ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 734 by chuckv, Tue Nov 15 16:05:38 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 48 | Line 49
49  
50   #include <algorithm>
51   #include <set>
52 + #include <map>
53  
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/fCutoffPolicy.h"
56 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
58 < #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 < #include "UseTheForce/doForces_interface.h"
60 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
61 < #include "UseTheForce/notifyCutoffs_interface.h"
62 < #include "UseTheForce/DarkSide/switcheroo_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61 <
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
70 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <
70 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 <                   ForceField* ff, Globals* simParams) :
72 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
73 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false) {
79 <
84 <            
85 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
86 <      MoleculeStamp* molStamp;
87 <      int nMolWithSameStamp;
88 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
89 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
90 <      CutoffGroupStamp* cgStamp;    
91 <      RigidBodyStamp* rbStamp;
92 <      int nRigidAtoms = 0;
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
82 <        molStamp = i->first;
83 <        nMolWithSameStamp = i->second;
84 <        
85 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
86 <
87 <        //calculate atoms in molecules
88 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
89 <
90 <
91 <        //calculate atoms in cutoff groups
92 <        int nAtomsInGroups = 0;
93 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
94 <        
95 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
96 <          cgStamp = molStamp->getCutoffGroup(j);
97 <          nAtomsInGroups += cgStamp->getNMembers();
98 <        }
99 <
100 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
101 <
102 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
103 <
104 <        //calculate atoms in rigid bodies
105 <        int nAtomsInRigidBodies = 0;
106 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
107 <        
121 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
122 <          rbStamp = molStamp->getRigidBody(j);
123 <          nAtomsInRigidBodies += rbStamp->getNMembers();
124 <        }
125 <
126 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
127 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
128 <        
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      nMolWithSameStamp = (*i)->getNMol();
95 >      
96 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
97 >      
98 >      //calculate atoms in molecules
99 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
100 >      
101 >      //calculate atoms in cutoff groups
102 >      int nAtomsInGroups = 0;
103 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104 >      
105 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 >        cgStamp = molStamp->getCutoffGroupStamp(j);
107 >        nAtomsInGroups += cgStamp->getNMembers();
108        }
109 <
110 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
111 <      //group therefore the total number of cutoff groups in the system is
112 <      //equal to the total number of atoms minus number of atoms belong to
113 <      //cutoff group defined in meta-data file plus the number of cutoff
114 <      //groups defined in meta-data file
115 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
116 <
117 <      //every free atom (atom does not belong to rigid bodies) is an
118 <      //integrable object therefore the total number of integrable objects
119 <      //in the system is equal to the total number of atoms minus number of
120 <      //atoms belong to rigid body defined in meta-data file plus the number
121 <      //of rigid bodies defined in meta-data file
122 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
123 <                                                + nGlobalRigidBodies_;
124 <  
125 <      nGlobalMols_ = molStampIds_.size();
147 <
148 < #ifdef IS_MPI    
149 <      molToProcMap_.resize(nGlobalMols_);
150 < #endif
151 <
109 >      
110 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 >      
112 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113 >      
114 >      //calculate atoms in rigid bodies
115 >      int nAtomsInRigidBodies = 0;
116 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 >      
118 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
119 >        rbStamp = molStamp->getRigidBodyStamp(j);
120 >        nAtomsInRigidBodies += rbStamp->getNMembers();
121 >      }
122 >      
123 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 >      
126      }
127 +    
128 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
129 +    //group therefore the total number of cutoff groups in the system is
130 +    //equal to the total number of atoms minus number of atoms belong to
131 +    //cutoff group defined in meta-data file plus the number of cutoff
132 +    //groups defined in meta-data file
133  
134 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135 +    
136 +    //every free atom (atom does not belong to rigid bodies) is an
137 +    //integrable object therefore the total number of integrable objects
138 +    //in the system is equal to the total number of atoms minus number of
139 +    //atoms belong to rigid body defined in meta-data file plus the number
140 +    //of rigid bodies defined in meta-data file
141 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 +      + nGlobalRigidBodies_;
143 +    
144 +    nGlobalMols_ = molStampIds_.size();
145 +    molToProcMap_.resize(nGlobalMols_);
146 +  }
147 +  
148    SimInfo::~SimInfo() {
149 <    std::map<int, Molecule*>::iterator i;
149 >    map<int, Molecule*>::iterator i;
150      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151        delete i->second;
152      }
153      molecules_.clear();
154        
161    delete stamps_;
155      delete sman_;
156      delete simParams_;
157      delete forceField_;
158    }
159  
167  int SimInfo::getNGlobalConstraints() {
168    int nGlobalConstraints;
169 #ifdef IS_MPI
170    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
171                  MPI_COMM_WORLD);    
172 #else
173    nGlobalConstraints =  nConstraints_;
174 #endif
175    return nGlobalConstraints;
176  }
160  
161    bool SimInfo::addMolecule(Molecule* mol) {
162      MoleculeIterator i;
163 <
163 >    
164      i = molecules_.find(mol->getGlobalIndex());
165      if (i == molecules_.end() ) {
166 <
167 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
168 <        
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169        nAtoms_ += mol->getNAtoms();
170        nBonds_ += mol->getNBonds();
171        nBends_ += mol->getNBends();
172        nTorsions_ += mol->getNTorsions();
173 +      nInversions_ += mol->getNInversions();
174        nRigidBodies_ += mol->getNRigidBodies();
175        nIntegrableObjects_ += mol->getNIntegrableObjects();
176        nCutoffGroups_ += mol->getNCutoffGroups();
177        nConstraints_ += mol->getNConstraintPairs();
178 <
179 <      addExcludePairs(mol);
180 <        
178 >      
179 >      addInteractionPairs(mol);
180 >      
181        return true;
182      } else {
183        return false;
184      }
185    }
186 <
186 >  
187    bool SimInfo::removeMolecule(Molecule* mol) {
188      MoleculeIterator i;
189      i = molecules_.find(mol->getGlobalIndex());
# Line 212 | Line 196 | namespace oopse {
196        nBonds_ -= mol->getNBonds();
197        nBends_ -= mol->getNBends();
198        nTorsions_ -= mol->getNTorsions();
199 +      nInversions_ -= mol->getNInversions();
200        nRigidBodies_ -= mol->getNRigidBodies();
201        nIntegrableObjects_ -= mol->getNIntegrableObjects();
202        nCutoffGroups_ -= mol->getNCutoffGroups();
203        nConstraints_ -= mol->getNConstraintPairs();
204  
205 <      removeExcludePairs(mol);
205 >      removeInteractionPairs(mol);
206        molecules_.erase(mol->getGlobalIndex());
207  
208        delete mol;
# Line 226 | Line 211 | namespace oopse {
211      } else {
212        return false;
213      }
229
230
214    }    
215  
216          
# Line 243 | Line 226 | namespace oopse {
226  
227  
228    void SimInfo::calcNdf() {
229 <    int ndf_local;
229 >    int ndf_local, nfq_local;
230      MoleculeIterator i;
231 <    std::vector<StuntDouble*>::iterator j;
231 >    vector<StuntDouble*>::iterator j;
232 >    vector<Atom*>::iterator k;
233 >
234      Molecule* mol;
235 <    StuntDouble* integrableObject;
235 >    StuntDouble* sd;
236 >    Atom* atom;
237  
238      ndf_local = 0;
239 +    nfq_local = 0;
240      
241      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
255      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
256           integrableObject = mol->nextIntegrableObject(j)) {
242  
243 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
244 +           sd = mol->nextIntegrableObject(j)) {
245 +
246          ndf_local += 3;
247  
248 <        if (integrableObject->isDirectional()) {
249 <          if (integrableObject->isLinear()) {
248 >        if (sd->isDirectional()) {
249 >          if (sd->isLinear()) {
250              ndf_local += 2;
251            } else {
252              ndf_local += 3;
253            }
254          }
255 <            
256 <      }//end for (integrableObject)
257 <    }// end for (mol)
255 >      }
256 >
257 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
258 >           atom = mol->nextFluctuatingCharge(k)) {
259 >        if (atom->isFluctuatingCharge()) {
260 >          nfq_local++;
261 >        }
262 >      }
263 >    }
264      
265 +    ndfLocal_ = ndf_local;
266 +
267      // n_constraints is local, so subtract them on each processor
268      ndf_local -= nConstraints_;
269  
270   #ifdef IS_MPI
271 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
271 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
272 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
273 >                              MPI::INT, MPI::SUM);
274   #else
275      ndf_ = ndf_local;
276 +    nGlobalFluctuatingCharges_ = nfq_local;
277   #endif
278  
279      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 283 | Line 282 | namespace oopse {
282  
283    }
284  
285 +  int SimInfo::getFdf() {
286 + #ifdef IS_MPI
287 +    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
288 + #else
289 +    fdf_ = fdf_local;
290 + #endif
291 +    return fdf_;
292 +  }
293 +  
294 +  unsigned int SimInfo::getNLocalCutoffGroups(){
295 +    int nLocalCutoffAtoms = 0;
296 +    Molecule* mol;
297 +    MoleculeIterator mi;
298 +    CutoffGroup* cg;
299 +    Molecule::CutoffGroupIterator ci;
300 +    
301 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
302 +      
303 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
304 +           cg = mol->nextCutoffGroup(ci)) {
305 +        nLocalCutoffAtoms += cg->getNumAtom();
306 +        
307 +      }        
308 +    }
309 +    
310 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
311 +  }
312 +    
313    void SimInfo::calcNdfRaw() {
314      int ndfRaw_local;
315  
316      MoleculeIterator i;
317 <    std::vector<StuntDouble*>::iterator j;
317 >    vector<StuntDouble*>::iterator j;
318      Molecule* mol;
319 <    StuntDouble* integrableObject;
319 >    StuntDouble* sd;
320  
321      // Raw degrees of freedom that we have to set
322      ndfRaw_local = 0;
323      
324      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
298      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
299           integrableObject = mol->nextIntegrableObject(j)) {
325  
326 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
327 +           sd = mol->nextIntegrableObject(j)) {
328 +
329          ndfRaw_local += 3;
330  
331 <        if (integrableObject->isDirectional()) {
332 <          if (integrableObject->isLinear()) {
331 >        if (sd->isDirectional()) {
332 >          if (sd->isLinear()) {
333              ndfRaw_local += 2;
334            } else {
335              ndfRaw_local += 3;
# Line 312 | Line 340 | namespace oopse {
340      }
341      
342   #ifdef IS_MPI
343 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
343 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
344   #else
345      ndfRaw_ = ndfRaw_local;
346   #endif
# Line 325 | Line 353 | namespace oopse {
353  
354  
355   #ifdef IS_MPI
356 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
356 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
357 >                              MPI::INT, MPI::SUM);
358   #else
359      ndfTrans_ = ndfTrans_local;
360   #endif
# Line 334 | Line 363 | namespace oopse {
363  
364    }
365  
366 <  void SimInfo::addExcludePairs(Molecule* mol) {
367 <    std::vector<Bond*>::iterator bondIter;
368 <    std::vector<Bend*>::iterator bendIter;
369 <    std::vector<Torsion*>::iterator torsionIter;
366 >  void SimInfo::addInteractionPairs(Molecule* mol) {
367 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
368 >    vector<Bond*>::iterator bondIter;
369 >    vector<Bend*>::iterator bendIter;
370 >    vector<Torsion*>::iterator torsionIter;
371 >    vector<Inversion*>::iterator inversionIter;
372      Bond* bond;
373      Bend* bend;
374      Torsion* torsion;
375 +    Inversion* inversion;
376      int a;
377      int b;
378      int c;
379      int d;
380 +
381 +    // atomGroups can be used to add special interaction maps between
382 +    // groups of atoms that are in two separate rigid bodies.
383 +    // However, most site-site interactions between two rigid bodies
384 +    // are probably not special, just the ones between the physically
385 +    // bonded atoms.  Interactions *within* a single rigid body should
386 +    // always be excluded.  These are done at the bottom of this
387 +    // function.
388 +
389 +    map<int, set<int> > atomGroups;
390 +    Molecule::RigidBodyIterator rbIter;
391 +    RigidBody* rb;
392 +    Molecule::IntegrableObjectIterator ii;
393 +    StuntDouble* sd;
394      
395 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
395 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
396 >         sd = mol->nextIntegrableObject(ii)) {
397 >      
398 >      if (sd->isRigidBody()) {
399 >        rb = static_cast<RigidBody*>(sd);
400 >        vector<Atom*> atoms = rb->getAtoms();
401 >        set<int> rigidAtoms;
402 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
403 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
404 >        }
405 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
406 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
407 >        }      
408 >      } else {
409 >        set<int> oneAtomSet;
410 >        oneAtomSet.insert(sd->getGlobalIndex());
411 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
412 >      }
413 >    }  
414 >          
415 >    for (bond= mol->beginBond(bondIter); bond != NULL;
416 >         bond = mol->nextBond(bondIter)) {
417 >
418        a = bond->getAtomA()->getGlobalIndex();
419 <      b = bond->getAtomB()->getGlobalIndex();        
420 <      exclude_.addPair(a, b);
419 >      b = bond->getAtomB()->getGlobalIndex();  
420 >    
421 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
422 >        oneTwoInteractions_.addPair(a, b);
423 >      } else {
424 >        excludedInteractions_.addPair(a, b);
425 >      }
426      }
427  
428 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
428 >    for (bend= mol->beginBend(bendIter); bend != NULL;
429 >         bend = mol->nextBend(bendIter)) {
430 >
431        a = bend->getAtomA()->getGlobalIndex();
432        b = bend->getAtomB()->getGlobalIndex();        
433        c = bend->getAtomC()->getGlobalIndex();
434 +      
435 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
436 +        oneTwoInteractions_.addPair(a, b);      
437 +        oneTwoInteractions_.addPair(b, c);
438 +      } else {
439 +        excludedInteractions_.addPair(a, b);
440 +        excludedInteractions_.addPair(b, c);
441 +      }
442  
443 <      exclude_.addPair(a, b);
444 <      exclude_.addPair(a, c);
445 <      exclude_.addPair(b, c);        
443 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
444 >        oneThreeInteractions_.addPair(a, c);      
445 >      } else {
446 >        excludedInteractions_.addPair(a, c);
447 >      }
448      }
449  
450 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
450 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
451 >         torsion = mol->nextTorsion(torsionIter)) {
452 >
453        a = torsion->getAtomA()->getGlobalIndex();
454        b = torsion->getAtomB()->getGlobalIndex();        
455        c = torsion->getAtomC()->getGlobalIndex();        
456 <      d = torsion->getAtomD()->getGlobalIndex();        
456 >      d = torsion->getAtomD()->getGlobalIndex();      
457  
458 <      exclude_.addPair(a, b);
459 <      exclude_.addPair(a, c);
460 <      exclude_.addPair(a, d);
461 <      exclude_.addPair(b, c);
462 <      exclude_.addPair(b, d);
463 <      exclude_.addPair(c, d);        
458 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
459 >        oneTwoInteractions_.addPair(a, b);      
460 >        oneTwoInteractions_.addPair(b, c);
461 >        oneTwoInteractions_.addPair(c, d);
462 >      } else {
463 >        excludedInteractions_.addPair(a, b);
464 >        excludedInteractions_.addPair(b, c);
465 >        excludedInteractions_.addPair(c, d);
466 >      }
467 >
468 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
469 >        oneThreeInteractions_.addPair(a, c);      
470 >        oneThreeInteractions_.addPair(b, d);      
471 >      } else {
472 >        excludedInteractions_.addPair(a, c);
473 >        excludedInteractions_.addPair(b, d);
474 >      }
475 >
476 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
477 >        oneFourInteractions_.addPair(a, d);      
478 >      } else {
479 >        excludedInteractions_.addPair(a, d);
480 >      }
481      }
482  
483 <    Molecule::RigidBodyIterator rbIter;
484 <    RigidBody* rb;
485 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
486 <      std::vector<Atom*> atoms = rb->getAtoms();
487 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
488 <        for (int j = i + 1; j < atoms.size(); ++j) {
483 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
484 >         inversion = mol->nextInversion(inversionIter)) {
485 >
486 >      a = inversion->getAtomA()->getGlobalIndex();
487 >      b = inversion->getAtomB()->getGlobalIndex();        
488 >      c = inversion->getAtomC()->getGlobalIndex();        
489 >      d = inversion->getAtomD()->getGlobalIndex();        
490 >
491 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
492 >        oneTwoInteractions_.addPair(a, b);      
493 >        oneTwoInteractions_.addPair(a, c);
494 >        oneTwoInteractions_.addPair(a, d);
495 >      } else {
496 >        excludedInteractions_.addPair(a, b);
497 >        excludedInteractions_.addPair(a, c);
498 >        excludedInteractions_.addPair(a, d);
499 >      }
500 >
501 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
502 >        oneThreeInteractions_.addPair(b, c);    
503 >        oneThreeInteractions_.addPair(b, d);    
504 >        oneThreeInteractions_.addPair(c, d);      
505 >      } else {
506 >        excludedInteractions_.addPair(b, c);
507 >        excludedInteractions_.addPair(b, d);
508 >        excludedInteractions_.addPair(c, d);
509 >      }
510 >    }
511 >
512 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
513 >         rb = mol->nextRigidBody(rbIter)) {
514 >      vector<Atom*> atoms = rb->getAtoms();
515 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
516 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
517            a = atoms[i]->getGlobalIndex();
518            b = atoms[j]->getGlobalIndex();
519 <          exclude_.addPair(a, b);
519 >          excludedInteractions_.addPair(a, b);
520          }
521        }
522      }        
523  
524    }
525  
526 <  void SimInfo::removeExcludePairs(Molecule* mol) {
527 <    std::vector<Bond*>::iterator bondIter;
528 <    std::vector<Bend*>::iterator bendIter;
529 <    std::vector<Torsion*>::iterator torsionIter;
526 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
527 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
528 >    vector<Bond*>::iterator bondIter;
529 >    vector<Bend*>::iterator bendIter;
530 >    vector<Torsion*>::iterator torsionIter;
531 >    vector<Inversion*>::iterator inversionIter;
532      Bond* bond;
533      Bend* bend;
534      Torsion* torsion;
535 +    Inversion* inversion;
536      int a;
537      int b;
538      int c;
539      int d;
540 +
541 +    map<int, set<int> > atomGroups;
542 +    Molecule::RigidBodyIterator rbIter;
543 +    RigidBody* rb;
544 +    Molecule::IntegrableObjectIterator ii;
545 +    StuntDouble* sd;
546      
547 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
547 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
548 >         sd = mol->nextIntegrableObject(ii)) {
549 >      
550 >      if (sd->isRigidBody()) {
551 >        rb = static_cast<RigidBody*>(sd);
552 >        vector<Atom*> atoms = rb->getAtoms();
553 >        set<int> rigidAtoms;
554 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
555 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
556 >        }
557 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
558 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
559 >        }      
560 >      } else {
561 >        set<int> oneAtomSet;
562 >        oneAtomSet.insert(sd->getGlobalIndex());
563 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
564 >      }
565 >    }  
566 >
567 >    for (bond= mol->beginBond(bondIter); bond != NULL;
568 >         bond = mol->nextBond(bondIter)) {
569 >      
570        a = bond->getAtomA()->getGlobalIndex();
571 <      b = bond->getAtomB()->getGlobalIndex();        
572 <      exclude_.removePair(a, b);
571 >      b = bond->getAtomB()->getGlobalIndex();  
572 >    
573 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
574 >        oneTwoInteractions_.removePair(a, b);
575 >      } else {
576 >        excludedInteractions_.removePair(a, b);
577 >      }
578      }
579  
580 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
580 >    for (bend= mol->beginBend(bendIter); bend != NULL;
581 >         bend = mol->nextBend(bendIter)) {
582 >
583        a = bend->getAtomA()->getGlobalIndex();
584        b = bend->getAtomB()->getGlobalIndex();        
585        c = bend->getAtomC()->getGlobalIndex();
586 +      
587 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
588 +        oneTwoInteractions_.removePair(a, b);      
589 +        oneTwoInteractions_.removePair(b, c);
590 +      } else {
591 +        excludedInteractions_.removePair(a, b);
592 +        excludedInteractions_.removePair(b, c);
593 +      }
594  
595 <      exclude_.removePair(a, b);
596 <      exclude_.removePair(a, c);
597 <      exclude_.removePair(b, c);        
595 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
596 >        oneThreeInteractions_.removePair(a, c);      
597 >      } else {
598 >        excludedInteractions_.removePair(a, c);
599 >      }
600      }
601  
602 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
602 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
603 >         torsion = mol->nextTorsion(torsionIter)) {
604 >
605        a = torsion->getAtomA()->getGlobalIndex();
606        b = torsion->getAtomB()->getGlobalIndex();        
607        c = torsion->getAtomC()->getGlobalIndex();        
608 <      d = torsion->getAtomD()->getGlobalIndex();        
608 >      d = torsion->getAtomD()->getGlobalIndex();      
609 >  
610 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
611 >        oneTwoInteractions_.removePair(a, b);      
612 >        oneTwoInteractions_.removePair(b, c);
613 >        oneTwoInteractions_.removePair(c, d);
614 >      } else {
615 >        excludedInteractions_.removePair(a, b);
616 >        excludedInteractions_.removePair(b, c);
617 >        excludedInteractions_.removePair(c, d);
618 >      }
619  
620 <      exclude_.removePair(a, b);
621 <      exclude_.removePair(a, c);
622 <      exclude_.removePair(a, d);
623 <      exclude_.removePair(b, c);
624 <      exclude_.removePair(b, d);
625 <      exclude_.removePair(c, d);        
620 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
621 >        oneThreeInteractions_.removePair(a, c);      
622 >        oneThreeInteractions_.removePair(b, d);      
623 >      } else {
624 >        excludedInteractions_.removePair(a, c);
625 >        excludedInteractions_.removePair(b, d);
626 >      }
627 >
628 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
629 >        oneFourInteractions_.removePair(a, d);      
630 >      } else {
631 >        excludedInteractions_.removePair(a, d);
632 >      }
633      }
634  
635 <    Molecule::RigidBodyIterator rbIter;
636 <    RigidBody* rb;
637 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
638 <      std::vector<Atom*> atoms = rb->getAtoms();
639 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
640 <        for (int j = i + 1; j < atoms.size(); ++j) {
635 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
636 >         inversion = mol->nextInversion(inversionIter)) {
637 >
638 >      a = inversion->getAtomA()->getGlobalIndex();
639 >      b = inversion->getAtomB()->getGlobalIndex();        
640 >      c = inversion->getAtomC()->getGlobalIndex();        
641 >      d = inversion->getAtomD()->getGlobalIndex();        
642 >
643 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
644 >        oneTwoInteractions_.removePair(a, b);      
645 >        oneTwoInteractions_.removePair(a, c);
646 >        oneTwoInteractions_.removePair(a, d);
647 >      } else {
648 >        excludedInteractions_.removePair(a, b);
649 >        excludedInteractions_.removePair(a, c);
650 >        excludedInteractions_.removePair(a, d);
651 >      }
652 >
653 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
654 >        oneThreeInteractions_.removePair(b, c);    
655 >        oneThreeInteractions_.removePair(b, d);    
656 >        oneThreeInteractions_.removePair(c, d);      
657 >      } else {
658 >        excludedInteractions_.removePair(b, c);
659 >        excludedInteractions_.removePair(b, d);
660 >        excludedInteractions_.removePair(c, d);
661 >      }
662 >    }
663 >
664 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
665 >         rb = mol->nextRigidBody(rbIter)) {
666 >      vector<Atom*> atoms = rb->getAtoms();
667 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
668 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
669            a = atoms[i]->getGlobalIndex();
670            b = atoms[j]->getGlobalIndex();
671 <          exclude_.removePair(a, b);
671 >          excludedInteractions_.removePair(a, b);
672          }
673        }
674      }        
675 <
675 >    
676    }
677 <
678 <
677 >  
678 >  
679    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
680      int curStampId;
681 <
681 >    
682      //index from 0
683      curStampId = moleculeStamps_.size();
684  
# Line 459 | Line 686 | namespace oopse {
686      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
687    }
688  
462  void SimInfo::update() {
689  
690 <    setupSimType();
691 <
692 < #ifdef IS_MPI
693 <    setupFortranParallel();
694 < #endif
695 <
696 <    setupFortranSim();
697 <
698 <    //setup fortran force field
473 <    /** @deprecate */    
474 <    int isError = 0;
475 <    
476 <    setupElectrostaticSummationMethod( isError );
477 <    setupSwitchingFunction();
478 <
479 <    if(isError){
480 <      sprintf( painCave.errMsg,
481 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
482 <      painCave.isFatal = 1;
483 <      simError();
484 <    }
485 <  
486 <    
487 <    setupCutoff();
488 <
690 >  /**
691 >   * update
692 >   *
693 >   *  Performs the global checks and variable settings after the
694 >   *  objects have been created.
695 >   *
696 >   */
697 >  void SimInfo::update() {  
698 >    setupSimVariables();
699      calcNdf();
700      calcNdfRaw();
701      calcNdfTrans();
492
493    fortranInitialized_ = true;
702    }
703 <
704 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
703 >  
704 >  /**
705 >   * getSimulatedAtomTypes
706 >   *
707 >   * Returns an STL set of AtomType* that are actually present in this
708 >   * simulation.  Must query all processors to assemble this information.
709 >   *
710 >   */
711 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
712      SimInfo::MoleculeIterator mi;
713      Molecule* mol;
714      Molecule::AtomIterator ai;
715      Atom* atom;
716 <    std::set<AtomType*> atomTypes;
717 <
716 >    set<AtomType*> atomTypes;
717 >    
718      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
719 <
720 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
719 >      for(atom = mol->beginAtom(ai); atom != NULL;
720 >          atom = mol->nextAtom(ai)) {
721          atomTypes.insert(atom->getAtomType());
722 <      }
723 <        
722 >      }      
723 >    }    
724 >    
725 > #ifdef IS_MPI
726 >
727 >    // loop over the found atom types on this processor, and add their
728 >    // numerical idents to a vector:
729 >    
730 >    vector<int> foundTypes;
731 >    set<AtomType*>::iterator i;
732 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
733 >      foundTypes.push_back( (*i)->getIdent() );
734 >
735 >    // count_local holds the number of found types on this processor
736 >    int count_local = foundTypes.size();
737 >
738 >    int nproc = MPI::COMM_WORLD.Get_size();
739 >
740 >    // we need arrays to hold the counts and displacement vectors for
741 >    // all processors
742 >    vector<int> counts(nproc, 0);
743 >    vector<int> disps(nproc, 0);
744 >
745 >    // fill the counts array
746 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
747 >                              1, MPI::INT);
748 >  
749 >    // use the processor counts to compute the displacement array
750 >    disps[0] = 0;    
751 >    int totalCount = counts[0];
752 >    for (int iproc = 1; iproc < nproc; iproc++) {
753 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
754 >      totalCount += counts[iproc];
755      }
756  
757 +    // we need a (possibly redundant) set of all found types:
758 +    vector<int> ftGlobal(totalCount);
759 +    
760 +    // now spray out the foundTypes to all the other processors:    
761 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
762 +                               &ftGlobal[0], &counts[0], &disps[0],
763 +                               MPI::INT);
764 +
765 +    vector<int>::iterator j;
766 +
767 +    // foundIdents is a stl set, so inserting an already found ident
768 +    // will have no effect.
769 +    set<int> foundIdents;
770 +
771 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
772 +      foundIdents.insert((*j));
773 +    
774 +    // now iterate over the foundIdents and get the actual atom types
775 +    // that correspond to these:
776 +    set<int>::iterator it;
777 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
778 +      atomTypes.insert( forceField_->getAtomType((*it)) );
779 +
780 + #endif
781 +
782      return atomTypes;        
783    }
784  
514  void SimInfo::setupSimType() {
515    std::set<AtomType*>::iterator i;
516    std::set<AtomType*> atomTypes;
517    atomTypes = getUniqueAtomTypes();
518    
519    int useLennardJones = 0;
520    int useElectrostatic = 0;
521    int useEAM = 0;
522    int useSC = 0;
523    int useCharge = 0;
524    int useDirectional = 0;
525    int useDipole = 0;
526    int useGayBerne = 0;
527    int useSticky = 0;
528    int useStickyPower = 0;
529    int useShape = 0;
530    int useFLARB = 0; //it is not in AtomType yet
531    int useDirectionalAtom = 0;    
532    int useElectrostatics = 0;
533    //usePBC and useRF are from simParams
534    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
535    int useRF;
536    int useSF;
537    std::string myMethod;
785  
786 <    // set the useRF logical
787 <    useRF = 0;
788 <    useSF = 0;
786 >  int getGlobalCountOfType(AtomType* atype) {
787 >    /*
788 >    set<AtomType*> atypes = getSimulatedAtomTypes();
789 >    map<AtomType*, int> counts_;
790  
791 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
792 +      for(atom = mol->beginAtom(ai); atom != NULL;
793 +          atom = mol->nextAtom(ai)) {
794 +        atom->getAtomType();
795 +      }      
796 +    }    
797 +    */
798 +    return 0;
799 +  }
800  
801 <    if (simParams_->haveElectrostaticSummationMethod()) {
802 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
803 <      toUpper(myMethod);
804 <      if (myMethod == "REACTION_FIELD") {
805 <        useRF=1;
806 <      } else {
807 <        if (myMethod == "SHIFTED_FORCE") {
808 <          useSF = 1;
552 <        }
801 >  void SimInfo::setupSimVariables() {
802 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
803 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
804 >    // parameter is true
805 >    calcBoxDipole_ = false;
806 >    if ( simParams_->haveAccumulateBoxDipole() )
807 >      if ( simParams_->getAccumulateBoxDipole() ) {
808 >        calcBoxDipole_ = true;      
809        }
810 <    }
811 <
810 >    
811 >    set<AtomType*>::iterator i;
812 >    set<AtomType*> atomTypes;
813 >    atomTypes = getSimulatedAtomTypes();    
814 >    bool usesElectrostatic = false;
815 >    bool usesMetallic = false;
816 >    bool usesDirectional = false;
817 >    bool usesFluctuatingCharges =  false;
818      //loop over all of the atom types
819      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
820 <      useLennardJones |= (*i)->isLennardJones();
821 <      useElectrostatic |= (*i)->isElectrostatic();
822 <      useEAM |= (*i)->isEAM();
823 <      useSC |= (*i)->isSC();
562 <      useCharge |= (*i)->isCharge();
563 <      useDirectional |= (*i)->isDirectional();
564 <      useDipole |= (*i)->isDipole();
565 <      useGayBerne |= (*i)->isGayBerne();
566 <      useSticky |= (*i)->isSticky();
567 <      useStickyPower |= (*i)->isStickyPower();
568 <      useShape |= (*i)->isShape();
820 >      usesElectrostatic |= (*i)->isElectrostatic();
821 >      usesMetallic |= (*i)->isMetal();
822 >      usesDirectional |= (*i)->isDirectional();
823 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
824      }
825  
826 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
827 <      useDirectionalAtom = 1;
828 <    }
826 > #ifdef IS_MPI
827 >    bool temp;
828 >    temp = usesDirectional;
829 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
830 >                              MPI::LOR);
831 >        
832 >    temp = usesMetallic;
833 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
834 >                              MPI::LOR);
835 >    
836 >    temp = usesElectrostatic;
837 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
838 >                              MPI::LOR);
839  
840 <    if (useCharge || useDipole) {
841 <      useElectrostatics = 1;
842 <    }
840 >    temp = usesFluctuatingCharges;
841 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
842 >                              MPI::LOR);
843 > #else
844  
845 < #ifdef IS_MPI    
846 <    int temp;
845 >    usesDirectionalAtoms_ = usesDirectional;
846 >    usesMetallicAtoms_ = usesMetallic;
847 >    usesElectrostaticAtoms_ = usesElectrostatic;
848 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
849  
850 <    temp = usePBC;
851 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
850 > #endif
851 >    
852 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
853 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
854 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
855 >  }
856  
585    temp = useDirectionalAtom;
586    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
857  
858 <    temp = useLennardJones;
859 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
858 >  vector<int> SimInfo::getGlobalAtomIndices() {
859 >    SimInfo::MoleculeIterator mi;
860 >    Molecule* mol;
861 >    Molecule::AtomIterator ai;
862 >    Atom* atom;
863  
864 <    temp = useElectrostatics;
592 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
593 <
594 <    temp = useCharge;
595 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
596 <
597 <    temp = useDipole;
598 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
599 <
600 <    temp = useSticky;
601 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
602 <
603 <    temp = useStickyPower;
604 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
864 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
865      
866 <    temp = useGayBerne;
867 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
866 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
867 >      
868 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
869 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
870 >      }
871 >    }
872 >    return GlobalAtomIndices;
873 >  }
874  
609    temp = useEAM;
610    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
875  
876 <    temp = useSC;
877 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
878 <    
879 <    temp = useShape;
880 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
876 >  vector<int> SimInfo::getGlobalGroupIndices() {
877 >    SimInfo::MoleculeIterator mi;
878 >    Molecule* mol;
879 >    Molecule::CutoffGroupIterator ci;
880 >    CutoffGroup* cg;
881  
882 <    temp = useFLARB;
883 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
884 <
621 <    temp = useRF;
622 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
623 <
624 <    temp = useSF;
625 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
626 <
627 < #endif
628 <
629 <    fInfo_.SIM_uses_PBC = usePBC;    
630 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
631 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
632 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
633 <    fInfo_.SIM_uses_Charges = useCharge;
634 <    fInfo_.SIM_uses_Dipoles = useDipole;
635 <    fInfo_.SIM_uses_Sticky = useSticky;
636 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
637 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
638 <    fInfo_.SIM_uses_EAM = useEAM;
639 <    fInfo_.SIM_uses_SC = useSC;
640 <    fInfo_.SIM_uses_Shapes = useShape;
641 <    fInfo_.SIM_uses_FLARB = useFLARB;
642 <    fInfo_.SIM_uses_RF = useRF;
643 <    fInfo_.SIM_uses_SF = useSF;
644 <
645 <    if( myMethod == "REACTION_FIELD") {
882 >    vector<int> GlobalGroupIndices;
883 >    
884 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
885        
886 <      if (simParams_->haveDielectric()) {
887 <        fInfo_.dielect = simParams_->getDielectric();
888 <      } else {
889 <        sprintf(painCave.errMsg,
890 <                "SimSetup Error: No Dielectric constant was set.\n"
891 <                "\tYou are trying to use Reaction Field without"
653 <                "\tsetting a dielectric constant!\n");
654 <        painCave.isFatal = 1;
655 <        simError();
656 <      }      
886 >      //local index of cutoff group is trivial, it only depends on the
887 >      //order of travesing
888 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
889 >           cg = mol->nextCutoffGroup(ci)) {
890 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
891 >      }        
892      }
893 <
893 >    return GlobalGroupIndices;
894    }
895  
661  void SimInfo::setupFortranSim() {
662    int isError;
663    int nExclude;
664    std::vector<int> fortranGlobalGroupMembership;
665    
666    nExclude = exclude_.getSize();
667    isError = 0;
896  
897 <    //globalGroupMembership_ is filled by SimCreator    
670 <    for (int i = 0; i < nGlobalAtoms_; i++) {
671 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
672 <    }
897 >  void SimInfo::prepareTopology() {
898  
899      //calculate mass ratio of cutoff group
675    std::vector<double> mfact;
900      SimInfo::MoleculeIterator mi;
901      Molecule* mol;
902      Molecule::CutoffGroupIterator ci;
903      CutoffGroup* cg;
904      Molecule::AtomIterator ai;
905      Atom* atom;
906 <    double totalMass;
906 >    RealType totalMass;
907  
908 <    //to avoid memory reallocation, reserve enough space for mfact
909 <    mfact.reserve(getNCutoffGroups());
908 >    /**
909 >     * The mass factor is the relative mass of an atom to the total
910 >     * mass of the cutoff group it belongs to.  By default, all atoms
911 >     * are their own cutoff groups, and therefore have mass factors of
912 >     * 1.  We need some special handling for massless atoms, which
913 >     * will be treated as carrying the entire mass of the cutoff
914 >     * group.
915 >     */
916 >    massFactors_.clear();
917 >    massFactors_.resize(getNAtoms(), 1.0);
918      
919      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
920 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
920 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
921 >           cg = mol->nextCutoffGroup(ci)) {
922  
923          totalMass = cg->getMass();
924          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
925            // Check for massless groups - set mfact to 1 if true
926 <          if (totalMass != 0)
927 <            mfact.push_back(atom->getMass()/totalMass);
926 >          if (totalMass != 0)
927 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
928            else
929 <            mfact.push_back( 1.0 );
929 >            massFactors_[atom->getLocalIndex()] = 1.0;
930          }
698
931        }      
932      }
933  
934 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
703 <    std::vector<int> identArray;
934 >    // Build the identArray_
935  
936 <    //to avoid memory reallocation, reserve enough space identArray
937 <    identArray.reserve(getNAtoms());
707 <    
936 >    identArray_.clear();
937 >    identArray_.reserve(getNAtoms());    
938      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
939        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
940 <        identArray.push_back(atom->getIdent());
940 >        identArray_.push_back(atom->getIdent());
941        }
942      }    
713
714    //fill molMembershipArray
715    //molMembershipArray is filled by SimCreator    
716    std::vector<int> molMembershipArray(nGlobalAtoms_);
717    for (int i = 0; i < nGlobalAtoms_; i++) {
718      molMembershipArray[i] = globalMolMembership_[i] + 1;
719    }
943      
944 <    //setup fortran simulation
722 <    int nGlobalExcludes = 0;
723 <    int* globalExcludes = NULL;
724 <    int* excludeList = exclude_.getExcludeList();
725 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
726 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
727 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
728 <
729 <    if( isError ){
730 <
731 <      sprintf( painCave.errMsg,
732 <               "There was an error setting the simulation information in fortran.\n" );
733 <      painCave.isFatal = 1;
734 <      painCave.severity = OOPSE_ERROR;
735 <      simError();
736 <    }
737 <
738 < #ifdef IS_MPI
739 <    sprintf( checkPointMsg,
740 <             "succesfully sent the simulation information to fortran.\n");
741 <    MPIcheckPoint();
742 < #endif // is_mpi
743 <  }
744 <
745 <
746 < #ifdef IS_MPI
747 <  void SimInfo::setupFortranParallel() {
748 <    
749 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
750 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
751 <    std::vector<int> localToGlobalCutoffGroupIndex;
752 <    SimInfo::MoleculeIterator mi;
753 <    Molecule::AtomIterator ai;
754 <    Molecule::CutoffGroupIterator ci;
755 <    Molecule* mol;
756 <    Atom* atom;
757 <    CutoffGroup* cg;
758 <    mpiSimData parallelData;
759 <    int isError;
760 <
761 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
762 <
763 <      //local index(index in DataStorge) of atom is important
764 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
765 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
766 <      }
767 <
768 <      //local index of cutoff group is trivial, it only depends on the order of travesing
769 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
770 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
771 <      }        
772 <        
773 <    }
774 <
775 <    //fill up mpiSimData struct
776 <    parallelData.nMolGlobal = getNGlobalMolecules();
777 <    parallelData.nMolLocal = getNMolecules();
778 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
779 <    parallelData.nAtomsLocal = getNAtoms();
780 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
781 <    parallelData.nGroupsLocal = getNCutoffGroups();
782 <    parallelData.myNode = worldRank;
783 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
784 <
785 <    //pass mpiSimData struct and index arrays to fortran
786 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
787 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
788 <                    &localToGlobalCutoffGroupIndex[0], &isError);
789 <
790 <    if (isError) {
791 <      sprintf(painCave.errMsg,
792 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
793 <      painCave.isFatal = 1;
794 <      simError();
795 <    }
796 <
797 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
798 <    MPIcheckPoint();
799 <
800 <
801 <  }
802 <
803 < #endif
804 <
805 <  double SimInfo::calcMaxCutoffRadius() {
806 <
807 <
808 <    std::set<AtomType*> atomTypes;
809 <    std::set<AtomType*>::iterator i;
810 <    std::vector<double> cutoffRadius;
811 <
812 <    //get the unique atom types
813 <    atomTypes = getUniqueAtomTypes();
814 <
815 <    //query the max cutoff radius among these atom types
816 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
817 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
818 <    }
819 <
820 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
821 < #ifdef IS_MPI
822 <    //pick the max cutoff radius among the processors
823 < #endif
824 <
825 <    return maxCutoffRadius;
826 <  }
827 <
828 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
829 <    
830 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
831 <        
832 <      if (!simParams_->haveCutoffRadius()){
833 <        sprintf(painCave.errMsg,
834 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
835 <                "\tOOPSE will use a default value of 15.0 angstroms"
836 <                "\tfor the cutoffRadius.\n");
837 <        painCave.isFatal = 0;
838 <        simError();
839 <        rcut = 15.0;
840 <      } else{
841 <        rcut = simParams_->getCutoffRadius();
842 <      }
843 <
844 <      if (!simParams_->haveSwitchingRadius()){
845 <        sprintf(painCave.errMsg,
846 <                "SimCreator Warning: No value was set for switchingRadius.\n"
847 <                "\tOOPSE will use a default value of\n"
848 <                "\t0.85 * cutoffRadius for the switchingRadius\n");
849 <        painCave.isFatal = 0;
850 <        simError();
851 <        rsw = 0.85 * rcut;
852 <      } else{
853 <        rsw = simParams_->getSwitchingRadius();
854 <      }
855 <
856 <    } else {
857 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
858 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
859 <        
860 <      if (simParams_->haveCutoffRadius()) {
861 <        rcut = simParams_->getCutoffRadius();
862 <      } else {
863 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
864 <        rcut = calcMaxCutoffRadius();
865 <      }
866 <
867 <      if (simParams_->haveSwitchingRadius()) {
868 <        rsw  = simParams_->getSwitchingRadius();
869 <      } else {
870 <        rsw = rcut;
871 <      }
872 <    
873 <    }
874 <  }
875 <
876 <  void SimInfo::setupCutoff() {    
877 <    getCutoff(rcut_, rsw_);    
878 <    double rnblist = rcut_ + 1; // skin of neighbor list
879 <
880 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
881 <    
882 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
883 <    if (simParams_->haveCutoffPolicy()) {
884 <      std::string myPolicy = simParams_->getCutoffPolicy();
885 <      toUpper(myPolicy);
886 <      if (myPolicy == "MIX") {
887 <        cp = MIX_CUTOFF_POLICY;
888 <      } else {
889 <        if (myPolicy == "MAX") {
890 <          cp = MAX_CUTOFF_POLICY;
891 <        } else {
892 <          if (myPolicy == "TRADITIONAL") {            
893 <            cp = TRADITIONAL_CUTOFF_POLICY;
894 <          } else {
895 <            // throw error        
896 <            sprintf( painCave.errMsg,
897 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
898 <            painCave.isFatal = 1;
899 <            simError();
900 <          }    
901 <        }          
902 <      }
903 <    }
904 <
905 <
906 <    if (simParams_->haveSkinThickness()) {
907 <      double skinThickness = simParams_->getSkinThickness();
908 <    }
909 <
910 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
911 <    // also send cutoff notification to electrostatics
912 <    setElectrostaticCutoffRadius(&rcut_, &rsw_);
944 >    topologyDone_ = true;
945    }
946  
915  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
916    
917    int errorOut;
918    int esm =  NONE;
919    int sm = UNDAMPED;
920    double alphaVal;
921    double dielectric;
922
923    errorOut = isError;
924    alphaVal = simParams_->getDampingAlpha();
925    dielectric = simParams_->getDielectric();
926
927    if (simParams_->haveElectrostaticSummationMethod()) {
928      std::string myMethod = simParams_->getElectrostaticSummationMethod();
929      toUpper(myMethod);
930      if (myMethod == "NONE") {
931        esm = NONE;
932      } else {
933        if (myMethod == "SWITCHING_FUNCTION") {
934          esm = SWITCHING_FUNCTION;
935        } else {
936          if (myMethod == "SHIFTED_POTENTIAL") {
937            esm = SHIFTED_POTENTIAL;
938          } else {
939            if (myMethod == "SHIFTED_FORCE") {            
940              esm = SHIFTED_FORCE;
941            } else {
942              if (myMethod == "REACTION_FIELD") {            
943                esm = REACTION_FIELD;
944              } else {
945                // throw error        
946                sprintf( painCave.errMsg,
947                         "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
948                painCave.isFatal = 1;
949                simError();
950              }    
951            }          
952          }
953        }
954      }
955    }
956    
957    if (simParams_->haveElectrostaticScreeningMethod()) {
958      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
959      toUpper(myScreen);
960      if (myScreen == "UNDAMPED") {
961        sm = UNDAMPED;
962      } else {
963        if (myScreen == "DAMPED") {
964          sm = DAMPED;
965          if (!simParams_->haveDampingAlpha()) {
966            //throw error
967            sprintf( painCave.errMsg,
968                     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
969            painCave.isFatal = 0;
970            simError();
971          }
972        } else {
973          // throw error        
974          sprintf( painCave.errMsg,
975                   "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
976          painCave.isFatal = 1;
977          simError();
978        }
979      }
980    }
981    
982    // let's pass some summation method variables to fortran
983    setElectrostaticSummationMethod( &esm );
984    setScreeningMethod( &sm );
985    setDampingAlpha( &alphaVal );
986    setReactionFieldDielectric( &dielectric );
987    initFortranFF( &esm, &errorOut );
988  }
989
990  void SimInfo::setupSwitchingFunction() {    
991    int ft = CUBIC;
992
993    if (simParams_->haveSwitchingFunctionType()) {
994      std::string funcType = simParams_->getSwitchingFunctionType();
995      toUpper(funcType);
996      if (funcType == "CUBIC") {
997        ft = CUBIC;
998      } else {
999        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1000          ft = FIFTH_ORDER_POLY;
1001        } else {
1002          // throw error        
1003          sprintf( painCave.errMsg,
1004                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1005          painCave.isFatal = 1;
1006          simError();
1007        }          
1008      }
1009    }
1010
1011    // send switching function notification to switcheroo
1012    setFunctionType(&ft);
1013
1014  }
1015
947    void SimInfo::addProperty(GenericData* genData) {
948      properties_.addProperty(genData);  
949    }
950  
951 <  void SimInfo::removeProperty(const std::string& propName) {
951 >  void SimInfo::removeProperty(const string& propName) {
952      properties_.removeProperty(propName);  
953    }
954  
# Line 1025 | Line 956 | namespace oopse {
956      properties_.clearProperties();
957    }
958  
959 <  std::vector<std::string> SimInfo::getPropertyNames() {
959 >  vector<string> SimInfo::getPropertyNames() {
960      return properties_.getPropertyNames();  
961    }
962        
963 <  std::vector<GenericData*> SimInfo::getProperties() {
963 >  vector<GenericData*> SimInfo::getProperties() {
964      return properties_.getProperties();
965    }
966  
967 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
967 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
968      return properties_.getPropertyByName(propName);
969    }
970  
# Line 1047 | Line 978 | namespace oopse {
978      Molecule* mol;
979      RigidBody* rb;
980      Atom* atom;
981 +    CutoffGroup* cg;
982      SimInfo::MoleculeIterator mi;
983      Molecule::RigidBodyIterator rbIter;
984 <    Molecule::AtomIterator atomIter;;
984 >    Molecule::AtomIterator atomIter;
985 >    Molecule::CutoffGroupIterator cgIter;
986  
987      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
988          
989 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
989 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
990 >           atom = mol->nextAtom(atomIter)) {
991          atom->setSnapshotManager(sman_);
992        }
993          
994 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
994 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
995 >           rb = mol->nextRigidBody(rbIter)) {
996          rb->setSnapshotManager(sman_);
997        }
998 +
999 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1000 +           cg = mol->nextCutoffGroup(cgIter)) {
1001 +        cg->setSnapshotManager(sman_);
1002 +      }
1003      }    
1004      
1005    }
1006  
1067  Vector3d SimInfo::getComVel(){
1068    SimInfo::MoleculeIterator i;
1069    Molecule* mol;
1007  
1008 <    Vector3d comVel(0.0);
1072 <    double totalMass = 0.0;
1073 <    
1074 <
1075 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1076 <      double mass = mol->getMass();
1077 <      totalMass += mass;
1078 <      comVel += mass * mol->getComVel();
1079 <    }  
1008 >  ostream& operator <<(ostream& o, SimInfo& info) {
1009  
1081 #ifdef IS_MPI
1082    double tmpMass = totalMass;
1083    Vector3d tmpComVel(comVel);    
1084    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1085    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1086 #endif
1087
1088    comVel /= totalMass;
1089
1090    return comVel;
1091  }
1092
1093  Vector3d SimInfo::getCom(){
1094    SimInfo::MoleculeIterator i;
1095    Molecule* mol;
1096
1097    Vector3d com(0.0);
1098    double totalMass = 0.0;
1099    
1100    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1101      double mass = mol->getMass();
1102      totalMass += mass;
1103      com += mass * mol->getCom();
1104    }  
1105
1106 #ifdef IS_MPI
1107    double tmpMass = totalMass;
1108    Vector3d tmpCom(com);    
1109    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1110    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1111 #endif
1112
1113    com /= totalMass;
1114
1115    return com;
1116
1117  }        
1118
1119  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1120
1010      return o;
1011    }
1012    
1013 <  
1014 <   /*
1015 <   Returns center of mass and center of mass velocity in one function call.
1016 <   */
1017 <  
1018 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1019 <      SimInfo::MoleculeIterator i;
1020 <      Molecule* mol;
1021 <      
1022 <    
1023 <      double totalMass = 0.0;
1024 <    
1013 >  
1014 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1015 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1016 >      sprintf(painCave.errMsg,
1017 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1018 >              "\tindex exceeds number of known objects!\n");
1019 >      painCave.isFatal = 1;
1020 >      simError();
1021 >      return NULL;
1022 >    } else
1023 >      return IOIndexToIntegrableObject.at(index);
1024 >  }
1025 >  
1026 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1027 >    IOIndexToIntegrableObject= v;
1028 >  }
1029  
1030 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1031 <         double mass = mol->getMass();
1139 <         totalMass += mass;
1140 <         com += mass * mol->getCom();
1141 <         comVel += mass * mol->getComVel();          
1142 <      }  
1143 <      
1030 >  int SimInfo::getNGlobalConstraints() {
1031 >    int nGlobalConstraints;
1032   #ifdef IS_MPI
1033 <      double tmpMass = totalMass;
1034 <      Vector3d tmpCom(com);  
1035 <      Vector3d tmpComVel(comVel);
1036 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1149 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1150 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1033 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1034 >                              MPI::INT, MPI::SUM);
1035 > #else
1036 >    nGlobalConstraints =  nConstraints_;
1037   #endif
1038 <      
1039 <      com /= totalMass;
1154 <      comVel /= totalMass;
1155 <   }        
1156 <  
1157 <   /*
1158 <   Return intertia tensor for entire system and angular momentum Vector.
1038 >    return nGlobalConstraints;
1039 >  }
1040  
1041 + }//end namespace OpenMD
1042  
1161       [  Ixx -Ixy  -Ixz ]
1162  J =| -Iyx  Iyy  -Iyz |
1163       [ -Izx -Iyz   Izz ]
1164    */
1165
1166   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1167      
1168
1169      double xx = 0.0;
1170      double yy = 0.0;
1171      double zz = 0.0;
1172      double xy = 0.0;
1173      double xz = 0.0;
1174      double yz = 0.0;
1175      Vector3d com(0.0);
1176      Vector3d comVel(0.0);
1177      
1178      getComAll(com, comVel);
1179      
1180      SimInfo::MoleculeIterator i;
1181      Molecule* mol;
1182      
1183      Vector3d thisq(0.0);
1184      Vector3d thisv(0.0);
1185
1186      double thisMass = 0.0;
1187    
1188      
1189      
1190  
1191      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1192        
1193         thisq = mol->getCom()-com;
1194         thisv = mol->getComVel()-comVel;
1195         thisMass = mol->getMass();
1196         // Compute moment of intertia coefficients.
1197         xx += thisq[0]*thisq[0]*thisMass;
1198         yy += thisq[1]*thisq[1]*thisMass;
1199         zz += thisq[2]*thisq[2]*thisMass;
1200        
1201         // compute products of intertia
1202         xy += thisq[0]*thisq[1]*thisMass;
1203         xz += thisq[0]*thisq[2]*thisMass;
1204         yz += thisq[1]*thisq[2]*thisMass;
1205            
1206         angularMomentum += cross( thisq, thisv ) * thisMass;
1207            
1208      }  
1209      
1210      
1211      inertiaTensor(0,0) = yy + zz;
1212      inertiaTensor(0,1) = -xy;
1213      inertiaTensor(0,2) = -xz;
1214      inertiaTensor(1,0) = -xy;
1215      inertiaTensor(1,1) = xx + zz;
1216      inertiaTensor(1,2) = -yz;
1217      inertiaTensor(2,0) = -xz;
1218      inertiaTensor(2,1) = -yz;
1219      inertiaTensor(2,2) = xx + yy;
1220      
1221 #ifdef IS_MPI
1222      Mat3x3d tmpI(inertiaTensor);
1223      Vector3d tmpAngMom;
1224      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1225      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1226 #endif
1227              
1228      return;
1229   }
1230
1231   //Returns the angular momentum of the system
1232   Vector3d SimInfo::getAngularMomentum(){
1233      
1234      Vector3d com(0.0);
1235      Vector3d comVel(0.0);
1236      Vector3d angularMomentum(0.0);
1237      
1238      getComAll(com,comVel);
1239      
1240      SimInfo::MoleculeIterator i;
1241      Molecule* mol;
1242      
1243      Vector3d thisr(0.0);
1244      Vector3d thisp(0.0);
1245      
1246      double thisMass;
1247      
1248      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1249        thisMass = mol->getMass();
1250        thisr = mol->getCom()-com;
1251        thisp = (mol->getComVel()-comVel)*thisMass;
1252        
1253        angularMomentum += cross( thisr, thisp );
1254        
1255      }  
1256      
1257 #ifdef IS_MPI
1258      Vector3d tmpAngMom;
1259      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1260 #endif
1261      
1262      return angularMomentum;
1263   }
1264  
1265  
1266 }//end namespace oopse
1267

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 734 by chuckv, Tue Nov 15 16:05:38 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines