sd = mol->nextIntegrableObject(ii)) {
397 >      
398 >      if (sd->isRigidBody()) {
399 >        rb = static_cast<RigidBody*>(sd);
400 >        vector<Atom*> atoms = rb->getAtoms();
401 >        set<int> rigidAtoms;
402 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
403 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
404 >        }
405 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
406 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
407 >        }      
408 >      } else {
409 >        set<int> oneAtomSet;
410 >        oneAtomSet.insert(sd->getGlobalIndex());
411 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
412        }
413 <    }
414 <  }
413 >    }  
414 >          
415 >    for (bond= mol->beginBond(bondIter); bond != NULL;
416 >         bond = mol->nextBond(bondIter)) {
417  
418 <  if( oldOrtho != orthoRhombic ){
418 >      a = bond->getAtomA()->getGlobalIndex();
419 >      b = bond->getAtomB()->getGlobalIndex();  
420      
421 <    if( orthoRhombic ) {
422 <      sprintf( painCave.errMsg,
423 <               "OOPSE is switching from the default Non-Orthorhombic\n"
424 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
425 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
421 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
422 >        oneTwoInteractions_.addPair(a, b);
423 >      } else {
424 >        excludedInteractions_.addPair(a, b);
425 >      }
426      }
205    else {
206      sprintf( painCave.errMsg,
207               "OOPSE is switching from the faster Orthorhombic to the more\n"
208               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209               "\tThis is usually because the box has deformed under\n"
210               "\tNPTf integration. If you wan't to live on the edge with\n"
211               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212               "\tvariable ( currently set to %G ) larger.\n",
213               orthoTolerance);
214      painCave.severity = OOPSE_WARNING;
215      simError();
216    }
217  }
218 }
427  
428 < void SimInfo::calcBoxL( void ){
428 >    for (bend= mol->beginBend(bendIter); bend != NULL;
429 >         bend = mol->nextBend(bendIter)) {
430  
431 <  double dx, dy, dz, dsq;
431 >      a = bend->getAtomA()->getGlobalIndex();
432 >      b = bend->getAtomB()->getGlobalIndex();        
433 >      c = bend->getAtomC()->getGlobalIndex();
434 >      
435 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
436 >        oneTwoInteractions_.addPair(a, b);      
437 >        oneTwoInteractions_.addPair(b, c);
438 >      } else {
439 >        excludedInteractions_.addPair(a, b);
440 >        excludedInteractions_.addPair(b, c);
441 >      }
442  
443 <  // boxVol = Determinant of Hmat
443 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
444 >        oneThreeInteractions_.addPair(a, c);      
445 >      } else {
446 >        excludedInteractions_.addPair(a, c);
447 >      }
448 >    }
449  
450 <  boxVol = matDet3( Hmat );
450 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
451 >         torsion = mol->nextTorsion(torsionIter)) {
452  
453 <  // boxLx
454 <  
455 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
456 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
453 >      a = torsion->getAtomA()->getGlobalIndex();
454 >      b = torsion->getAtomB()->getGlobalIndex();        
455 >      c = torsion->getAtomC()->getGlobalIndex();        
456 >      d = torsion->getAtomD()->getGlobalIndex();      
457  
458 <  // boxLy
459 <  
460 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
461 <  dsq = dx*dx + dy*dy + dz*dz;
462 <  boxL[1] = sqrt( dsq );
463 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
458 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
459 >        oneTwoInteractions_.addPair(a, b);      
460 >        oneTwoInteractions_.addPair(b, c);
461 >        oneTwoInteractions_.addPair(c, d);
462 >      } else {
463 >        excludedInteractions_.addPair(a, b);
464 >        excludedInteractions_.addPair(b, c);
465 >        excludedInteractions_.addPair(c, d);
466 >      }
467  
468 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
469 +        oneThreeInteractions_.addPair(a, c);      
470 +        oneThreeInteractions_.addPair(b, d);      
471 +      } else {
472 +        excludedInteractions_.addPair(a, c);
473 +        excludedInteractions_.addPair(b, d);
474 +      }
475  
476 <  // boxLz
477 <  
478 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
479 <  dsq = dx*dx + dy*dy + dz*dz;
480 <  boxL[2] = sqrt( dsq );
481 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
476 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
477 >        oneFourInteractions_.addPair(a, d);      
478 >      } else {
479 >        excludedInteractions_.addPair(a, d);
480 >      }
481 >    }
482  
483 <  //calculate the max cutoff
484 <  maxCutoff =  calcMaxCutOff();
252 <  
253 <  checkCutOffs();
483 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
484 >         inversion = mol->nextInversion(inversionIter)) {
485  
486 < }
486 >      a = inversion->getAtomA()->getGlobalIndex();
487 >      b = inversion->getAtomB()->getGlobalIndex();        
488 >      c = inversion->getAtomC()->getGlobalIndex();        
489 >      d = inversion->getAtomD()->getGlobalIndex();        
490  
491 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
492 +        oneTwoInteractions_.addPair(a, b);      
493 +        oneTwoInteractions_.addPair(a, c);
494 +        oneTwoInteractions_.addPair(a, d);
495 +      } else {
496 +        excludedInteractions_.addPair(a, b);
497 +        excludedInteractions_.addPair(a, c);
498 +        excludedInteractions_.addPair(a, d);
499 +      }
500  
501 < double SimInfo::calcMaxCutOff(){
501 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
502 >        oneThreeInteractions_.addPair(b, c);    
503 >        oneThreeInteractions_.addPair(b, d);    
504 >        oneThreeInteractions_.addPair(c, d);      
505 >      } else {
506 >        excludedInteractions_.addPair(b, c);
507 >        excludedInteractions_.addPair(b, d);
508 >        excludedInteractions_.addPair(c, d);
509 >      }
510 >    }
511  
512 <  double ri[3], rj[3], rk[3];
513 <  double rij[3], rjk[3], rki[3];
514 <  double minDist;
512 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
513 >         rb = mol->nextRigidBody(rbIter)) {
514 >      vector<Atom*> atoms = rb->getAtoms();
515 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
516 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
517 >          a = atoms[i]->getGlobalIndex();
518 >          b = atoms[j]->getGlobalIndex();
519 >          excludedInteractions_.addPair(a, b);
520 >        }
521 >      }
522 >    }        
523  
524 <  ri[0] = Hmat[0][0];
265 <  ri[1] = Hmat[1][0];
266 <  ri[2] = Hmat[2][0];
524 >  }
525  
526 <  rj[0] = Hmat[0][1];
527 <  rj[1] = Hmat[1][1];
528 <  rj[2] = Hmat[2][1];
526 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
527 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
528 >    vector<Bond*>::iterator bondIter;
529 >    vector<Bend*>::iterator bendIter;
530 >    vector<Torsion*>::iterator torsionIter;
531 >    vector<Inversion*>::iterator inversionIter;
532 >    Bond* bond;
533 >    Bend* bend;
534 >    Torsion* torsion;
535 >    Inversion* inversion;
536 >    int a;
537 >    int b;
538 >    int c;
539 >    int d;
540  
541 <  rk[0] = Hmat[0][2];
542 <  rk[1] = Hmat[1][2];
543 <  rk[2] = Hmat[2][2];
541 >    map<int, set<int> > atomGroups;
542 >    Molecule::RigidBodyIterator rbIter;
543 >    RigidBody* rb;
544 >    Molecule::IntegrableObjectIterator ii;
545 >    StuntDouble* sd;
546      
547 <  crossProduct3(ri, rj, rij);
548 <  distXY = dotProduct3(rk,rij) / norm3(rij);
547 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
548 >         sd = mol->nextIntegrableObject(ii)) {
549 >      
550 >      if (sd->isRigidBody()) {
551 >        rb = static_cast<RigidBody*>(sd);
552 >        vector<Atom*> atoms = rb->getAtoms();
553 >        set<int> rigidAtoms;
554 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
555 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
556 >        }
557 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
558 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
559 >        }      
560 >      } else {
561 >        set<int> oneAtomSet;
562 >        oneAtomSet.insert(sd->getGlobalIndex());
563 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
564 >      }
565 >    }  
566  
567 <  crossProduct3(rj,rk, rjk);
568 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
569 <
570 <  crossProduct3(rk,ri, rki);
571 <  distZX = dotProduct3(rj,rki) / norm3(rki);
284 <
285 <  minDist = min(min(distXY, distYZ), distZX);
286 <  return minDist/2;
287 <  
288 < }
289 <
290 < void SimInfo::wrapVector( double thePos[3] ){
291 <
292 <  int i;
293 <  double scaled[3];
294 <
295 <  if( !orthoRhombic ){
296 <    // calc the scaled coordinates.
297 <  
298 <
299 <    matVecMul3(HmatInv, thePos, scaled);
300 <    
301 <    for(i=0; i<3; i++)
302 <      scaled[i] -= roundMe(scaled[i]);
303 <    
304 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
305 <    
306 <    matVecMul3(Hmat, scaled, thePos);
307 <
308 <  }
309 <  else{
310 <    // calc the scaled coordinates.
311 <    
312 <    for(i=0; i<3; i++)
313 <      scaled[i] = thePos[i]*HmatInv[i][i];
314 <    
315 <    // wrap the scaled coordinates
316 <    
317 <    for(i=0; i<3; i++)
318 <      scaled[i] -= roundMe(scaled[i]);
319 <    
320 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
567 >    for (bond= mol->beginBond(bondIter); bond != NULL;
568 >         bond = mol->nextBond(bondIter)) {
569 >      
570 >      a = bond->getAtomA()->getGlobalIndex();
571 >      b = bond->getAtomB()->getGlobalIndex();  
572      
573 <    for(i=0; i<3; i++)
574 <      thePos[i] = scaled[i]*Hmat[i][i];
575 <  }
576 <    
577 < }
573 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
574 >        oneTwoInteractions_.removePair(a, b);
575 >      } else {
576 >        excludedInteractions_.removePair(a, b);
577 >      }
578 >    }
579  
580 +    for (bend= mol->beginBend(bendIter); bend != NULL;
581 +         bend = mol->nextBend(bendIter)) {
582  
583 < int SimInfo::getNDF(){
584 <  int ndf_local;
583 >      a = bend->getAtomA()->getGlobalIndex();
584 >      b = bend->getAtomB()->getGlobalIndex();        
585 >      c = bend->getAtomC()->getGlobalIndex();
586 >      
587 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
588 >        oneTwoInteractions_.removePair(a, b);      
589 >        oneTwoInteractions_.removePair(b, c);
590 >      } else {
591 >        excludedInteractions_.removePair(a, b);
592 >        excludedInteractions_.removePair(b, c);
593 >      }
594  
595 <  ndf_local = 0;
596 <  
597 <  for(int i = 0; i < integrableObjects.size(); i++){
598 <    ndf_local += 3;
599 <    if (integrableObjects[i]->isDirectional()) {
337 <      if (integrableObjects[i]->isLinear())
338 <        ndf_local += 2;
339 <      else
340 <        ndf_local += 3;
595 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
596 >        oneThreeInteractions_.removePair(a, c);      
597 >      } else {
598 >        excludedInteractions_.removePair(a, c);
599 >      }
600      }
342  }
601  
602 <  // n_constraints is local, so subtract them on each processor:
602 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
603 >         torsion = mol->nextTorsion(torsionIter)) {
604  
605 <  ndf_local -= n_constraints;
605 >      a = torsion->getAtomA()->getGlobalIndex();
606 >      b = torsion->getAtomB()->getGlobalIndex();        
607 >      c = torsion->getAtomC()->getGlobalIndex();        
608 >      d = torsion->getAtomD()->getGlobalIndex();      
609 >  
610 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
611 >        oneTwoInteractions_.removePair(a, b);      
612 >        oneTwoInteractions_.removePair(b, c);
613 >        oneTwoInteractions_.removePair(c, d);
614 >      } else {
615 >        excludedInteractions_.removePair(a, b);
616 >        excludedInteractions_.removePair(b, c);
617 >        excludedInteractions_.removePair(c, d);
618 >      }
619  
620 < #ifdef IS_MPI
621 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
622 < #else
623 <  ndf = ndf_local;
624 < #endif
620 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
621 >        oneThreeInteractions_.removePair(a, c);      
622 >        oneThreeInteractions_.removePair(b, d);      
623 >      } else {
624 >        excludedInteractions_.removePair(a, c);
625 >        excludedInteractions_.removePair(b, d);
626 >      }
627  
628 <  // nZconstraints is global, as are the 3 COM translations for the
629 <  // entire system:
628 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
629 >        oneFourInteractions_.removePair(a, d);      
630 >      } else {
631 >        excludedInteractions_.removePair(a, d);
632 >      }
633 >    }
634  
635 <  ndf = ndf - 3 - nZconstraints;
635 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
636 >         inversion = mol->nextInversion(inversionIter)) {
637  
638 <  return ndf;
639 < }
638 >      a = inversion->getAtomA()->getGlobalIndex();
639 >      b = inversion->getAtomB()->getGlobalIndex();        
640 >      c = inversion->getAtomC()->getGlobalIndex();        
641 >      d = inversion->getAtomD()->getGlobalIndex();        
642  
643 < int SimInfo::getNDFraw() {
644 <  int ndfRaw_local;
643 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
644 >        oneTwoInteractions_.removePair(a, b);      
645 >        oneTwoInteractions_.removePair(a, c);
646 >        oneTwoInteractions_.removePair(a, d);
647 >      } else {
648 >        excludedInteractions_.removePair(a, b);
649 >        excludedInteractions_.removePair(a, c);
650 >        excludedInteractions_.removePair(a, d);
651 >      }
652  
653 <  // Raw degrees of freedom that we have to set
654 <  ndfRaw_local = 0;
655 <
656 <  for(int i = 0; i < integrableObjects.size(); i++){
657 <    ndfRaw_local += 3;
658 <    if (integrableObjects[i]->isDirectional()) {
659 <       if (integrableObjects[i]->isLinear())
660 <        ndfRaw_local += 2;
661 <      else
374 <        ndfRaw_local += 3;
653 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
654 >        oneThreeInteractions_.removePair(b, c);    
655 >        oneThreeInteractions_.removePair(b, d);    
656 >        oneThreeInteractions_.removePair(c, d);      
657 >      } else {
658 >        excludedInteractions_.removePair(b, c);
659 >        excludedInteractions_.removePair(b, d);
660 >        excludedInteractions_.removePair(c, d);
661 >      }
662      }
663 +
664 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
665 +         rb = mol->nextRigidBody(rbIter)) {
666 +      vector<Atom*> atoms = rb->getAtoms();
667 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
668 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
669 +          a = atoms[i]->getGlobalIndex();
670 +          b = atoms[j]->getGlobalIndex();
671 +          excludedInteractions_.removePair(a, b);
672 +        }
673 +      }
674 +    }        
675 +    
676    }
677 +  
678 +  
679 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
680 +    int curStampId;
681      
682 +    //index from 0
683 +    curStampId = moleculeStamps_.size();
684 +
685 +    moleculeStamps_.push_back(molStamp);
686 +    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
687 +  }
688 +
689 +
690 +  /**
691 +   * update
692 +   *
693 +   *  Performs the global checks and variable settings after the
694 +   *  objects have been created.
695 +   *
696 +   */
697 +  void SimInfo::update() {  
698 +    setupSimVariables();
699 +    calcNdf();
700 +    calcNdfRaw();
701 +    calcNdfTrans();
702 +  }
703 +  
704 +  /**
705 +   * getSimulatedAtomTypes
706 +   *
707 +   * Returns an STL set of AtomType* that are actually present in this
708 +   * simulation.  Must query all processors to assemble this information.
709 +   *
710 +   */
711 +  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
712 +    SimInfo::MoleculeIterator mi;
713 +    Molecule* mol;
714 +    Molecule::AtomIterator ai;
715 +    Atom* atom;
716 +    set<AtomType*> atomTypes;
717 +    
718 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
719 +      for(atom = mol->beginAtom(ai); atom != NULL;
720 +          atom = mol->nextAtom(ai)) {
721 +        atomTypes.insert(atom->getAtomType());
722 +      }      
723 +    }    
724 +    
725   #ifdef IS_MPI
379  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
380 #else
381  ndfRaw = ndfRaw_local;
382 #endif
726  
727 <  return ndfRaw;
728 < }
727 >    // loop over the found atom types on this processor, and add their
728 >    // numerical idents to a vector:
729 >    
730 >    vector<int> foundTypes;
731 >    set<AtomType*>::iterator i;
732 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
733 >      foundTypes.push_back( (*i)->getIdent() );
734  
735 < int SimInfo::getNDFtranslational() {
736 <  int ndfTrans_local;
735 >    // count_local holds the number of found types on this processor
736 >    int count_local = foundTypes.size();
737  
738 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
738 >    int nproc = MPI::COMM_WORLD.Get_size();
739  
740 +    // we need arrays to hold the counts and displacement vectors for
741 +    // all processors
742 +    vector<int> counts(nproc, 0);
743 +    vector<int> disps(nproc, 0);
744  
745 < #ifdef IS_MPI
746 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
747 < #else
748 <  ndfTrans = ndfTrans_local;
745 >    // fill the counts array
746 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
747 >                              1, MPI::INT);
748 >  
749 >    // use the processor counts to compute the displacement array
750 >    disps[0] = 0;    
751 >    int totalCount = counts[0];
752 >    for (int iproc = 1; iproc < nproc; iproc++) {
753 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
754 >      totalCount += counts[iproc];
755 >    }
756 >
757 >    // we need a (possibly redundant) set of all found types:
758 >    vector<int> ftGlobal(totalCount);
759 >    
760 >    // now spray out the foundTypes to all the other processors:    
761 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
762 >                               &ftGlobal[0], &counts[0], &disps[0],
763 >                               MPI::INT);
764 >
765 >    vector<int>::iterator j;
766 >
767 >    // foundIdents is a stl set, so inserting an already found ident
768 >    // will have no effect.
769 >    set<int> foundIdents;
770 >
771 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
772 >      foundIdents.insert((*j));
773 >    
774 >    // now iterate over the foundIdents and get the actual atom types
775 >    // that correspond to these:
776 >    set<int>::iterator it;
777 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
778 >      atomTypes.insert( forceField_->getAtomType((*it)) );
779 >
780   #endif
781  
782 <  ndfTrans = ndfTrans - 3 - nZconstraints;
782 >    return atomTypes;        
783 >  }
784  
401  return ndfTrans;
402 }
785  
786 < int SimInfo::getTotIntegrableObjects() {
787 <  int nObjs_local;
788 <  int nObjs;
786 >  int getGlobalCountOfType(AtomType* atype) {
787 >    /*
788 >    set<AtomType*> atypes = getSimulatedAtomTypes();
789 >    map<AtomType*, int> counts_;
790  
791 <  nObjs_local =  integrableObjects.size();
791 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
792 >      for(atom = mol->beginAtom(ai); atom != NULL;
793 >          atom = mol->nextAtom(ai)) {
794 >        atom->getAtomType();
795 >      }      
796 >    }    
797 >    */
798 >    return 0;
799 >  }
800  
801 +  void SimInfo::setupSimVariables() {
802 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
803 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
804 +    // parameter is true
805 +    calcBoxDipole_ = false;
806 +    if ( simParams_->haveAccumulateBoxDipole() )
807 +      if ( simParams_->getAccumulateBoxDipole() ) {
808 +        calcBoxDipole_ = true;      
809 +      }
810 +    
811 +    set<AtomType*>::iterator i;
812 +    set<AtomType*> atomTypes;
813 +    atomTypes = getSimulatedAtomTypes();    
814 +    bool usesElectrostatic = false;
815 +    bool usesMetallic = false;
816 +    bool usesDirectional = false;
817 +    bool usesFluctuatingCharges =  false;
818 +    //loop over all of the atom types
819 +    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
820 +      usesElectrostatic |= (*i)->isElectrostatic();
821 +      usesMetallic |= (*i)->isMetal();
822 +      usesDirectional |= (*i)->isDirectional();
823 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
824 +    }
825  
826   #ifdef IS_MPI
827 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
827 >    bool temp;
828 >    temp = usesDirectional;
829 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
830 >                              MPI::LOR);
831 >        
832 >    temp = usesMetallic;
833 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
834 >                              MPI::LOR);
835 >    
836 >    temp = usesElectrostatic;
837 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
838 >                              MPI::LOR);
839 >
840 >    temp = usesFluctuatingCharges;
841 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
842 >                              MPI::LOR);
843   #else
844 <  nObjs = nObjs_local;
844 >
845 >    usesDirectionalAtoms_ = usesDirectional;
846 >    usesMetallicAtoms_ = usesMetallic;
847 >    usesElectrostaticAtoms_ = usesElectrostatic;
848 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
849 >
850   #endif
851 +    
852 +    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
853 +    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
854 +    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
855 +  }
856  
857  
858 <  return nObjs;
859 < }
858 >  vector<int> SimInfo::getGlobalAtomIndices() {
859 >    SimInfo::MoleculeIterator mi;
860 >    Molecule* mol;
861 >    Molecule::AtomIterator ai;
862 >    Atom* atom;
863  
864 < void SimInfo::refreshSim(){
864 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
865 >    
866 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
867 >      
868 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
869 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
870 >      }
871 >    }
872 >    return GlobalAtomIndices;
873 >  }
874  
423  simtype fInfo;
424  int isError;
425  int n_global;
426  int* excl;
875  
876 <  fInfo.dielect = 0.0;
876 >  vector<int> SimInfo::getGlobalGroupIndices() {
877 >    SimInfo::MoleculeIterator mi;
878 >    Molecule* mol;
879 >    Molecule::CutoffGroupIterator ci;
880 >    CutoffGroup* cg;
881  
882 <  if( useDipoles ){
883 <    if( useReactionField )fInfo.dielect = dielectric;
882 >    vector<int> GlobalGroupIndices;
883 >    
884 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
885 >      
886 >      //local index of cutoff group is trivial, it only depends on the
887 >      //order of travesing
888 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
889 >           cg = mol->nextCutoffGroup(ci)) {
890 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
891 >      }        
892 >    }
893 >    return GlobalGroupIndices;
894    }
895  
434  fInfo.SIM_uses_PBC = usePBC;
435  //fInfo.SIM_uses_LJ = 0;
436  fInfo.SIM_uses_LJ = useLJ;
437  fInfo.SIM_uses_sticky = useSticky;
438  //fInfo.SIM_uses_sticky = 0;
439  fInfo.SIM_uses_charges = useCharges;
440  fInfo.SIM_uses_dipoles = useDipoles;
441  //fInfo.SIM_uses_dipoles = 0;
442  fInfo.SIM_uses_RF = useReactionField;
443  //fInfo.SIM_uses_RF = 0;
444  fInfo.SIM_uses_GB = useGB;
445  fInfo.SIM_uses_EAM = useEAM;
896  
897 <  n_exclude = excludes->getSize();
448 <  excl = excludes->getFortranArray();
449 <  
450 < #ifdef IS_MPI
451 <  n_global = mpiSim->getNAtomsGlobal();
452 < #else
453 <  n_global = n_atoms;
454 < #endif
455 <  
456 <  isError = 0;
457 <  
458 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459 <  //it may not be a good idea to pass the address of first element in vector
460 <  //since c++ standard does not require vector to be stored continuously in meomory
461 <  //Most of the compilers will organize the memory of vector continuously
462 <  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
897 >  void SimInfo::prepareTopology() {
898  
899 <  if( isError ){
899 >    //calculate mass ratio of cutoff group
900 >    SimInfo::MoleculeIterator mi;
901 >    Molecule* mol;
902 >    Molecule::CutoffGroupIterator ci;
903 >    CutoffGroup* cg;
904 >    Molecule::AtomIterator ai;
905 >    Atom* atom;
906 >    RealType totalMass;
907 >
908 >    /**
909 >     * The mass factor is the relative mass of an atom to the total
910 >     * mass of the cutoff group it belongs to.  By default, all atoms
911 >     * are their own cutoff groups, and therefore have mass factors of
912 >     * 1.  We need some special handling for massless atoms, which
913 >     * will be treated as carrying the entire mass of the cutoff
914 >     * group.
915 >     */
916 >    massFactors_.clear();
917 >    massFactors_.resize(getNAtoms(), 1.0);
918      
919 <    sprintf( painCave.errMsg,
920 <             "There was an error setting the simulation information in fortran.\n" );
921 <    painCave.isFatal = 1;
471 <    painCave.severity = OOPSE_ERROR;
472 <    simError();
473 <  }
474 <  
475 < #ifdef IS_MPI
476 <  sprintf( checkPointMsg,
477 <           "succesfully sent the simulation information to fortran.\n");
478 <  MPIcheckPoint();
479 < #endif // is_mpi
480 <  
481 <  this->ndf = this->getNDF();
482 <  this->ndfRaw = this->getNDFraw();
483 <  this->ndfTrans = this->getNDFtranslational();
484 < }
919 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
920 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
921 >           cg = mol->nextCutoffGroup(ci)) {
922  
923 < void SimInfo::setDefaultRcut( double theRcut ){
924 <  
925 <  haveRcut = 1;
926 <  rCut = theRcut;
927 <  rList = rCut + 1.0;
928 <  
929 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
930 < }
923 >        totalMass = cg->getMass();
924 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
925 >          // Check for massless groups - set mfact to 1 if true
926 >          if (totalMass != 0)
927 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
928 >          else
929 >            massFactors_[atom->getLocalIndex()] = 1.0;
930 >        }
931 >      }      
932 >    }
933  
934 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
934 >    // Build the identArray_
935  
936 <  rSw = theRsw;
937 <  setDefaultRcut( theRcut );
938 < }
936 >    identArray_.clear();
937 >    identArray_.reserve(getNAtoms());    
938 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
939 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
940 >        identArray_.push_back(atom->getIdent());
941 >      }
942 >    }    
943 >    
944 >    //scan topology
945  
946 +    int* excludeList = excludedInteractions_.getPairList();
947 +    int* oneTwoList = oneTwoInteractions_.getPairList();
948 +    int* oneThreeList = oneThreeInteractions_.getPairList();
949 +    int* oneFourList = oneFourInteractions_.getPairList();
950  
951 < void SimInfo::checkCutOffs( void ){
503 <  
504 <  if( boxIsInit ){
505 <    
506 <    //we need to check cutOffs against the box
507 <    
508 <    if( rCut > maxCutoff ){
509 <      sprintf( painCave.errMsg,
510 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
523 <      painCave.isFatal = 1;
524 <      simError();
525 <    }    
526 <  } else {
527 <    // initialize this stuff before using it, OK?
528 <    sprintf( painCave.errMsg,
529 <             "Trying to check cutoffs without a box.\n"
530 <             "\tOOPSE should have better programmers than that.\n" );
531 <    painCave.severity = OOPSE_ERROR;
532 <    painCave.isFatal = 1;
533 <    simError();      
951 >    topologyDone_ = true;
952    }
535  
536 }
953  
954 < void SimInfo::addProperty(GenericData* prop){
954 >  void SimInfo::addProperty(GenericData* genData) {
955 >    properties_.addProperty(genData);  
956 >  }
957  
958 <  map<string, GenericData*>::iterator result;
959 <  result = properties.find(prop->getID());
542 <  
543 <  //we can't simply use  properties[prop->getID()] = prop,
544 <  //it will cause memory leak if we already contain a propery which has the same name of prop
545 <  
546 <  if(result != properties.end()){
547 <    
548 <    delete (*result).second;
549 <    (*result).second = prop;
550 <      
958 >  void SimInfo::removeProperty(const string& propName) {
959 >    properties_.removeProperty(propName);  
960    }
552  else{
961  
962 <    properties[prop->getID()] = prop;
962 >  void SimInfo::clearProperties() {
963 >    properties_.clearProperties();
964 >  }
965  
966 +  vector<string> SimInfo::getPropertyNames() {
967 +    return properties_.getPropertyNames();  
968    }
969 <    
970 < }
969 >      
970 >  vector<GenericData*> SimInfo::getProperties() {
971 >    return properties_.getProperties();
972 >  }
973  
974 < GenericData* SimInfo::getProperty(const string& propName){
974 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
975 >    return properties_.getPropertyByName(propName);
976 >  }
977 >
978 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
979 >    if (sman_ == sman) {
980 >      return;
981 >    }    
982 >    delete sman_;
983 >    sman_ = sman;
984 >
985 >    Molecule* mol;
986 >    RigidBody* rb;
987 >    Atom* atom;
988 >    CutoffGroup* cg;
989 >    SimInfo::MoleculeIterator mi;
990 >    Molecule::RigidBodyIterator rbIter;
991 >    Molecule::AtomIterator atomIter;
992 >    Molecule::CutoffGroupIterator cgIter;
993  
994 <  map<string, GenericData*>::iterator result;
995 <  
996 <  //string lowerCaseName = ();
997 <  
998 <  result = properties.find(propName);
999 <  
1000 <  if(result != properties.end())
1001 <    return (*result).second;  
1002 <  else  
1003 <    return NULL;  
1004 < }
994 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
995 >        
996 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
997 >           atom = mol->nextAtom(atomIter)) {
998 >        atom->setSnapshotManager(sman_);
999 >      }
1000 >        
1001 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1002 >           rb = mol->nextRigidBody(rbIter)) {
1003 >        rb->setSnapshotManager(sman_);
1004 >      }
1005  
1006 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1007 +           cg = mol->nextCutoffGroup(cgIter)) {
1008 +        cg->setSnapshotManager(sman_);
1009 +      }
1010 +    }    
1011 +    
1012 +  }
1013  
1014 < void SimInfo::getFortranGroupArrays(SimInfo* info,
1015 <                                    vector<int>& FglobalGroupMembership,
1016 <                                    vector<double>& mfact){
1014 >
1015 >  ostream& operator <<(ostream& o, SimInfo& info) {
1016 >
1017 >    return o;
1018 >  }
1019 >  
1020    
1021 <  Molecule* myMols;
1022 <  Atom** myAtoms;
1023 <  int numAtom;
1024 <  double mtot;
1025 <  int numMol;
1026 <  int numCutoffGroups;
1027 <  CutoffGroup* myCutoffGroup;
1028 <  vector<CutoffGroup*>::iterator iterCutoff;
1029 <  Atom* cutoffAtom;
1030 <  vector<Atom*>::iterator iterAtom;
1031 <  int atomIndex;
590 <  double totalMass;
1021 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1022 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1023 >      sprintf(painCave.errMsg,
1024 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1025 >              "\tindex exceeds number of known objects!\n");
1026 >      painCave.isFatal = 1;
1027 >      simError();
1028 >      return NULL;
1029 >    } else
1030 >      return IOIndexToIntegrableObject.at(index);
1031 >  }
1032    
1033 <  mfact.clear();
1034 <  FglobalGroupMembership.clear();
1035 <  
1033 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1034 >    IOIndexToIntegrableObject= v;
1035 >  }
1036  
1037 <  // Fix the silly fortran indexing problem
1037 >  int SimInfo::getNGlobalConstraints() {
1038 >    int nGlobalConstraints;
1039   #ifdef IS_MPI
1040 <  numAtom = mpiSim->getNAtomsGlobal();
1040 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1041 >                              MPI::INT, MPI::SUM);
1042   #else
1043 <  numAtom = n_atoms;
1043 >    nGlobalConstraints =  nConstraints_;
1044   #endif
1045 <  for (int i = 0; i < numAtom; i++)
603 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604 <  
605 <
606 <  myMols = info->molecules;
607 <  numMol = info->n_mol;
608 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
613 <
614 <      totalMass = myCutoffGroup->getMass();
615 <      
616 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
617 <          cutoffAtom != NULL;
618 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
619 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
620 <      }  
621 <    }
1045 >    return nGlobalConstraints;
1046    }
1047  
1048 < }
1048 > }//end namespace OpenMD
1049 >

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1849 by gezelter, Wed Feb 20 13:52:51 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines