ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1529 by gezelter, Mon Dec 27 18:35:59 2010 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53   #include "brains/SimInfo.hpp"
54 < #define __C
55 < #include "brains/fSimulation.h"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/fCutoffPolicy.h"
58 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 > #include "UseTheForce/doForces_interface.h"
60 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
61 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
62 > #include "utils/MemoryUtils.hpp"
63   #include "utils/simError.h"
64 + #include "selection/SelectionManager.hpp"
65 + #include "io/ForceFieldOptions.hpp"
66 + #include "UseTheForce/ForceField.hpp"
67 + #include "nonbonded/InteractionManager.hpp"
68  
13 #include "UseTheForce/fortranWrappers.hpp"
69  
15 #include "math/MatVec3.h"
16
70   #ifdef IS_MPI
71 < #include "brains/mpiSimulation.hpp"
72 < #endif
71 > #include "UseTheForce/mpiComponentPlan.h"
72 > #include "UseTheForce/DarkSide/simParallel_interface.h"
73 > #endif
74  
75 < inline double roundMe( double x ){
76 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
77 < }
78 <          
79 < inline double min( double a, double b ){
80 <  return (a < b ) ? a : b;
81 < }
75 > using namespace std;
76 > namespace OpenMD {
77 >  
78 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
79 >    forceField_(ff), simParams_(simParams),
80 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
81 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
82 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
83 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
84 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
85 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
86 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
87 >    
88 >    MoleculeStamp* molStamp;
89 >    int nMolWithSameStamp;
90 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
91 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
92 >    CutoffGroupStamp* cgStamp;    
93 >    RigidBodyStamp* rbStamp;
94 >    int nRigidAtoms = 0;
95 >    
96 >    vector<Component*> components = simParams->getComponents();
97 >    
98 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
99 >      molStamp = (*i)->getMoleculeStamp();
100 >      nMolWithSameStamp = (*i)->getNMol();
101 >      
102 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
103 >      
104 >      //calculate atoms in molecules
105 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
106 >      
107 >      //calculate atoms in cutoff groups
108 >      int nAtomsInGroups = 0;
109 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
110 >      
111 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
112 >        cgStamp = molStamp->getCutoffGroupStamp(j);
113 >        nAtomsInGroups += cgStamp->getNMembers();
114 >      }
115 >      
116 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
117 >      
118 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
119 >      
120 >      //calculate atoms in rigid bodies
121 >      int nAtomsInRigidBodies = 0;
122 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
123 >      
124 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
125 >        rbStamp = molStamp->getRigidBodyStamp(j);
126 >        nAtomsInRigidBodies += rbStamp->getNMembers();
127 >      }
128 >      
129 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
130 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
131 >      
132 >    }
133 >    
134 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
135 >    //group therefore the total number of cutoff groups in the system is
136 >    //equal to the total number of atoms minus number of atoms belong to
137 >    //cutoff group defined in meta-data file plus the number of cutoff
138 >    //groups defined in meta-data file
139 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140 >    
141 >    //every free atom (atom does not belong to rigid bodies) is an
142 >    //integrable object therefore the total number of integrable objects
143 >    //in the system is equal to the total number of atoms minus number of
144 >    //atoms belong to rigid body defined in meta-data file plus the number
145 >    //of rigid bodies defined in meta-data file
146 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
147 >      + nGlobalRigidBodies_;
148 >    
149 >    nGlobalMols_ = molStampIds_.size();
150 >    molToProcMap_.resize(nGlobalMols_);
151 >  }
152 >  
153 >  SimInfo::~SimInfo() {
154 >    map<int, Molecule*>::iterator i;
155 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
156 >      delete i->second;
157 >    }
158 >    molecules_.clear();
159 >      
160 >    delete sman_;
161 >    delete simParams_;
162 >    delete forceField_;
163 >  }
164  
29 SimInfo* currentInfo;
165  
166 < SimInfo::SimInfo(){
167 <
168 <  n_constraints = 0;
169 <  nZconstraints = 0;
170 <  n_oriented = 0;
171 <  n_dipoles = 0;
172 <  ndf = 0;
173 <  ndfRaw = 0;
174 <  nZconstraints = 0;
175 <  the_integrator = NULL;
176 <  setTemp = 0;
177 <  thermalTime = 0.0;
178 <  currentTime = 0.0;
179 <  rCut = 0.0;
180 <  rSw = 0.0;
181 <
182 <  haveRcut = 0;
183 <  haveRsw = 0;
184 <  boxIsInit = 0;
166 >  bool SimInfo::addMolecule(Molecule* mol) {
167 >    MoleculeIterator i;
168 >    
169 >    i = molecules_.find(mol->getGlobalIndex());
170 >    if (i == molecules_.end() ) {
171 >      
172 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
173 >      
174 >      nAtoms_ += mol->getNAtoms();
175 >      nBonds_ += mol->getNBonds();
176 >      nBends_ += mol->getNBends();
177 >      nTorsions_ += mol->getNTorsions();
178 >      nInversions_ += mol->getNInversions();
179 >      nRigidBodies_ += mol->getNRigidBodies();
180 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
181 >      nCutoffGroups_ += mol->getNCutoffGroups();
182 >      nConstraints_ += mol->getNConstraintPairs();
183 >      
184 >      addInteractionPairs(mol);
185 >      
186 >      return true;
187 >    } else {
188 >      return false;
189 >    }
190 >  }
191    
192 <  resetTime = 1e99;
192 >  bool SimInfo::removeMolecule(Molecule* mol) {
193 >    MoleculeIterator i;
194 >    i = molecules_.find(mol->getGlobalIndex());
195  
196 <  orthoRhombic = 0;
54 <  orthoTolerance = 1E-6;
55 <  useInitXSstate = true;
196 >    if (i != molecules_.end() ) {
197  
198 <  usePBC = 0;
199 <  useLJ = 0;
200 <  useSticky = 0;
201 <  useCharges = 0;
202 <  useDipoles = 0;
203 <  useReactionField = 0;
204 <  useGB = 0;
205 <  useEAM = 0;
206 <  useSolidThermInt = 0;
207 <  useLiquidThermInt = 0;
198 >      assert(mol == i->second);
199 >        
200 >      nAtoms_ -= mol->getNAtoms();
201 >      nBonds_ -= mol->getNBonds();
202 >      nBends_ -= mol->getNBends();
203 >      nTorsions_ -= mol->getNTorsions();
204 >      nInversions_ -= mol->getNInversions();
205 >      nRigidBodies_ -= mol->getNRigidBodies();
206 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
207 >      nCutoffGroups_ -= mol->getNCutoffGroups();
208 >      nConstraints_ -= mol->getNConstraintPairs();
209  
210 <  haveCutoffGroups = false;
210 >      removeInteractionPairs(mol);
211 >      molecules_.erase(mol->getGlobalIndex());
212  
213 <  excludes = Exclude::Instance();
214 <
215 <  myConfiguration = new SimState();
216 <
217 <  has_minimizer = false;
218 <  the_minimizer =NULL;
219 <
77 <  ngroup = 0;
78 <
79 <  wrapMeSimInfo( this );
80 < }
213 >      delete mol;
214 >        
215 >      return true;
216 >    } else {
217 >      return false;
218 >    }
219 >  }    
220  
221 +        
222 +  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
223 +    i = molecules_.begin();
224 +    return i == molecules_.end() ? NULL : i->second;
225 +  }    
226  
227 < SimInfo::~SimInfo(){
227 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
228 >    ++i;
229 >    return i == molecules_.end() ? NULL : i->second;    
230 >  }
231  
85  delete myConfiguration;
232  
233 <  map<string, GenericData*>::iterator i;
234 <  
235 <  for(i = properties.begin(); i != properties.end(); i++)
236 <    delete (*i).second;
233 >  void SimInfo::calcNdf() {
234 >    int ndf_local;
235 >    MoleculeIterator i;
236 >    vector<StuntDouble*>::iterator j;
237 >    Molecule* mol;
238 >    StuntDouble* integrableObject;
239  
240 < }
240 >    ndf_local = 0;
241 >    
242 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
243 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
244 >           integrableObject = mol->nextIntegrableObject(j)) {
245  
246 < void SimInfo::setBox(double newBox[3]) {
95 <  
96 <  int i, j;
97 <  double tempMat[3][3];
246 >        ndf_local += 3;
247  
248 <  for(i=0; i<3; i++)
249 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
248 >        if (integrableObject->isDirectional()) {
249 >          if (integrableObject->isLinear()) {
250 >            ndf_local += 2;
251 >          } else {
252 >            ndf_local += 3;
253 >          }
254 >        }
255 >            
256 >      }
257 >    }
258 >    
259 >    // n_constraints is local, so subtract them on each processor
260 >    ndf_local -= nConstraints_;
261  
262 <  tempMat[0][0] = newBox[0];
263 <  tempMat[1][1] = newBox[1];
264 <  tempMat[2][2] = newBox[2];
262 > #ifdef IS_MPI
263 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
264 > #else
265 >    ndf_ = ndf_local;
266 > #endif
267  
268 <  setBoxM( tempMat );
268 >    // nZconstraints_ is global, as are the 3 COM translations for the
269 >    // entire system:
270 >    ndf_ = ndf_ - 3 - nZconstraint_;
271  
272 < }
272 >  }
273  
274 < void SimInfo::setBoxM( double theBox[3][3] ){
275 <  
276 <  int i, j;
277 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
278 <                         // ordering in the array is as follows:
279 <                         // [ 0 3 6 ]
280 <                         // [ 1 4 7 ]
281 <                         // [ 2 5 8 ]
282 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
274 >  int SimInfo::getFdf() {
275 > #ifdef IS_MPI
276 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
277 > #else
278 >    fdf_ = fdf_local;
279 > #endif
280 >    return fdf_;
281 >  }
282 >    
283 >  void SimInfo::calcNdfRaw() {
284 >    int ndfRaw_local;
285  
286 <  if( !boxIsInit ) boxIsInit = 1;
286 >    MoleculeIterator i;
287 >    vector<StuntDouble*>::iterator j;
288 >    Molecule* mol;
289 >    StuntDouble* integrableObject;
290  
291 <  for(i=0; i < 3; i++)
292 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
293 <  
294 <  calcBoxL();
295 <  calcHmatInv();
291 >    // Raw degrees of freedom that we have to set
292 >    ndfRaw_local = 0;
293 >    
294 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
295 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
296 >           integrableObject = mol->nextIntegrableObject(j)) {
297  
298 <  for(i=0; i < 3; i++) {
299 <    for (j=0; j < 3; j++) {
300 <      FortranHmat[3*j + i] = Hmat[i][j];
301 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
298 >        ndfRaw_local += 3;
299 >
300 >        if (integrableObject->isDirectional()) {
301 >          if (integrableObject->isLinear()) {
302 >            ndfRaw_local += 2;
303 >          } else {
304 >            ndfRaw_local += 3;
305 >          }
306 >        }
307 >            
308 >      }
309      }
310 +    
311 + #ifdef IS_MPI
312 +    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
313 + #else
314 +    ndfRaw_ = ndfRaw_local;
315 + #endif
316    }
317  
318 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
319 <
137 < }
138 <
318 >  void SimInfo::calcNdfTrans() {
319 >    int ndfTrans_local;
320  
321 < void SimInfo::getBoxM (double theBox[3][3]) {
321 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
322  
142  int i, j;
143  for(i=0; i<3; i++)
144    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
145 }
323  
324 + #ifdef IS_MPI
325 +    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
326 + #else
327 +    ndfTrans_ = ndfTrans_local;
328 + #endif
329  
330 < void SimInfo::scaleBox(double scale) {
331 <  double theBox[3][3];
332 <  int i, j;
330 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
331 >
332 >  }
333  
334 <  // cerr << "Scaling box by " << scale << "\n";
334 >  void SimInfo::addInteractionPairs(Molecule* mol) {
335 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
336 >    vector<Bond*>::iterator bondIter;
337 >    vector<Bend*>::iterator bendIter;
338 >    vector<Torsion*>::iterator torsionIter;
339 >    vector<Inversion*>::iterator inversionIter;
340 >    Bond* bond;
341 >    Bend* bend;
342 >    Torsion* torsion;
343 >    Inversion* inversion;
344 >    int a;
345 >    int b;
346 >    int c;
347 >    int d;
348  
349 <  for(i=0; i<3; i++)
350 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
349 >    // atomGroups can be used to add special interaction maps between
350 >    // groups of atoms that are in two separate rigid bodies.
351 >    // However, most site-site interactions between two rigid bodies
352 >    // are probably not special, just the ones between the physically
353 >    // bonded atoms.  Interactions *within* a single rigid body should
354 >    // always be excluded.  These are done at the bottom of this
355 >    // function.
356  
357 <  setBoxM(theBox);
358 <
359 < }
360 <
361 < void SimInfo::calcHmatInv( void ) {
362 <  
363 <  int oldOrtho;
364 <  int i,j;
365 <  double smallDiag;
366 <  double tol;
367 <  double sanity[3][3];
368 <
369 <  invertMat3( Hmat, HmatInv );
370 <
371 <  // check to see if Hmat is orthorhombic
372 <  
373 <  oldOrtho = orthoRhombic;
374 <
375 <  smallDiag = fabs(Hmat[0][0]);
376 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
377 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
378 <  tol = smallDiag * orthoTolerance;
379 <
380 <  orthoRhombic = 1;
181 <  
182 <  for (i = 0; i < 3; i++ ) {
183 <    for (j = 0 ; j < 3; j++) {
184 <      if (i != j) {
185 <        if (orthoRhombic) {
186 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
187 <        }        
357 >    map<int, set<int> > atomGroups;
358 >    Molecule::RigidBodyIterator rbIter;
359 >    RigidBody* rb;
360 >    Molecule::IntegrableObjectIterator ii;
361 >    StuntDouble* integrableObject;
362 >    
363 >    for (integrableObject = mol->beginIntegrableObject(ii);
364 >         integrableObject != NULL;
365 >         integrableObject = mol->nextIntegrableObject(ii)) {
366 >      
367 >      if (integrableObject->isRigidBody()) {
368 >        rb = static_cast<RigidBody*>(integrableObject);
369 >        vector<Atom*> atoms = rb->getAtoms();
370 >        set<int> rigidAtoms;
371 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
372 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
373 >        }
374 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
375 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
376 >        }      
377 >      } else {
378 >        set<int> oneAtomSet;
379 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
380 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
381        }
382 <    }
383 <  }
382 >    }  
383 >          
384 >    for (bond= mol->beginBond(bondIter); bond != NULL;
385 >         bond = mol->nextBond(bondIter)) {
386  
387 <  if( oldOrtho != orthoRhombic ){
387 >      a = bond->getAtomA()->getGlobalIndex();
388 >      b = bond->getAtomB()->getGlobalIndex();  
389      
390 <    if( orthoRhombic ) {
391 <      sprintf( painCave.errMsg,
392 <               "OOPSE is switching from the default Non-Orthorhombic\n"
393 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
394 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
390 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
391 >        oneTwoInteractions_.addPair(a, b);
392 >      } else {
393 >        excludedInteractions_.addPair(a, b);
394 >      }
395      }
205    else {
206      sprintf( painCave.errMsg,
207               "OOPSE is switching from the faster Orthorhombic to the more\n"
208               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209               "\tThis is usually because the box has deformed under\n"
210               "\tNPTf integration. If you wan't to live on the edge with\n"
211               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212               "\tvariable ( currently set to %G ) larger.\n",
213               orthoTolerance);
214      painCave.severity = OOPSE_WARNING;
215      simError();
216    }
217  }
218 }
396  
397 < void SimInfo::calcBoxL( void ){
397 >    for (bend= mol->beginBend(bendIter); bend != NULL;
398 >         bend = mol->nextBend(bendIter)) {
399  
400 <  double dx, dy, dz, dsq;
400 >      a = bend->getAtomA()->getGlobalIndex();
401 >      b = bend->getAtomB()->getGlobalIndex();        
402 >      c = bend->getAtomC()->getGlobalIndex();
403 >      
404 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
405 >        oneTwoInteractions_.addPair(a, b);      
406 >        oneTwoInteractions_.addPair(b, c);
407 >      } else {
408 >        excludedInteractions_.addPair(a, b);
409 >        excludedInteractions_.addPair(b, c);
410 >      }
411  
412 <  // boxVol = Determinant of Hmat
412 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
413 >        oneThreeInteractions_.addPair(a, c);      
414 >      } else {
415 >        excludedInteractions_.addPair(a, c);
416 >      }
417 >    }
418  
419 <  boxVol = matDet3( Hmat );
419 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
420 >         torsion = mol->nextTorsion(torsionIter)) {
421  
422 <  // boxLx
423 <  
424 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
425 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
422 >      a = torsion->getAtomA()->getGlobalIndex();
423 >      b = torsion->getAtomB()->getGlobalIndex();        
424 >      c = torsion->getAtomC()->getGlobalIndex();        
425 >      d = torsion->getAtomD()->getGlobalIndex();      
426  
427 <  // boxLy
428 <  
429 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
430 <  dsq = dx*dx + dy*dy + dz*dz;
431 <  boxL[1] = sqrt( dsq );
432 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
427 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
428 >        oneTwoInteractions_.addPair(a, b);      
429 >        oneTwoInteractions_.addPair(b, c);
430 >        oneTwoInteractions_.addPair(c, d);
431 >      } else {
432 >        excludedInteractions_.addPair(a, b);
433 >        excludedInteractions_.addPair(b, c);
434 >        excludedInteractions_.addPair(c, d);
435 >      }
436  
437 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
438 +        oneThreeInteractions_.addPair(a, c);      
439 +        oneThreeInteractions_.addPair(b, d);      
440 +      } else {
441 +        excludedInteractions_.addPair(a, c);
442 +        excludedInteractions_.addPair(b, d);
443 +      }
444  
445 <  // boxLz
446 <  
447 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
448 <  dsq = dx*dx + dy*dy + dz*dz;
449 <  boxL[2] = sqrt( dsq );
450 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
445 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
446 >        oneFourInteractions_.addPair(a, d);      
447 >      } else {
448 >        excludedInteractions_.addPair(a, d);
449 >      }
450 >    }
451  
452 <  //calculate the max cutoff
453 <  maxCutoff =  calcMaxCutOff();
252 <  
253 <  checkCutOffs();
452 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
453 >         inversion = mol->nextInversion(inversionIter)) {
454  
455 < }
455 >      a = inversion->getAtomA()->getGlobalIndex();
456 >      b = inversion->getAtomB()->getGlobalIndex();        
457 >      c = inversion->getAtomC()->getGlobalIndex();        
458 >      d = inversion->getAtomD()->getGlobalIndex();        
459  
460 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
461 +        oneTwoInteractions_.addPair(a, b);      
462 +        oneTwoInteractions_.addPair(a, c);
463 +        oneTwoInteractions_.addPair(a, d);
464 +      } else {
465 +        excludedInteractions_.addPair(a, b);
466 +        excludedInteractions_.addPair(a, c);
467 +        excludedInteractions_.addPair(a, d);
468 +      }
469  
470 < double SimInfo::calcMaxCutOff(){
470 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
471 >        oneThreeInteractions_.addPair(b, c);    
472 >        oneThreeInteractions_.addPair(b, d);    
473 >        oneThreeInteractions_.addPair(c, d);      
474 >      } else {
475 >        excludedInteractions_.addPair(b, c);
476 >        excludedInteractions_.addPair(b, d);
477 >        excludedInteractions_.addPair(c, d);
478 >      }
479 >    }
480  
481 <  double ri[3], rj[3], rk[3];
482 <  double rij[3], rjk[3], rki[3];
483 <  double minDist;
481 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
482 >         rb = mol->nextRigidBody(rbIter)) {
483 >      vector<Atom*> atoms = rb->getAtoms();
484 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
485 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
486 >          a = atoms[i]->getGlobalIndex();
487 >          b = atoms[j]->getGlobalIndex();
488 >          excludedInteractions_.addPair(a, b);
489 >        }
490 >      }
491 >    }        
492  
493 <  ri[0] = Hmat[0][0];
265 <  ri[1] = Hmat[1][0];
266 <  ri[2] = Hmat[2][0];
493 >  }
494  
495 <  rj[0] = Hmat[0][1];
496 <  rj[1] = Hmat[1][1];
497 <  rj[2] = Hmat[2][1];
495 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
496 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
497 >    vector<Bond*>::iterator bondIter;
498 >    vector<Bend*>::iterator bendIter;
499 >    vector<Torsion*>::iterator torsionIter;
500 >    vector<Inversion*>::iterator inversionIter;
501 >    Bond* bond;
502 >    Bend* bend;
503 >    Torsion* torsion;
504 >    Inversion* inversion;
505 >    int a;
506 >    int b;
507 >    int c;
508 >    int d;
509  
510 <  rk[0] = Hmat[0][2];
511 <  rk[1] = Hmat[1][2];
512 <  rk[2] = Hmat[2][2];
510 >    map<int, set<int> > atomGroups;
511 >    Molecule::RigidBodyIterator rbIter;
512 >    RigidBody* rb;
513 >    Molecule::IntegrableObjectIterator ii;
514 >    StuntDouble* integrableObject;
515      
516 <  crossProduct3(ri, rj, rij);
517 <  distXY = dotProduct3(rk,rij) / norm3(rij);
516 >    for (integrableObject = mol->beginIntegrableObject(ii);
517 >         integrableObject != NULL;
518 >         integrableObject = mol->nextIntegrableObject(ii)) {
519 >      
520 >      if (integrableObject->isRigidBody()) {
521 >        rb = static_cast<RigidBody*>(integrableObject);
522 >        vector<Atom*> atoms = rb->getAtoms();
523 >        set<int> rigidAtoms;
524 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
525 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
526 >        }
527 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
528 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
529 >        }      
530 >      } else {
531 >        set<int> oneAtomSet;
532 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
533 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
534 >      }
535 >    }  
536  
537 <  crossProduct3(rj,rk, rjk);
538 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
537 >    for (bond= mol->beginBond(bondIter); bond != NULL;
538 >         bond = mol->nextBond(bondIter)) {
539 >      
540 >      a = bond->getAtomA()->getGlobalIndex();
541 >      b = bond->getAtomB()->getGlobalIndex();  
542 >    
543 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
544 >        oneTwoInteractions_.removePair(a, b);
545 >      } else {
546 >        excludedInteractions_.removePair(a, b);
547 >      }
548 >    }
549  
550 <  crossProduct3(rk,ri, rki);
551 <  distZX = dotProduct3(rj,rki) / norm3(rki);
550 >    for (bend= mol->beginBend(bendIter); bend != NULL;
551 >         bend = mol->nextBend(bendIter)) {
552  
553 <  minDist = min(min(distXY, distYZ), distZX);
554 <  return minDist/2;
555 <  
556 < }
553 >      a = bend->getAtomA()->getGlobalIndex();
554 >      b = bend->getAtomB()->getGlobalIndex();        
555 >      c = bend->getAtomC()->getGlobalIndex();
556 >      
557 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
558 >        oneTwoInteractions_.removePair(a, b);      
559 >        oneTwoInteractions_.removePair(b, c);
560 >      } else {
561 >        excludedInteractions_.removePair(a, b);
562 >        excludedInteractions_.removePair(b, c);
563 >      }
564  
565 < void SimInfo::wrapVector( double thePos[3] ){
565 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
566 >        oneThreeInteractions_.removePair(a, c);      
567 >      } else {
568 >        excludedInteractions_.removePair(a, c);
569 >      }
570 >    }
571  
572 <  int i;
573 <  double scaled[3];
572 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
573 >         torsion = mol->nextTorsion(torsionIter)) {
574  
575 <  if( !orthoRhombic ){
576 <    // calc the scaled coordinates.
575 >      a = torsion->getAtomA()->getGlobalIndex();
576 >      b = torsion->getAtomB()->getGlobalIndex();        
577 >      c = torsion->getAtomC()->getGlobalIndex();        
578 >      d = torsion->getAtomD()->getGlobalIndex();      
579    
580 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 +        oneTwoInteractions_.removePair(a, b);      
582 +        oneTwoInteractions_.removePair(b, c);
583 +        oneTwoInteractions_.removePair(c, d);
584 +      } else {
585 +        excludedInteractions_.removePair(a, b);
586 +        excludedInteractions_.removePair(b, c);
587 +        excludedInteractions_.removePair(c, d);
588 +      }
589  
590 <    matVecMul3(HmatInv, thePos, scaled);
591 <    
592 <    for(i=0; i<3; i++)
593 <      scaled[i] -= roundMe(scaled[i]);
594 <    
595 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
596 <    
306 <    matVecMul3(Hmat, scaled, thePos);
590 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
591 >        oneThreeInteractions_.removePair(a, c);      
592 >        oneThreeInteractions_.removePair(b, d);      
593 >      } else {
594 >        excludedInteractions_.removePair(a, c);
595 >        excludedInteractions_.removePair(b, d);
596 >      }
597  
598 <  }
599 <  else{
600 <    // calc the scaled coordinates.
601 <    
602 <    for(i=0; i<3; i++)
313 <      scaled[i] = thePos[i]*HmatInv[i][i];
314 <    
315 <    // wrap the scaled coordinates
316 <    
317 <    for(i=0; i<3; i++)
318 <      scaled[i] -= roundMe(scaled[i]);
319 <    
320 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      thePos[i] = scaled[i]*Hmat[i][i];
324 <  }
325 <    
326 < }
327 <
328 <
329 < int SimInfo::getNDF(){
330 <  int ndf_local;
331 <
332 <  ndf_local = 0;
333 <  
334 <  for(int i = 0; i < integrableObjects.size(); i++){
335 <    ndf_local += 3;
336 <    if (integrableObjects[i]->isDirectional()) {
337 <      if (integrableObjects[i]->isLinear())
338 <        ndf_local += 2;
339 <      else
340 <        ndf_local += 3;
598 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
599 >        oneFourInteractions_.removePair(a, d);      
600 >      } else {
601 >        excludedInteractions_.removePair(a, d);
602 >      }
603      }
342  }
604  
605 <  // n_constraints is local, so subtract them on each processor:
605 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
606 >         inversion = mol->nextInversion(inversionIter)) {
607  
608 <  ndf_local -= n_constraints;
608 >      a = inversion->getAtomA()->getGlobalIndex();
609 >      b = inversion->getAtomB()->getGlobalIndex();        
610 >      c = inversion->getAtomC()->getGlobalIndex();        
611 >      d = inversion->getAtomD()->getGlobalIndex();        
612  
613 < #ifdef IS_MPI
614 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
615 < #else
616 <  ndf = ndf_local;
617 < #endif
613 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
614 >        oneTwoInteractions_.removePair(a, b);      
615 >        oneTwoInteractions_.removePair(a, c);
616 >        oneTwoInteractions_.removePair(a, d);
617 >      } else {
618 >        excludedInteractions_.removePair(a, b);
619 >        excludedInteractions_.removePair(a, c);
620 >        excludedInteractions_.removePair(a, d);
621 >      }
622  
623 <  // nZconstraints is global, as are the 3 COM translations for the
624 <  // entire system:
623 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
624 >        oneThreeInteractions_.removePair(b, c);    
625 >        oneThreeInteractions_.removePair(b, d);    
626 >        oneThreeInteractions_.removePair(c, d);      
627 >      } else {
628 >        excludedInteractions_.removePair(b, c);
629 >        excludedInteractions_.removePair(b, d);
630 >        excludedInteractions_.removePair(c, d);
631 >      }
632 >    }
633  
634 <  ndf = ndf - 3 - nZconstraints;
634 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
635 >         rb = mol->nextRigidBody(rbIter)) {
636 >      vector<Atom*> atoms = rb->getAtoms();
637 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
638 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
639 >          a = atoms[i]->getGlobalIndex();
640 >          b = atoms[j]->getGlobalIndex();
641 >          excludedInteractions_.removePair(a, b);
642 >        }
643 >      }
644 >    }        
645 >    
646 >  }
647 >  
648 >  
649 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
650 >    int curStampId;
651 >    
652 >    //index from 0
653 >    curStampId = moleculeStamps_.size();
654  
655 <  return ndf;
656 < }
655 >    moleculeStamps_.push_back(molStamp);
656 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
657 >  }
658  
659 < int SimInfo::getNDFraw() {
363 <  int ndfRaw_local;
659 >  void SimInfo::update() {
660  
661 <  // Raw degrees of freedom that we have to set
662 <  ndfRaw_local = 0;
661 >    setupSimType();
662 >    setupCutoffRadius();
663 >    setupSwitchingRadius();
664 >    setupCutoffMethod();
665 >    setupSkinThickness();
666 >    setupSwitchingFunction();
667 >    setupAccumulateBoxDipole();
668  
669 <  for(int i = 0; i < integrableObjects.size(); i++){
670 <    ndfRaw_local += 3;
671 <    if (integrableObjects[i]->isDirectional()) {
672 <       if (integrableObjects[i]->isLinear())
673 <        ndfRaw_local += 2;
674 <      else
675 <        ndfRaw_local += 3;
676 <    }
669 > #ifdef IS_MPI
670 >    setupFortranParallel();
671 > #endif
672 >    setupFortranSim();
673 >    fortranInitialized_ = true;
674 >
675 >    calcNdf();
676 >    calcNdfRaw();
677 >    calcNdfTrans();
678    }
679 +  
680 +  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
681 +    SimInfo::MoleculeIterator mi;
682 +    Molecule* mol;
683 +    Molecule::AtomIterator ai;
684 +    Atom* atom;
685 +    set<AtomType*> atomTypes;
686      
687 < #ifdef IS_MPI
688 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
689 < #else
690 <  ndfRaw = ndfRaw_local;
691 < #endif
687 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
688 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
689 >        atomTypes.insert(atom->getAtomType());
690 >      }      
691 >    }    
692 >    return atomTypes;        
693 >  }
694  
695 <  return ndfRaw;
696 < }
695 >  /**
696 >   * setupCutoffRadius
697 >   *
698 >   *  If the cutoffRadius was explicitly set, use that value.
699 >   *  If the cutoffRadius was not explicitly set:
700 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
701 >   *      No electrostatic atoms?  Poll the atom types present in the
702 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
703 >   *      Use the maximum suggested value that was found.
704 >   */
705 >  void SimInfo::setupCutoffRadius() {
706 >    
707 >    if (simParams_->haveCutoffRadius()) {
708 >      cutoffRadius_ = simParams_->getCutoffRadius();
709 >    } else {      
710 >      if (usesElectrostaticAtoms_) {
711 >        sprintf(painCave.errMsg,
712 >                "SimInfo Warning: No value was set for the cutoffRadius.\n"
713 >                "\tOpenMD will use a default value of 12.0 angstroms"
714 >                "\tfor the cutoffRadius.\n");
715 >        painCave.isFatal = 0;
716 >        simError();
717 >        cutoffRadius_ = 12.0;
718 >      } else {
719 >        RealType thisCut;
720 >        set<AtomType*>::iterator i;
721 >        set<AtomType*> atomTypes;
722 >        atomTypes = getSimulatedAtomTypes();        
723 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
724 >          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
725 >          cutoffRadius_ = max(thisCut, cutoffRadius_);
726 >        }
727 >        sprintf(painCave.errMsg,
728 >                "SimInfo Warning: No value was set for the cutoffRadius.\n"
729 >                "\tOpenMD will use %lf angstroms.\n",
730 >                cutoffRadius_);
731 >        painCave.isFatal = 0;
732 >        simError();
733 >      }            
734 >    }
735  
736 < int SimInfo::getNDFtranslational() {
737 <  int ndfTrans_local;
736 >    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
737 >  }
738 >  
739 >  /**
740 >   * setupSwitchingRadius
741 >   *
742 >   *  If the switchingRadius was explicitly set, use that value (but check it)
743 >   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
744 >   */
745 >  void SimInfo::setupSwitchingRadius() {
746 >    
747 >    if (simParams_->haveSwitchingRadius()) {
748 >      switchingRadius_ = simParams_->getSwitchingRadius();
749 >      if (switchingRadius_ > cutoffRadius_) {        
750 >        sprintf(painCave.errMsg,
751 >                "SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
752 >                switchingRadius_, cutoffRadius_);
753 >        painCave.isFatal = 1;
754 >        simError();
755  
756 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
756 >      }
757 >    } else {      
758 >      switchingRadius_ = 0.85 * cutoffRadius_;
759 >      sprintf(painCave.errMsg,
760 >              "SimInfo Warning: No value was set for the switchingRadius.\n"
761 >              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
762 >              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
763 >      painCave.isFatal = 0;
764 >      simError();
765 >    }            
766 >    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
767 >  }
768  
769 +  /**
770 +   * setupSkinThickness
771 +   *
772 +   *  If the skinThickness was explicitly set, use that value (but check it)
773 +   *  If the skinThickness was not explicitly set: use 1.0 angstroms
774 +   */
775 +  void SimInfo::setupSkinThickness() {    
776 +    if (simParams_->haveSkinThickness()) {
777 +      skinThickness_ = simParams_->getSkinThickness();
778 +    } else {      
779 +      skinThickness_ = 1.0;
780 +      sprintf(painCave.errMsg,
781 +              "SimInfo Warning: No value was set for the skinThickness.\n"
782 +              "\tOpenMD will use a default value of %f Angstroms\n"
783 +              "\tfor this simulation\n", skinThickness_);
784 +      painCave.isFatal = 0;
785 +      simError();
786 +    }            
787 +  }
788  
789 < #ifdef IS_MPI
790 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
791 < #else
792 <  ndfTrans = ndfTrans_local;
397 < #endif
789 >  void SimInfo::setupSimType() {
790 >    set<AtomType*>::iterator i;
791 >    set<AtomType*> atomTypes;
792 >    atomTypes = getSimulatedAtomTypes();
793  
794 <  ndfTrans = ndfTrans - 3 - nZconstraints;
794 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
795  
796 <  return ndfTrans;
797 < }
796 >    int usesElectrostatic = 0;
797 >    int usesMetallic = 0;
798 >    int usesDirectional = 0;
799 >    //loop over all of the atom types
800 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
801 >      usesElectrostatic |= (*i)->isElectrostatic();
802 >      usesMetallic |= (*i)->isMetal();
803 >      usesDirectional |= (*i)->isDirectional();
804 >    }
805  
806 < int SimInfo::getTotIntegrableObjects() {
807 <  int nObjs_local;
808 <  int nObjs;
806 > #ifdef IS_MPI    
807 >    int temp;
808 >    temp = usesDirectional;
809 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810  
811 <  nObjs_local =  integrableObjects.size();
811 >    temp = usesMetallic;
812 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813  
814 <
815 < #ifdef IS_MPI
412 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
413 < #else
414 <  nObjs = nObjs_local;
814 >    temp = usesElectrostatic;
815 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
816   #endif
817 +    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
818 +    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
819 +    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
820 +    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
821 +    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
822 +    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
823 +  }
824  
825 +  void SimInfo::setupFortranSim() {
826 +    int isError;
827 +    int nExclude, nOneTwo, nOneThree, nOneFour;
828 +    vector<int> fortranGlobalGroupMembership;
829 +    
830 +    notifyFortranSkinThickness(&skinThickness_);
831  
832 <  return nObjs;
833 < }
832 >    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
833 >    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
834 >    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
835  
836 < void SimInfo::refreshSim(){
836 >    isError = 0;
837  
838 <  simtype fInfo;
839 <  int isError;
840 <  int n_global;
841 <  int* excl;
838 >    //globalGroupMembership_ is filled by SimCreator    
839 >    for (int i = 0; i < nGlobalAtoms_; i++) {
840 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
841 >    }
842  
843 <  fInfo.dielect = 0.0;
843 >    //calculate mass ratio of cutoff group
844 >    vector<RealType> mfact;
845 >    SimInfo::MoleculeIterator mi;
846 >    Molecule* mol;
847 >    Molecule::CutoffGroupIterator ci;
848 >    CutoffGroup* cg;
849 >    Molecule::AtomIterator ai;
850 >    Atom* atom;
851 >    RealType totalMass;
852  
853 <  if( useDipoles ){
854 <    if( useReactionField )fInfo.dielect = dielectric;
855 <  }
853 >    //to avoid memory reallocation, reserve enough space for mfact
854 >    mfact.reserve(getNCutoffGroups());
855 >    
856 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
857 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
858  
859 <  fInfo.SIM_uses_PBC = usePBC;
860 <  //fInfo.SIM_uses_LJ = 0;
861 <  fInfo.SIM_uses_LJ = useLJ;
862 <  fInfo.SIM_uses_sticky = useSticky;
863 <  //fInfo.SIM_uses_sticky = 0;
864 <  fInfo.SIM_uses_charges = useCharges;
865 <  fInfo.SIM_uses_dipoles = useDipoles;
866 <  //fInfo.SIM_uses_dipoles = 0;
867 <  fInfo.SIM_uses_RF = useReactionField;
868 <  //fInfo.SIM_uses_RF = 0;
444 <  fInfo.SIM_uses_GB = useGB;
445 <  fInfo.SIM_uses_EAM = useEAM;
859 >        totalMass = cg->getMass();
860 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
861 >          // Check for massless groups - set mfact to 1 if true
862 >          if (totalMass != 0)
863 >            mfact.push_back(atom->getMass()/totalMass);
864 >          else
865 >            mfact.push_back( 1.0 );
866 >        }
867 >      }      
868 >    }
869  
870 <  n_exclude = excludes->getSize();
871 <  excl = excludes->getFortranArray();
449 <  
450 < #ifdef IS_MPI
451 <  n_global = mpiSim->getNAtomsGlobal();
452 < #else
453 <  n_global = n_atoms;
454 < #endif
455 <  
456 <  isError = 0;
457 <  
458 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459 <  //it may not be a good idea to pass the address of first element in vector
460 <  //since c++ standard does not require vector to be stored continuously in meomory
461 <  //Most of the compilers will organize the memory of vector continuously
462 <  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
870 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
871 >    vector<int> identArray;
872  
873 <  if( isError ){
873 >    //to avoid memory reallocation, reserve enough space identArray
874 >    identArray.reserve(getNAtoms());
875      
876 <    sprintf( painCave.errMsg,
877 <             "There was an error setting the simulation information in fortran.\n" );
878 <    painCave.isFatal = 1;
879 <    painCave.severity = OOPSE_ERROR;
880 <    simError();
473 <  }
474 <  
475 < #ifdef IS_MPI
476 <  sprintf( checkPointMsg,
477 <           "succesfully sent the simulation information to fortran.\n");
478 <  MPIcheckPoint();
479 < #endif // is_mpi
480 <  
481 <  this->ndf = this->getNDF();
482 <  this->ndfRaw = this->getNDFraw();
483 <  this->ndfTrans = this->getNDFtranslational();
484 < }
876 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
877 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
878 >        identArray.push_back(atom->getIdent());
879 >      }
880 >    }    
881  
882 < void SimInfo::setDefaultRcut( double theRcut ){
883 <  
884 <  haveRcut = 1;
885 <  rCut = theRcut;
886 <  rList = rCut + 1.0;
887 <  
888 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
889 < }
882 >    //fill molMembershipArray
883 >    //molMembershipArray is filled by SimCreator    
884 >    vector<int> molMembershipArray(nGlobalAtoms_);
885 >    for (int i = 0; i < nGlobalAtoms_; i++) {
886 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
887 >    }
888 >    
889 >    //setup fortran simulation
890  
891 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
891 >    nExclude = excludedInteractions_.getSize();
892 >    nOneTwo = oneTwoInteractions_.getSize();
893 >    nOneThree = oneThreeInteractions_.getSize();
894 >    nOneFour = oneFourInteractions_.getSize();
895  
896 <  rSw = theRsw;
897 <  setDefaultRcut( theRcut );
898 < }
896 >    int* excludeList = excludedInteractions_.getPairList();
897 >    int* oneTwoList = oneTwoInteractions_.getPairList();
898 >    int* oneThreeList = oneThreeInteractions_.getPairList();
899 >    int* oneFourList = oneFourInteractions_.getPairList();
900  
901 <
902 < void SimInfo::checkCutOffs( void ){
903 <  
904 <  if( boxIsInit ){
901 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
902 >                   &nExclude, excludeList,
903 >                   &nOneTwo, oneTwoList,
904 >                   &nOneThree, oneThreeList,
905 >                   &nOneFour, oneFourList,
906 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
907 >                   &fortranGlobalGroupMembership[0], &isError);
908      
909 <    //we need to check cutOffs against the box
910 <    
508 <    if( rCut > maxCutoff ){
909 >    if( isError ){
910 >      
911        sprintf( painCave.errMsg,
912 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
912 >               "There was an error setting the simulation information in fortran.\n" );
913        painCave.isFatal = 1;
914 +      painCave.severity = OPENMD_ERROR;
915        simError();
916 <    }    
917 <  } else {
918 <    // initialize this stuff before using it, OK?
919 <    sprintf( painCave.errMsg,
920 <             "Trying to check cutoffs without a box.\n"
921 <             "\tOOPSE should have better programmers than that.\n" );
922 <    painCave.severity = OOPSE_ERROR;
923 <    painCave.isFatal = 1;
924 <    simError();      
916 >    }
917 >    
918 >    
919 >    sprintf( checkPointMsg,
920 >             "succesfully sent the simulation information to fortran.\n");
921 >    
922 >    errorCheckPoint();
923 >    
924 >    // Setup number of neighbors in neighbor list if present
925 >    if (simParams_->haveNeighborListNeighbors()) {
926 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
927 >      setNeighbors(&nlistNeighbors);
928 >    }
929 >  
930 >
931    }
535  
536 }
932  
538 void SimInfo::addProperty(GenericData* prop){
933  
934 <  map<string, GenericData*>::iterator result;
935 <  result = properties.find(prop->getID());
936 <  
937 <  //we can't simply use  properties[prop->getID()] = prop,
938 <  //it will cause memory leak if we already contain a propery which has the same name of prop
939 <  
940 <  if(result != properties.end()){
941 <    
942 <    delete (*result).second;
943 <    (*result).second = prop;
944 <      
945 <  }
946 <  else{
934 >  void SimInfo::setupFortranParallel() {
935 > #ifdef IS_MPI    
936 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
937 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
938 >    vector<int> localToGlobalCutoffGroupIndex;
939 >    SimInfo::MoleculeIterator mi;
940 >    Molecule::AtomIterator ai;
941 >    Molecule::CutoffGroupIterator ci;
942 >    Molecule* mol;
943 >    Atom* atom;
944 >    CutoffGroup* cg;
945 >    mpiSimData parallelData;
946 >    int isError;
947  
948 <    properties[prop->getID()] = prop;
948 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
949  
950 <  }
951 <    
952 < }
950 >      //local index(index in DataStorge) of atom is important
951 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
952 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
953 >      }
954  
955 < GenericData* SimInfo::getProperty(const string& propName){
956 <
957 <  map<string, GenericData*>::iterator result;
958 <  
959 <  //string lowerCaseName = ();
960 <  
566 <  result = properties.find(propName);
567 <  
568 <  if(result != properties.end())
569 <    return (*result).second;  
570 <  else  
571 <    return NULL;  
572 < }
955 >      //local index of cutoff group is trivial, it only depends on the order of travesing
956 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
957 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
958 >      }        
959 >        
960 >    }
961  
962 +    //fill up mpiSimData struct
963 +    parallelData.nMolGlobal = getNGlobalMolecules();
964 +    parallelData.nMolLocal = getNMolecules();
965 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
966 +    parallelData.nAtomsLocal = getNAtoms();
967 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
968 +    parallelData.nGroupsLocal = getNCutoffGroups();
969 +    parallelData.myNode = worldRank;
970 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
971  
972 < void SimInfo::getFortranGroupArrays(SimInfo* info,
973 <                                    vector<int>& FglobalGroupMembership,
974 <                                    vector<double>& mfact){
975 <  
579 <  Molecule* myMols;
580 <  Atom** myAtoms;
581 <  int numAtom;
582 <  double mtot;
583 <  int numMol;
584 <  int numCutoffGroups;
585 <  CutoffGroup* myCutoffGroup;
586 <  vector<CutoffGroup*>::iterator iterCutoff;
587 <  Atom* cutoffAtom;
588 <  vector<Atom*>::iterator iterAtom;
589 <  int atomIndex;
590 <  double totalMass;
591 <  
592 <  mfact.clear();
593 <  FglobalGroupMembership.clear();
594 <  
972 >    //pass mpiSimData struct and index arrays to fortran
973 >    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
974 >                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
975 >                    &localToGlobalCutoffGroupIndex[0], &isError);
976  
977 <  // Fix the silly fortran indexing problem
977 >    if (isError) {
978 >      sprintf(painCave.errMsg,
979 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
980 >      painCave.isFatal = 1;
981 >      simError();
982 >    }
983 >
984 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
985 >    errorCheckPoint();
986 >
987 > #endif
988 >  }
989 >
990 >
991 >  void SimInfo::setupSwitchingFunction() {    
992 >    int ft = CUBIC;
993 >    
994 >    if (simParams_->haveSwitchingFunctionType()) {
995 >      string funcType = simParams_->getSwitchingFunctionType();
996 >      toUpper(funcType);
997 >      if (funcType == "CUBIC") {
998 >        ft = CUBIC;
999 >      } else {
1000 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1001 >          ft = FIFTH_ORDER_POLY;
1002 >        } else {
1003 >          // throw error        
1004 >          sprintf( painCave.errMsg,
1005 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n"
1006 >                   "\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".",
1007 >                   funcType.c_str() );
1008 >          painCave.isFatal = 1;
1009 >          simError();
1010 >        }          
1011 >      }
1012 >    }
1013 >
1014 >    // send switching function notification to switcheroo
1015 >    setFunctionType(&ft);
1016 >
1017 >  }
1018 >
1019 >  void SimInfo::setupAccumulateBoxDipole() {    
1020 >
1021 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1022 >    if ( simParams_->haveAccumulateBoxDipole() )
1023 >      if ( simParams_->getAccumulateBoxDipole() ) {
1024 >        calcBoxDipole_ = true;
1025 >      }
1026 >
1027 >  }
1028 >
1029 >  void SimInfo::addProperty(GenericData* genData) {
1030 >    properties_.addProperty(genData);  
1031 >  }
1032 >
1033 >  void SimInfo::removeProperty(const string& propName) {
1034 >    properties_.removeProperty(propName);  
1035 >  }
1036 >
1037 >  void SimInfo::clearProperties() {
1038 >    properties_.clearProperties();
1039 >  }
1040 >
1041 >  vector<string> SimInfo::getPropertyNames() {
1042 >    return properties_.getPropertyNames();  
1043 >  }
1044 >      
1045 >  vector<GenericData*> SimInfo::getProperties() {
1046 >    return properties_.getProperties();
1047 >  }
1048 >
1049 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1050 >    return properties_.getPropertyByName(propName);
1051 >  }
1052 >
1053 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1054 >    if (sman_ == sman) {
1055 >      return;
1056 >    }    
1057 >    delete sman_;
1058 >    sman_ = sman;
1059 >
1060 >    Molecule* mol;
1061 >    RigidBody* rb;
1062 >    Atom* atom;
1063 >    SimInfo::MoleculeIterator mi;
1064 >    Molecule::RigidBodyIterator rbIter;
1065 >    Molecule::AtomIterator atomIter;;
1066 >
1067 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1068 >        
1069 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1070 >        atom->setSnapshotManager(sman_);
1071 >      }
1072 >        
1073 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1074 >        rb->setSnapshotManager(sman_);
1075 >      }
1076 >    }    
1077 >    
1078 >  }
1079 >
1080 >  Vector3d SimInfo::getComVel(){
1081 >    SimInfo::MoleculeIterator i;
1082 >    Molecule* mol;
1083 >
1084 >    Vector3d comVel(0.0);
1085 >    RealType totalMass = 0.0;
1086 >    
1087 >
1088 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1089 >      RealType mass = mol->getMass();
1090 >      totalMass += mass;
1091 >      comVel += mass * mol->getComVel();
1092 >    }  
1093 >
1094   #ifdef IS_MPI
1095 <  numAtom = mpiSim->getNAtomsGlobal();
1096 < #else
1097 <  numAtom = n_atoms;
1095 >    RealType tmpMass = totalMass;
1096 >    Vector3d tmpComVel(comVel);    
1097 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1098 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1099   #endif
602  for (int i = 0; i < numAtom; i++)
603    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604  
1100  
1101 <  myMols = info->molecules;
607 <  numMol = info->n_mol;
608 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
1101 >    comVel /= totalMass;
1102  
1103 <      totalMass = myCutoffGroup->getMass();
1103 >    return comVel;
1104 >  }
1105 >
1106 >  Vector3d SimInfo::getCom(){
1107 >    SimInfo::MoleculeIterator i;
1108 >    Molecule* mol;
1109 >
1110 >    Vector3d com(0.0);
1111 >    RealType totalMass = 0.0;
1112 >    
1113 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1114 >      RealType mass = mol->getMass();
1115 >      totalMass += mass;
1116 >      com += mass * mol->getCom();
1117 >    }  
1118 >
1119 > #ifdef IS_MPI
1120 >    RealType tmpMass = totalMass;
1121 >    Vector3d tmpCom(com);    
1122 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1123 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1124 > #endif
1125 >
1126 >    com /= totalMass;
1127 >
1128 >    return com;
1129 >
1130 >  }        
1131 >
1132 >  ostream& operator <<(ostream& o, SimInfo& info) {
1133 >
1134 >    return o;
1135 >  }
1136 >  
1137 >  
1138 >   /*
1139 >   Returns center of mass and center of mass velocity in one function call.
1140 >   */
1141 >  
1142 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1143 >      SimInfo::MoleculeIterator i;
1144 >      Molecule* mol;
1145        
1146 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
1147 <          cutoffAtom != NULL;
1148 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
1149 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
1146 >    
1147 >      RealType totalMass = 0.0;
1148 >    
1149 >
1150 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1151 >         RealType mass = mol->getMass();
1152 >         totalMass += mass;
1153 >         com += mass * mol->getCom();
1154 >         comVel += mass * mol->getComVel();          
1155        }  
1156 +      
1157 + #ifdef IS_MPI
1158 +      RealType tmpMass = totalMass;
1159 +      Vector3d tmpCom(com);  
1160 +      Vector3d tmpComVel(comVel);
1161 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1162 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1163 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1164 + #endif
1165 +      
1166 +      com /= totalMass;
1167 +      comVel /= totalMass;
1168 +   }        
1169 +  
1170 +   /*
1171 +   Return intertia tensor for entire system and angular momentum Vector.
1172 +
1173 +
1174 +       [  Ixx -Ixy  -Ixz ]
1175 +    J =| -Iyx  Iyy  -Iyz |
1176 +       [ -Izx -Iyz   Izz ]
1177 +    */
1178 +
1179 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1180 +      
1181 +
1182 +      RealType xx = 0.0;
1183 +      RealType yy = 0.0;
1184 +      RealType zz = 0.0;
1185 +      RealType xy = 0.0;
1186 +      RealType xz = 0.0;
1187 +      RealType yz = 0.0;
1188 +      Vector3d com(0.0);
1189 +      Vector3d comVel(0.0);
1190 +      
1191 +      getComAll(com, comVel);
1192 +      
1193 +      SimInfo::MoleculeIterator i;
1194 +      Molecule* mol;
1195 +      
1196 +      Vector3d thisq(0.0);
1197 +      Vector3d thisv(0.0);
1198 +
1199 +      RealType thisMass = 0.0;
1200 +    
1201 +      
1202 +      
1203 +  
1204 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1205 +        
1206 +         thisq = mol->getCom()-com;
1207 +         thisv = mol->getComVel()-comVel;
1208 +         thisMass = mol->getMass();
1209 +         // Compute moment of intertia coefficients.
1210 +         xx += thisq[0]*thisq[0]*thisMass;
1211 +         yy += thisq[1]*thisq[1]*thisMass;
1212 +         zz += thisq[2]*thisq[2]*thisMass;
1213 +        
1214 +         // compute products of intertia
1215 +         xy += thisq[0]*thisq[1]*thisMass;
1216 +         xz += thisq[0]*thisq[2]*thisMass;
1217 +         yz += thisq[1]*thisq[2]*thisMass;
1218 +            
1219 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1220 +            
1221 +      }  
1222 +      
1223 +      
1224 +      inertiaTensor(0,0) = yy + zz;
1225 +      inertiaTensor(0,1) = -xy;
1226 +      inertiaTensor(0,2) = -xz;
1227 +      inertiaTensor(1,0) = -xy;
1228 +      inertiaTensor(1,1) = xx + zz;
1229 +      inertiaTensor(1,2) = -yz;
1230 +      inertiaTensor(2,0) = -xz;
1231 +      inertiaTensor(2,1) = -yz;
1232 +      inertiaTensor(2,2) = xx + yy;
1233 +      
1234 + #ifdef IS_MPI
1235 +      Mat3x3d tmpI(inertiaTensor);
1236 +      Vector3d tmpAngMom;
1237 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1238 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1239 + #endif
1240 +              
1241 +      return;
1242 +   }
1243 +
1244 +   //Returns the angular momentum of the system
1245 +   Vector3d SimInfo::getAngularMomentum(){
1246 +      
1247 +      Vector3d com(0.0);
1248 +      Vector3d comVel(0.0);
1249 +      Vector3d angularMomentum(0.0);
1250 +      
1251 +      getComAll(com,comVel);
1252 +      
1253 +      SimInfo::MoleculeIterator i;
1254 +      Molecule* mol;
1255 +      
1256 +      Vector3d thisr(0.0);
1257 +      Vector3d thisp(0.0);
1258 +      
1259 +      RealType thisMass;
1260 +      
1261 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1262 +        thisMass = mol->getMass();
1263 +        thisr = mol->getCom()-com;
1264 +        thisp = (mol->getComVel()-comVel)*thisMass;
1265 +        
1266 +        angularMomentum += cross( thisr, thisp );
1267 +        
1268 +      }  
1269 +      
1270 + #ifdef IS_MPI
1271 +      Vector3d tmpAngMom;
1272 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1273 + #endif
1274 +      
1275 +      return angularMomentum;
1276 +   }
1277 +  
1278 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1279 +    return IOIndexToIntegrableObject.at(index);
1280 +  }
1281 +  
1282 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1283 +    IOIndexToIntegrableObject= v;
1284 +  }
1285 +
1286 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1287 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1288 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1289 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1290 +  */
1291 +  void SimInfo::getGyrationalVolume(RealType &volume){
1292 +    Mat3x3d intTensor;
1293 +    RealType det;
1294 +    Vector3d dummyAngMom;
1295 +    RealType sysconstants;
1296 +    RealType geomCnst;
1297 +
1298 +    geomCnst = 3.0/2.0;
1299 +    /* Get the inertial tensor and angular momentum for free*/
1300 +    getInertiaTensor(intTensor,dummyAngMom);
1301 +    
1302 +    det = intTensor.determinant();
1303 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1304 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1305 +    return;
1306 +  }
1307 +
1308 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1309 +    Mat3x3d intTensor;
1310 +    Vector3d dummyAngMom;
1311 +    RealType sysconstants;
1312 +    RealType geomCnst;
1313 +
1314 +    geomCnst = 3.0/2.0;
1315 +    /* Get the inertial tensor and angular momentum for free*/
1316 +    getInertiaTensor(intTensor,dummyAngMom);
1317 +    
1318 +    detI = intTensor.determinant();
1319 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1320 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1321 +    return;
1322 +  }
1323 + /*
1324 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1325 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1326 +      sdByGlobalIndex_ = v;
1327      }
1328 +
1329 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1330 +      //assert(index < nAtoms_ + nRigidBodies_);
1331 +      return sdByGlobalIndex_.at(index);
1332 +    }  
1333 + */  
1334 +  int SimInfo::getNGlobalConstraints() {
1335 +    int nGlobalConstraints;
1336 + #ifdef IS_MPI
1337 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1338 +                  MPI_COMM_WORLD);    
1339 + #else
1340 +    nGlobalConstraints =  nConstraints_;
1341 + #endif
1342 +    return nGlobalConstraints;
1343    }
1344  
1345 < }
1345 > }//end namespace OpenMD
1346 >

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1529 by gezelter, Mon Dec 27 18:35:59 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines