ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 124 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimInfo.cpp
45 > * @author    tlin
46 > * @date  11/02/2004
47 > * @version 1.0
48 > */
49  
50 < #include <iostream>
51 < using namespace std;
50 > #include <algorithm>
51 > #include <set>
52 > #include <map>
53  
54   #include "brains/SimInfo.hpp"
55 < #define __C
56 < #include "brains/fSimulation.h"
55 > #include "math/Vector3.hpp"
56 > #include "primitives/Molecule.hpp"
57 > #include "primitives/StuntDouble.hpp"
58 > #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60 < #include "UseTheForce/DarkSide/simulation_interface.h"
61 < #include "UseTheForce/notifyCutoffs_interface.h"
62 <
63 < //#include "UseTheForce/fortranWrappers.hpp"
16 <
17 < #include "math/MatVec3.h"
18 <
60 > #include "selection/SelectionManager.hpp"
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "brains/mpiSimulation.hpp"
65 > #include <mpi.h>
66   #endif
67  
68 < inline double roundMe( double x ){
69 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
70 < }
71 <          
72 < inline double min( double a, double b ){
73 <  return (a < b ) ? a : b;
74 < }
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      nMolWithSameStamp = (*i)->getNMol();
95 >      
96 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
97 >      
98 >      //calculate atoms in molecules
99 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
100 >      
101 >      //calculate atoms in cutoff groups
102 >      int nAtomsInGroups = 0;
103 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104 >      
105 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 >        cgStamp = molStamp->getCutoffGroupStamp(j);
107 >        nAtomsInGroups += cgStamp->getNMembers();
108 >      }
109 >      
110 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 >      
112 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113 >      
114 >      //calculate atoms in rigid bodies
115 >      int nAtomsInRigidBodies = 0;
116 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 >      
118 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
119 >        rbStamp = molStamp->getRigidBodyStamp(j);
120 >        nAtomsInRigidBodies += rbStamp->getNMembers();
121 >      }
122 >      
123 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 >      
126 >    }
127 >    
128 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
129 >    //group therefore the total number of cutoff groups in the system is
130 >    //equal to the total number of atoms minus number of atoms belong to
131 >    //cutoff group defined in meta-data file plus the number of cutoff
132 >    //groups defined in meta-data file
133  
134 < SimInfo* currentInfo;
134 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135 >    
136 >    //every free atom (atom does not belong to rigid bodies) is an
137 >    //integrable object therefore the total number of integrable objects
138 >    //in the system is equal to the total number of atoms minus number of
139 >    //atoms belong to rigid body defined in meta-data file plus the number
140 >    //of rigid bodies defined in meta-data file
141 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 >      + nGlobalRigidBodies_;
143 >    
144 >    nGlobalMols_ = molStampIds_.size();
145 >    molToProcMap_.resize(nGlobalMols_);
146 >  }
147 >  
148 >  SimInfo::~SimInfo() {
149 >    map<int, Molecule*>::iterator i;
150 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151 >      delete i->second;
152 >    }
153 >    molecules_.clear();
154 >      
155 >    delete sman_;
156 >    delete simParams_;
157 >    delete forceField_;
158 >  }
159  
33 SimInfo::SimInfo(){
160  
161 <  n_constraints = 0;
162 <  nZconstraints = 0;
163 <  n_oriented = 0;
164 <  n_dipoles = 0;
165 <  ndf = 0;
166 <  ndfRaw = 0;
167 <  nZconstraints = 0;
168 <  the_integrator = NULL;
169 <  setTemp = 0;
170 <  thermalTime = 0.0;
171 <  currentTime = 0.0;
172 <  rCut = 0.0;
173 <  rSw = 0.0;
174 <
175 <  haveRcut = 0;
176 <  haveRsw = 0;
177 <  boxIsInit = 0;
161 >  bool SimInfo::addMolecule(Molecule* mol) {
162 >    MoleculeIterator i;
163 >    
164 >    i = molecules_.find(mol->getGlobalIndex());
165 >    if (i == molecules_.end() ) {
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169 >      nAtoms_ += mol->getNAtoms();
170 >      nBonds_ += mol->getNBonds();
171 >      nBends_ += mol->getNBends();
172 >      nTorsions_ += mol->getNTorsions();
173 >      nInversions_ += mol->getNInversions();
174 >      nRigidBodies_ += mol->getNRigidBodies();
175 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
176 >      nCutoffGroups_ += mol->getNCutoffGroups();
177 >      nConstraints_ += mol->getNConstraintPairs();
178 >      
179 >      addInteractionPairs(mol);
180 >      
181 >      return true;
182 >    } else {
183 >      return false;
184 >    }
185 >  }
186    
187 <  resetTime = 1e99;
187 >  bool SimInfo::removeMolecule(Molecule* mol) {
188 >    MoleculeIterator i;
189 >    i = molecules_.find(mol->getGlobalIndex());
190  
191 <  orthoRhombic = 0;
56 <  orthoTolerance = 1E-6;
57 <  useInitXSstate = true;
191 >    if (i != molecules_.end() ) {
192  
193 <  usePBC = 0;
194 <  useLJ = 0;
195 <  useSticky = 0;
196 <  useCharges = 0;
197 <  useDipoles = 0;
198 <  useReactionField = 0;
199 <  useGB = 0;
200 <  useEAM = 0;
201 <  useSolidThermInt = 0;
202 <  useLiquidThermInt = 0;
193 >      assert(mol == i->second);
194 >        
195 >      nAtoms_ -= mol->getNAtoms();
196 >      nBonds_ -= mol->getNBonds();
197 >      nBends_ -= mol->getNBends();
198 >      nTorsions_ -= mol->getNTorsions();
199 >      nInversions_ -= mol->getNInversions();
200 >      nRigidBodies_ -= mol->getNRigidBodies();
201 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
202 >      nCutoffGroups_ -= mol->getNCutoffGroups();
203 >      nConstraints_ -= mol->getNConstraintPairs();
204  
205 <  haveCutoffGroups = false;
205 >      removeInteractionPairs(mol);
206 >      molecules_.erase(mol->getGlobalIndex());
207  
208 <  excludes = Exclude::Instance();
208 >      delete mol;
209 >        
210 >      return true;
211 >    } else {
212 >      return false;
213 >    }
214 >  }    
215  
216 <  myConfiguration = new SimState();
216 >        
217 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
218 >    i = molecules_.begin();
219 >    return i == molecules_.end() ? NULL : i->second;
220 >  }    
221  
222 <  has_minimizer = false;
223 <  the_minimizer =NULL;
222 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
223 >    ++i;
224 >    return i == molecules_.end() ? NULL : i->second;    
225 >  }
226  
79  ngroup = 0;
227  
228 < }
228 >  void SimInfo::calcNdf() {
229 >    int ndf_local, nfq_local;
230 >    MoleculeIterator i;
231 >    vector<StuntDouble*>::iterator j;
232 >    vector<Atom*>::iterator k;
233  
234 +    Molecule* mol;
235 +    StuntDouble* sd;
236 +    Atom* atom;
237  
238 < SimInfo::~SimInfo(){
238 >    ndf_local = 0;
239 >    nfq_local = 0;
240 >    
241 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
242  
243 <  delete myConfiguration;
243 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
244 >           sd = mol->nextIntegrableObject(j)) {
245  
246 <  map<string, GenericData*>::iterator i;
89 <  
90 <  for(i = properties.begin(); i != properties.end(); i++)
91 <    delete (*i).second;
246 >        ndf_local += 3;
247  
248 < }
248 >        if (sd->isDirectional()) {
249 >          if (sd->isLinear()) {
250 >            ndf_local += 2;
251 >          } else {
252 >            ndf_local += 3;
253 >          }
254 >        }
255 >      }
256  
257 < void SimInfo::setBox(double newBox[3]) {
258 <  
259 <  int i, j;
260 <  double tempMat[3][3];
257 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
258 >           atom = mol->nextFluctuatingCharge(k)) {
259 >        if (atom->isFluctuatingCharge()) {
260 >          nfq_local++;
261 >        }
262 >      }
263 >    }
264 >    
265 >    ndfLocal_ = ndf_local;
266  
267 <  for(i=0; i<3; i++)
268 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
267 >    // n_constraints is local, so subtract them on each processor
268 >    ndf_local -= nConstraints_;
269  
270 <  tempMat[0][0] = newBox[0];
271 <  tempMat[1][1] = newBox[1];
272 <  tempMat[2][2] = newBox[2];
270 > #ifdef IS_MPI
271 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
272 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
273 >                              MPI::INT, MPI::SUM);
274 > #else
275 >    ndf_ = ndf_local;
276 >    nGlobalFluctuatingCharges_ = nfq_local;
277 > #endif
278  
279 <  setBoxM( tempMat );
279 >    // nZconstraints_ is global, as are the 3 COM translations for the
280 >    // entire system:
281 >    ndf_ = ndf_ - 3 - nZconstraint_;
282  
283 < }
283 >  }
284  
285 < void SimInfo::setBoxM( double theBox[3][3] ){
285 >  int SimInfo::getFdf() {
286 > #ifdef IS_MPI
287 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
288 > #else
289 >    fdf_ = fdf_local;
290 > #endif
291 >    return fdf_;
292 >  }
293    
294 <  int i, j;
295 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
296 <                         // ordering in the array is as follows:
297 <                         // [ 0 3 6 ]
298 <                         // [ 1 4 7 ]
299 <                         // [ 2 5 8 ]
300 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
301 <
302 <  if( !boxIsInit ) boxIsInit = 1;
303 <
304 <  for(i=0; i < 3; i++)
305 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
306 <  
307 <  calcBoxL();
127 <  calcHmatInv();
128 <
129 <  for(i=0; i < 3; i++) {
130 <    for (j=0; j < 3; j++) {
131 <      FortranHmat[3*j + i] = Hmat[i][j];
132 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
294 >  unsigned int SimInfo::getNLocalCutoffGroups(){
295 >    int nLocalCutoffAtoms = 0;
296 >    Molecule* mol;
297 >    MoleculeIterator mi;
298 >    CutoffGroup* cg;
299 >    Molecule::CutoffGroupIterator ci;
300 >    
301 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
302 >      
303 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
304 >           cg = mol->nextCutoffGroup(ci)) {
305 >        nLocalCutoffAtoms += cg->getNumAtom();
306 >        
307 >      }        
308      }
309 +    
310 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
311    }
312 +    
313 +  void SimInfo::calcNdfRaw() {
314 +    int ndfRaw_local;
315  
316 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
317 <
318 < }
319 <
316 >    MoleculeIterator i;
317 >    vector<StuntDouble*>::iterator j;
318 >    Molecule* mol;
319 >    StuntDouble* sd;
320  
321 < void SimInfo::getBoxM (double theBox[3][3]) {
321 >    // Raw degrees of freedom that we have to set
322 >    ndfRaw_local = 0;
323 >    
324 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
325  
326 <  int i, j;
327 <  for(i=0; i<3; i++)
145 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
146 < }
326 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
327 >           sd = mol->nextIntegrableObject(j)) {
328  
329 +        ndfRaw_local += 3;
330  
331 < void SimInfo::scaleBox(double scale) {
332 <  double theBox[3][3];
333 <  int i, j;
334 <
335 <  // cerr << "Scaling box by " << scale << "\n";
336 <
337 <  for(i=0; i<3; i++)
338 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
157 <
158 <  setBoxM(theBox);
159 <
160 < }
161 <
162 < void SimInfo::calcHmatInv( void ) {
163 <  
164 <  int oldOrtho;
165 <  int i,j;
166 <  double smallDiag;
167 <  double tol;
168 <  double sanity[3][3];
169 <
170 <  invertMat3( Hmat, HmatInv );
171 <
172 <  // check to see if Hmat is orthorhombic
173 <  
174 <  oldOrtho = orthoRhombic;
175 <
176 <  smallDiag = fabs(Hmat[0][0]);
177 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
178 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
179 <  tol = smallDiag * orthoTolerance;
180 <
181 <  orthoRhombic = 1;
182 <  
183 <  for (i = 0; i < 3; i++ ) {
184 <    for (j = 0 ; j < 3; j++) {
185 <      if (i != j) {
186 <        if (orthoRhombic) {
187 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
188 <        }        
331 >        if (sd->isDirectional()) {
332 >          if (sd->isLinear()) {
333 >            ndfRaw_local += 2;
334 >          } else {
335 >            ndfRaw_local += 3;
336 >          }
337 >        }
338 >            
339        }
340      }
191  }
192
193  if( oldOrtho != orthoRhombic ){
341      
342 <    if( orthoRhombic ) {
343 <      sprintf( painCave.errMsg,
344 <               "OOPSE is switching from the default Non-Orthorhombic\n"
345 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
346 <               "\tThis is usually a good thing, but if you wan't the\n"
200 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
201 <               "\tvariable ( currently set to %G ) smaller.\n",
202 <               orthoTolerance);
203 <      painCave.severity = OOPSE_INFO;
204 <      simError();
205 <    }
206 <    else {
207 <      sprintf( painCave.errMsg,
208 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
209 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
210 <               "\tThis is usually because the box has deformed under\n"
211 <               "\tNPTf integration. If you wan't to live on the edge with\n"
212 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
213 <               "\tvariable ( currently set to %G ) larger.\n",
214 <               orthoTolerance);
215 <      painCave.severity = OOPSE_WARNING;
216 <      simError();
217 <    }
342 > #ifdef IS_MPI
343 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
344 > #else
345 >    ndfRaw_ = ndfRaw_local;
346 > #endif
347    }
219 }
348  
349 < void SimInfo::calcBoxL( void ){
349 >  void SimInfo::calcNdfTrans() {
350 >    int ndfTrans_local;
351  
352 <  double dx, dy, dz, dsq;
352 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
353  
225  // boxVol = Determinant of Hmat
354  
355 <  boxVol = matDet3( Hmat );
355 > #ifdef IS_MPI
356 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
357 >                              MPI::INT, MPI::SUM);
358 > #else
359 >    ndfTrans_ = ndfTrans_local;
360 > #endif
361  
362 <  // boxLx
363 <  
364 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
232 <  dsq = dx*dx + dy*dy + dz*dz;
233 <  boxL[0] = sqrt( dsq );
234 <  //maxCutoff = 0.5 * boxL[0];
362 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
363 >
364 >  }
365  
366 <  // boxLy
367 <  
368 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
369 <  dsq = dx*dx + dy*dy + dz*dz;
370 <  boxL[1] = sqrt( dsq );
371 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
366 >  void SimInfo::addInteractionPairs(Molecule* mol) {
367 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
368 >    vector<Bond*>::iterator bondIter;
369 >    vector<Bend*>::iterator bendIter;
370 >    vector<Torsion*>::iterator torsionIter;
371 >    vector<Inversion*>::iterator inversionIter;
372 >    Bond* bond;
373 >    Bend* bend;
374 >    Torsion* torsion;
375 >    Inversion* inversion;
376 >    int a;
377 >    int b;
378 >    int c;
379 >    int d;
380  
381 +    // atomGroups can be used to add special interaction maps between
382 +    // groups of atoms that are in two separate rigid bodies.
383 +    // However, most site-site interactions between two rigid bodies
384 +    // are probably not special, just the ones between the physically
385 +    // bonded atoms.  Interactions *within* a single rigid body should
386 +    // always be excluded.  These are done at the bottom of this
387 +    // function.
388  
389 <  // boxLz
390 <  
391 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
392 <  dsq = dx*dx + dy*dy + dz*dz;
393 <  boxL[2] = sqrt( dsq );
394 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
389 >    map<int, set<int> > atomGroups;
390 >    Molecule::RigidBodyIterator rbIter;
391 >    RigidBody* rb;
392 >    Molecule::IntegrableObjectIterator ii;
393 >    StuntDouble* sd;
394 >    
395 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
396 >         sd = mol->nextIntegrableObject(ii)) {
397 >      
398 >      if (sd->isRigidBody()) {
399 >        rb = static_cast<RigidBody*>(sd);
400 >        vector<Atom*> atoms = rb->getAtoms();
401 >        set<int> rigidAtoms;
402 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
403 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
404 >        }
405 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
406 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
407 >        }      
408 >      } else {
409 >        set<int> oneAtomSet;
410 >        oneAtomSet.insert(sd->getGlobalIndex());
411 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
412 >      }
413 >    }  
414 >          
415 >    for (bond= mol->beginBond(bondIter); bond != NULL;
416 >         bond = mol->nextBond(bondIter)) {
417  
418 <  //calculate the max cutoff
419 <  maxCutoff =  calcMaxCutOff();
420 <  
421 <  checkCutOffs();
418 >      a = bond->getAtomA()->getGlobalIndex();
419 >      b = bond->getAtomB()->getGlobalIndex();  
420 >    
421 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
422 >        oneTwoInteractions_.addPair(a, b);
423 >      } else {
424 >        excludedInteractions_.addPair(a, b);
425 >      }
426 >    }
427  
428 < }
428 >    for (bend= mol->beginBend(bendIter); bend != NULL;
429 >         bend = mol->nextBend(bendIter)) {
430  
431 +      a = bend->getAtomA()->getGlobalIndex();
432 +      b = bend->getAtomB()->getGlobalIndex();        
433 +      c = bend->getAtomC()->getGlobalIndex();
434 +      
435 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
436 +        oneTwoInteractions_.addPair(a, b);      
437 +        oneTwoInteractions_.addPair(b, c);
438 +      } else {
439 +        excludedInteractions_.addPair(a, b);
440 +        excludedInteractions_.addPair(b, c);
441 +      }
442  
443 < double SimInfo::calcMaxCutOff(){
443 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
444 >        oneThreeInteractions_.addPair(a, c);      
445 >      } else {
446 >        excludedInteractions_.addPair(a, c);
447 >      }
448 >    }
449  
450 <  double ri[3], rj[3], rk[3];
451 <  double rij[3], rjk[3], rki[3];
263 <  double minDist;
450 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
451 >         torsion = mol->nextTorsion(torsionIter)) {
452  
453 <  ri[0] = Hmat[0][0];
454 <  ri[1] = Hmat[1][0];
455 <  ri[2] = Hmat[2][0];
453 >      a = torsion->getAtomA()->getGlobalIndex();
454 >      b = torsion->getAtomB()->getGlobalIndex();        
455 >      c = torsion->getAtomC()->getGlobalIndex();        
456 >      d = torsion->getAtomD()->getGlobalIndex();      
457  
458 <  rj[0] = Hmat[0][1];
459 <  rj[1] = Hmat[1][1];
460 <  rj[2] = Hmat[2][1];
458 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
459 >        oneTwoInteractions_.addPair(a, b);      
460 >        oneTwoInteractions_.addPair(b, c);
461 >        oneTwoInteractions_.addPair(c, d);
462 >      } else {
463 >        excludedInteractions_.addPair(a, b);
464 >        excludedInteractions_.addPair(b, c);
465 >        excludedInteractions_.addPair(c, d);
466 >      }
467  
468 <  rk[0] = Hmat[0][2];
469 <  rk[1] = Hmat[1][2];
470 <  rk[2] = Hmat[2][2];
471 <    
472 <  crossProduct3(ri, rj, rij);
473 <  distXY = dotProduct3(rk,rij) / norm3(rij);
468 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
469 >        oneThreeInteractions_.addPair(a, c);      
470 >        oneThreeInteractions_.addPair(b, d);      
471 >      } else {
472 >        excludedInteractions_.addPair(a, c);
473 >        excludedInteractions_.addPair(b, d);
474 >      }
475  
476 <  crossProduct3(rj,rk, rjk);
477 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
476 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
477 >        oneFourInteractions_.addPair(a, d);      
478 >      } else {
479 >        excludedInteractions_.addPair(a, d);
480 >      }
481 >    }
482  
483 <  crossProduct3(rk,ri, rki);
484 <  distZX = dotProduct3(rj,rki) / norm3(rki);
483 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
484 >         inversion = mol->nextInversion(inversionIter)) {
485  
486 <  minDist = min(min(distXY, distYZ), distZX);
487 <  return minDist/2;
488 <  
489 < }
486 >      a = inversion->getAtomA()->getGlobalIndex();
487 >      b = inversion->getAtomB()->getGlobalIndex();        
488 >      c = inversion->getAtomC()->getGlobalIndex();        
489 >      d = inversion->getAtomD()->getGlobalIndex();        
490  
491 < void SimInfo::wrapVector( double thePos[3] ){
491 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
492 >        oneTwoInteractions_.addPair(a, b);      
493 >        oneTwoInteractions_.addPair(a, c);
494 >        oneTwoInteractions_.addPair(a, d);
495 >      } else {
496 >        excludedInteractions_.addPair(a, b);
497 >        excludedInteractions_.addPair(a, c);
498 >        excludedInteractions_.addPair(a, d);
499 >      }
500  
501 <  int i;
502 <  double scaled[3];
501 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
502 >        oneThreeInteractions_.addPair(b, c);    
503 >        oneThreeInteractions_.addPair(b, d);    
504 >        oneThreeInteractions_.addPair(c, d);      
505 >      } else {
506 >        excludedInteractions_.addPair(b, c);
507 >        excludedInteractions_.addPair(b, d);
508 >        excludedInteractions_.addPair(c, d);
509 >      }
510 >    }
511  
512 <  if( !orthoRhombic ){
513 <    // calc the scaled coordinates.
514 <  
512 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
513 >         rb = mol->nextRigidBody(rbIter)) {
514 >      vector<Atom*> atoms = rb->getAtoms();
515 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
516 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
517 >          a = atoms[i]->getGlobalIndex();
518 >          b = atoms[j]->getGlobalIndex();
519 >          excludedInteractions_.addPair(a, b);
520 >        }
521 >      }
522 >    }        
523  
300    matVecMul3(HmatInv, thePos, scaled);
301    
302    for(i=0; i<3; i++)
303      scaled[i] -= roundMe(scaled[i]);
304    
305    // calc the wrapped real coordinates from the wrapped scaled coordinates
306    
307    matVecMul3(Hmat, scaled, thePos);
308
524    }
310  else{
311    // calc the scaled coordinates.
312    
313    for(i=0; i<3; i++)
314      scaled[i] = thePos[i]*HmatInv[i][i];
315    
316    // wrap the scaled coordinates
317    
318    for(i=0; i<3; i++)
319      scaled[i] -= roundMe(scaled[i]);
320    
321    // calc the wrapped real coordinates from the wrapped scaled coordinates
322    
323    for(i=0; i<3; i++)
324      thePos[i] = scaled[i]*Hmat[i][i];
325  }
326    
327 }
525  
526 +  void SimInfo::removeInteractionPairs(Molecule* mol) {
527 +    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
528 +    vector<Bond*>::iterator bondIter;
529 +    vector<Bend*>::iterator bendIter;
530 +    vector<Torsion*>::iterator torsionIter;
531 +    vector<Inversion*>::iterator inversionIter;
532 +    Bond* bond;
533 +    Bend* bend;
534 +    Torsion* torsion;
535 +    Inversion* inversion;
536 +    int a;
537 +    int b;
538 +    int c;
539 +    int d;
540  
541 < int SimInfo::getNDF(){
542 <  int ndf_local;
543 <
544 <  ndf_local = 0;
545 <  
546 <  for(int i = 0; i < integrableObjects.size(); i++){
547 <    ndf_local += 3;
548 <    if (integrableObjects[i]->isDirectional()) {
549 <      if (integrableObjects[i]->isLinear())
550 <        ndf_local += 2;
551 <      else
552 <        ndf_local += 3;
541 >    map<int, set<int> > atomGroups;
542 >    Molecule::RigidBodyIterator rbIter;
543 >    RigidBody* rb;
544 >    Molecule::IntegrableObjectIterator ii;
545 >    StuntDouble* sd;
546 >    
547 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
548 >         sd = mol->nextIntegrableObject(ii)) {
549 >      
550 >      if (sd->isRigidBody()) {
551 >        rb = static_cast<RigidBody*>(sd);
552 >        vector<Atom*> atoms = rb->getAtoms();
553 >        set<int> rigidAtoms;
554 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
555 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
556 >        }
557 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
558 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
559 >        }      
560 >      } else {
561 >        set<int> oneAtomSet;
562 >        oneAtomSet.insert(sd->getGlobalIndex());
563 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
564 >      }
565 >    }  
566 >
567 >    for (bond= mol->beginBond(bondIter); bond != NULL;
568 >         bond = mol->nextBond(bondIter)) {
569 >      
570 >      a = bond->getAtomA()->getGlobalIndex();
571 >      b = bond->getAtomB()->getGlobalIndex();  
572 >    
573 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
574 >        oneTwoInteractions_.removePair(a, b);
575 >      } else {
576 >        excludedInteractions_.removePair(a, b);
577 >      }
578      }
343  }
579  
580 <  // n_constraints is local, so subtract them on each processor:
580 >    for (bend= mol->beginBend(bendIter); bend != NULL;
581 >         bend = mol->nextBend(bendIter)) {
582  
583 <  ndf_local -= n_constraints;
583 >      a = bend->getAtomA()->getGlobalIndex();
584 >      b = bend->getAtomB()->getGlobalIndex();        
585 >      c = bend->getAtomC()->getGlobalIndex();
586 >      
587 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
588 >        oneTwoInteractions_.removePair(a, b);      
589 >        oneTwoInteractions_.removePair(b, c);
590 >      } else {
591 >        excludedInteractions_.removePair(a, b);
592 >        excludedInteractions_.removePair(b, c);
593 >      }
594  
595 < #ifdef IS_MPI
596 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
597 < #else
598 <  ndf = ndf_local;
599 < #endif
595 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
596 >        oneThreeInteractions_.removePair(a, c);      
597 >      } else {
598 >        excludedInteractions_.removePair(a, c);
599 >      }
600 >    }
601  
602 <  // nZconstraints is global, as are the 3 COM translations for the
603 <  // entire system:
602 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
603 >         torsion = mol->nextTorsion(torsionIter)) {
604  
605 <  ndf = ndf - 3 - nZconstraints;
605 >      a = torsion->getAtomA()->getGlobalIndex();
606 >      b = torsion->getAtomB()->getGlobalIndex();        
607 >      c = torsion->getAtomC()->getGlobalIndex();        
608 >      d = torsion->getAtomD()->getGlobalIndex();      
609 >  
610 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
611 >        oneTwoInteractions_.removePair(a, b);      
612 >        oneTwoInteractions_.removePair(b, c);
613 >        oneTwoInteractions_.removePair(c, d);
614 >      } else {
615 >        excludedInteractions_.removePair(a, b);
616 >        excludedInteractions_.removePair(b, c);
617 >        excludedInteractions_.removePair(c, d);
618 >      }
619  
620 <  return ndf;
621 < }
620 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
621 >        oneThreeInteractions_.removePair(a, c);      
622 >        oneThreeInteractions_.removePair(b, d);      
623 >      } else {
624 >        excludedInteractions_.removePair(a, c);
625 >        excludedInteractions_.removePair(b, d);
626 >      }
627  
628 < int SimInfo::getNDFraw() {
629 <  int ndfRaw_local;
628 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
629 >        oneFourInteractions_.removePair(a, d);      
630 >      } else {
631 >        excludedInteractions_.removePair(a, d);
632 >      }
633 >    }
634  
635 <  // Raw degrees of freedom that we have to set
636 <  ndfRaw_local = 0;
635 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
636 >         inversion = mol->nextInversion(inversionIter)) {
637  
638 <  for(int i = 0; i < integrableObjects.size(); i++){
639 <    ndfRaw_local += 3;
640 <    if (integrableObjects[i]->isDirectional()) {
641 <       if (integrableObjects[i]->isLinear())
642 <        ndfRaw_local += 2;
643 <      else
644 <        ndfRaw_local += 3;
638 >      a = inversion->getAtomA()->getGlobalIndex();
639 >      b = inversion->getAtomB()->getGlobalIndex();        
640 >      c = inversion->getAtomC()->getGlobalIndex();        
641 >      d = inversion->getAtomD()->getGlobalIndex();        
642 >
643 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
644 >        oneTwoInteractions_.removePair(a, b);      
645 >        oneTwoInteractions_.removePair(a, c);
646 >        oneTwoInteractions_.removePair(a, d);
647 >      } else {
648 >        excludedInteractions_.removePair(a, b);
649 >        excludedInteractions_.removePair(a, c);
650 >        excludedInteractions_.removePair(a, d);
651 >      }
652 >
653 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
654 >        oneThreeInteractions_.removePair(b, c);    
655 >        oneThreeInteractions_.removePair(b, d);    
656 >        oneThreeInteractions_.removePair(c, d);      
657 >      } else {
658 >        excludedInteractions_.removePair(b, c);
659 >        excludedInteractions_.removePair(b, d);
660 >        excludedInteractions_.removePair(c, d);
661 >      }
662      }
663 +
664 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
665 +         rb = mol->nextRigidBody(rbIter)) {
666 +      vector<Atom*> atoms = rb->getAtoms();
667 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
668 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
669 +          a = atoms[i]->getGlobalIndex();
670 +          b = atoms[j]->getGlobalIndex();
671 +          excludedInteractions_.removePair(a, b);
672 +        }
673 +      }
674 +    }        
675 +    
676    }
677 +  
678 +  
679 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
680 +    int curStampId;
681      
682 < #ifdef IS_MPI
683 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
381 < #else
382 <  ndfRaw = ndfRaw_local;
383 < #endif
682 >    //index from 0
683 >    curStampId = moleculeStamps_.size();
684  
685 <  return ndfRaw;
686 < }
685 >    moleculeStamps_.push_back(molStamp);
686 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
687 >  }
688  
388 int SimInfo::getNDFtranslational() {
389  int ndfTrans_local;
689  
690 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
691 <
692 <
690 >  /**
691 >   * update
692 >   *
693 >   *  Performs the global checks and variable settings after the
694 >   *  objects have been created.
695 >   *
696 >   */
697 >  void SimInfo::update() {  
698 >    setupSimVariables();
699 >    calcNdf();
700 >    calcNdfRaw();
701 >    calcNdfTrans();
702 >  }
703 >  
704 >  /**
705 >   * getSimulatedAtomTypes
706 >   *
707 >   * Returns an STL set of AtomType* that are actually present in this
708 >   * simulation.  Must query all processors to assemble this information.
709 >   *
710 >   */
711 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
712 >    SimInfo::MoleculeIterator mi;
713 >    Molecule* mol;
714 >    Molecule::AtomIterator ai;
715 >    Atom* atom;
716 >    set<AtomType*> atomTypes;
717 >    
718 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
719 >      for(atom = mol->beginAtom(ai); atom != NULL;
720 >          atom = mol->nextAtom(ai)) {
721 >        atomTypes.insert(atom->getAtomType());
722 >      }      
723 >    }    
724 >    
725   #ifdef IS_MPI
395  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
396 #else
397  ndfTrans = ndfTrans_local;
398 #endif
726  
727 <  ndfTrans = ndfTrans - 3 - nZconstraints;
727 >    // loop over the found atom types on this processor, and add their
728 >    // numerical idents to a vector:
729 >    
730 >    vector<int> foundTypes;
731 >    set<AtomType*>::iterator i;
732 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
733 >      foundTypes.push_back( (*i)->getIdent() );
734  
735 <  return ndfTrans;
736 < }
735 >    // count_local holds the number of found types on this processor
736 >    int count_local = foundTypes.size();
737  
738 < int SimInfo::getTotIntegrableObjects() {
406 <  int nObjs_local;
407 <  int nObjs;
738 >    int nproc = MPI::COMM_WORLD.Get_size();
739  
740 <  nObjs_local =  integrableObjects.size();
740 >    // we need arrays to hold the counts and displacement vectors for
741 >    // all processors
742 >    vector<int> counts(nproc, 0);
743 >    vector<int> disps(nproc, 0);
744  
745 +    // fill the counts array
746 +    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
747 +                              1, MPI::INT);
748 +  
749 +    // use the processor counts to compute the displacement array
750 +    disps[0] = 0;    
751 +    int totalCount = counts[0];
752 +    for (int iproc = 1; iproc < nproc; iproc++) {
753 +      disps[iproc] = disps[iproc-1] + counts[iproc-1];
754 +      totalCount += counts[iproc];
755 +    }
756  
757 < #ifdef IS_MPI
758 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
759 < #else
760 <  nObjs = nObjs_local;
761 < #endif
757 >    // we need a (possibly redundant) set of all found types:
758 >    vector<int> ftGlobal(totalCount);
759 >    
760 >    // now spray out the foundTypes to all the other processors:    
761 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
762 >                               &ftGlobal[0], &counts[0], &disps[0],
763 >                               MPI::INT);
764  
765 +    vector<int>::iterator j;
766  
767 <  return nObjs;
768 < }
767 >    // foundIdents is a stl set, so inserting an already found ident
768 >    // will have no effect.
769 >    set<int> foundIdents;
770  
771 < void SimInfo::refreshSim(){
771 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
772 >      foundIdents.insert((*j));
773 >    
774 >    // now iterate over the foundIdents and get the actual atom types
775 >    // that correspond to these:
776 >    set<int>::iterator it;
777 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
778 >      atomTypes.insert( forceField_->getAtomType((*it)) );
779 >
780 > #endif
781  
782 <  simtype fInfo;
783 <  int isError;
426 <  int n_global;
427 <  int* excl;
782 >    return atomTypes;        
783 >  }
784  
429  fInfo.dielect = 0.0;
785  
786 <  if( useDipoles ){
787 <    if( useReactionField )fInfo.dielect = dielectric;
786 >  int getGlobalCountOfType(AtomType* atype) {
787 >    /*
788 >    set<AtomType*> atypes = getSimulatedAtomTypes();
789 >    map<AtomType*, int> counts_;
790 >
791 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
792 >      for(atom = mol->beginAtom(ai); atom != NULL;
793 >          atom = mol->nextAtom(ai)) {
794 >        atom->getAtomType();
795 >      }      
796 >    }    
797 >    */
798 >    return 0;
799    }
800  
801 <  fInfo.SIM_uses_PBC = usePBC;
802 <  //fInfo.SIM_uses_LJ = 0;
803 <  fInfo.SIM_uses_LJ = useLJ;
804 <  fInfo.SIM_uses_sticky = useSticky;
805 <  //fInfo.SIM_uses_sticky = 0;
806 <  fInfo.SIM_uses_charges = useCharges;
807 <  fInfo.SIM_uses_dipoles = useDipoles;
808 <  //fInfo.SIM_uses_dipoles = 0;
809 <  fInfo.SIM_uses_RF = useReactionField;
810 <  //fInfo.SIM_uses_RF = 0;
811 <  fInfo.SIM_uses_GB = useGB;
812 <  fInfo.SIM_uses_EAM = useEAM;
801 >  void SimInfo::setupSimVariables() {
802 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
803 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
804 >    // parameter is true
805 >    calcBoxDipole_ = false;
806 >    if ( simParams_->haveAccumulateBoxDipole() )
807 >      if ( simParams_->getAccumulateBoxDipole() ) {
808 >        calcBoxDipole_ = true;      
809 >      }
810 >    
811 >    set<AtomType*>::iterator i;
812 >    set<AtomType*> atomTypes;
813 >    atomTypes = getSimulatedAtomTypes();    
814 >    bool usesElectrostatic = false;
815 >    bool usesMetallic = false;
816 >    bool usesDirectional = false;
817 >    bool usesFluctuatingCharges =  false;
818 >    //loop over all of the atom types
819 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
820 >      usesElectrostatic |= (*i)->isElectrostatic();
821 >      usesMetallic |= (*i)->isMetal();
822 >      usesDirectional |= (*i)->isDirectional();
823 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
824 >    }
825  
448  n_exclude = excludes->getSize();
449  excl = excludes->getFortranArray();
450  
826   #ifdef IS_MPI
827 <  n_global = mpiSim->getNAtomsGlobal();
827 >    bool temp;
828 >    temp = usesDirectional;
829 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
830 >                              MPI::LOR);
831 >        
832 >    temp = usesMetallic;
833 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
834 >                              MPI::LOR);
835 >    
836 >    temp = usesElectrostatic;
837 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
838 >                              MPI::LOR);
839 >
840 >    temp = usesFluctuatingCharges;
841 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
842 >                              MPI::LOR);
843   #else
844 <  n_global = n_atoms;
844 >
845 >    usesDirectionalAtoms_ = usesDirectional;
846 >    usesMetallicAtoms_ = usesMetallic;
847 >    usesElectrostaticAtoms_ = usesElectrostatic;
848 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
849 >
850   #endif
851 <  
852 <  isError = 0;
853 <  
854 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
855 <  //it may not be a good idea to pass the address of first element in vector
461 <  //since c++ standard does not require vector to be stored continuously in meomory
462 <  //Most of the compilers will organize the memory of vector continuously
463 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
464 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
465 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
851 >    
852 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
853 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
854 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
855 >  }
856  
857 <  if( isError ){
857 >
858 >  vector<int> SimInfo::getGlobalAtomIndices() {
859 >    SimInfo::MoleculeIterator mi;
860 >    Molecule* mol;
861 >    Molecule::AtomIterator ai;
862 >    Atom* atom;
863 >
864 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
865      
866 <    sprintf( painCave.errMsg,
867 <             "There was an error setting the simulation information in fortran.\n" );
868 <    painCave.isFatal = 1;
869 <    painCave.severity = OOPSE_ERROR;
870 <    simError();
866 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
867 >      
868 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
869 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
870 >      }
871 >    }
872 >    return GlobalAtomIndices;
873    }
475  
476 #ifdef IS_MPI
477  sprintf( checkPointMsg,
478           "succesfully sent the simulation information to fortran.\n");
479  MPIcheckPoint();
480 #endif // is_mpi
481  
482  this->ndf = this->getNDF();
483  this->ndfRaw = this->getNDFraw();
484  this->ndfTrans = this->getNDFtranslational();
485 }
874  
487 void SimInfo::setDefaultRcut( double theRcut ){
488  
489  haveRcut = 1;
490  rCut = theRcut;
491  rList = rCut + 1.0;
492  
493  notifyFortranCutoffs( &rCut, &rSw, &rList );
494 }
875  
876 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
876 >  vector<int> SimInfo::getGlobalGroupIndices() {
877 >    SimInfo::MoleculeIterator mi;
878 >    Molecule* mol;
879 >    Molecule::CutoffGroupIterator ci;
880 >    CutoffGroup* cg;
881  
882 <  rSw = theRsw;
883 <  setDefaultRcut( theRcut );
884 < }
882 >    vector<int> GlobalGroupIndices;
883 >    
884 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
885 >      
886 >      //local index of cutoff group is trivial, it only depends on the
887 >      //order of travesing
888 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
889 >           cg = mol->nextCutoffGroup(ci)) {
890 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
891 >      }        
892 >    }
893 >    return GlobalGroupIndices;
894 >  }
895  
896  
897 < void SimInfo::checkCutOffs( void ){
898 <  
899 <  if( boxIsInit ){
897 >  void SimInfo::prepareTopology() {
898 >
899 >    //calculate mass ratio of cutoff group
900 >    SimInfo::MoleculeIterator mi;
901 >    Molecule* mol;
902 >    Molecule::CutoffGroupIterator ci;
903 >    CutoffGroup* cg;
904 >    Molecule::AtomIterator ai;
905 >    Atom* atom;
906 >    RealType totalMass;
907 >
908 >    /**
909 >     * The mass factor is the relative mass of an atom to the total
910 >     * mass of the cutoff group it belongs to.  By default, all atoms
911 >     * are their own cutoff groups, and therefore have mass factors of
912 >     * 1.  We need some special handling for massless atoms, which
913 >     * will be treated as carrying the entire mass of the cutoff
914 >     * group.
915 >     */
916 >    massFactors_.clear();
917 >    massFactors_.resize(getNAtoms(), 1.0);
918      
919 <    //we need to check cutOffs against the box
920 <    
921 <    if( rCut > maxCutoff ){
922 <      sprintf( painCave.errMsg,
923 <               "cutoffRadius is too large for the current periodic box.\n"
924 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
925 <               "\tThis is larger than half of at least one of the\n"
926 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
927 <               "\n"
928 <               "\t[ %G %G %G ]\n"
929 <               "\t[ %G %G %G ]\n"
930 <               "\t[ %G %G %G ]\n",
931 <               rCut, currentTime,
932 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
933 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
934 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
935 <      painCave.severity = OOPSE_ERROR;
936 <      painCave.isFatal = 1;
937 <      simError();
919 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
920 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
921 >           cg = mol->nextCutoffGroup(ci)) {
922 >
923 >        totalMass = cg->getMass();
924 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
925 >          // Check for massless groups - set mfact to 1 if true
926 >          if (totalMass != 0)
927 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
928 >          else
929 >            massFactors_[atom->getLocalIndex()] = 1.0;
930 >        }
931 >      }      
932 >    }
933 >
934 >    // Build the identArray_
935 >
936 >    identArray_.clear();
937 >    identArray_.reserve(getNAtoms());    
938 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
939 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
940 >        identArray_.push_back(atom->getIdent());
941 >      }
942      }    
943 <  } else {
944 <    // initialize this stuff before using it, OK?
529 <    sprintf( painCave.errMsg,
530 <             "Trying to check cutoffs without a box.\n"
531 <             "\tOOPSE should have better programmers than that.\n" );
532 <    painCave.severity = OOPSE_ERROR;
533 <    painCave.isFatal = 1;
534 <    simError();      
943 >    
944 >    topologyDone_ = true;
945    }
536  
537 }
946  
947 < void SimInfo::addProperty(GenericData* prop){
947 >  void SimInfo::addProperty(GenericData* genData) {
948 >    properties_.addProperty(genData);  
949 >  }
950  
951 <  map<string, GenericData*>::iterator result;
952 <  result = properties.find(prop->getID());
543 <  
544 <  //we can't simply use  properties[prop->getID()] = prop,
545 <  //it will cause memory leak if we already contain a propery which has the same name of prop
546 <  
547 <  if(result != properties.end()){
548 <    
549 <    delete (*result).second;
550 <    (*result).second = prop;
551 <      
951 >  void SimInfo::removeProperty(const string& propName) {
952 >    properties_.removeProperty(propName);  
953    }
553  else{
954  
955 <    properties[prop->getID()] = prop;
955 >  void SimInfo::clearProperties() {
956 >    properties_.clearProperties();
957 >  }
958  
959 +  vector<string> SimInfo::getPropertyNames() {
960 +    return properties_.getPropertyNames();  
961    }
962 <    
963 < }
962 >      
963 >  vector<GenericData*> SimInfo::getProperties() {
964 >    return properties_.getProperties();
965 >  }
966  
967 < GenericData* SimInfo::getProperty(const string& propName){
967 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
968 >    return properties_.getPropertyByName(propName);
969 >  }
970 >
971 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
972 >    if (sman_ == sman) {
973 >      return;
974 >    }    
975 >    delete sman_;
976 >    sman_ = sman;
977 >
978 >    Molecule* mol;
979 >    RigidBody* rb;
980 >    Atom* atom;
981 >    CutoffGroup* cg;
982 >    SimInfo::MoleculeIterator mi;
983 >    Molecule::RigidBodyIterator rbIter;
984 >    Molecule::AtomIterator atomIter;
985 >    Molecule::CutoffGroupIterator cgIter;
986  
987 <  map<string, GenericData*>::iterator result;
988 <  
989 <  //string lowerCaseName = ();
990 <  
991 <  result = properties.find(propName);
992 <  
993 <  if(result != properties.end())
994 <    return (*result).second;  
995 <  else  
996 <    return NULL;  
997 < }
987 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
988 >        
989 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
990 >           atom = mol->nextAtom(atomIter)) {
991 >        atom->setSnapshotManager(sman_);
992 >      }
993 >        
994 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
995 >           rb = mol->nextRigidBody(rbIter)) {
996 >        rb->setSnapshotManager(sman_);
997 >      }
998  
999 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1000 +           cg = mol->nextCutoffGroup(cgIter)) {
1001 +        cg->setSnapshotManager(sman_);
1002 +      }
1003 +    }    
1004 +    
1005 +  }
1006  
1007 < void SimInfo::getFortranGroupArrays(SimInfo* info,
1008 <                                    vector<int>& FglobalGroupMembership,
1009 <                                    vector<double>& mfact){
1007 >
1008 >  ostream& operator <<(ostream& o, SimInfo& info) {
1009 >
1010 >    return o;
1011 >  }
1012 >  
1013    
1014 <  Molecule* myMols;
1015 <  Atom** myAtoms;
1016 <  int numAtom;
1017 <  double mtot;
1018 <  int numMol;
1019 <  int numCutoffGroups;
1020 <  CutoffGroup* myCutoffGroup;
1021 <  vector<CutoffGroup*>::iterator iterCutoff;
1022 <  Atom* cutoffAtom;
1023 <  vector<Atom*>::iterator iterAtom;
1024 <  int atomIndex;
591 <  double totalMass;
1014 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1015 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1016 >      sprintf(painCave.errMsg,
1017 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1018 >              "\tindex exceeds number of known objects!\n");
1019 >      painCave.isFatal = 1;
1020 >      simError();
1021 >      return NULL;
1022 >    } else
1023 >      return IOIndexToIntegrableObject.at(index);
1024 >  }
1025    
1026 <  mfact.clear();
1027 <  FglobalGroupMembership.clear();
1028 <  
1026 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1027 >    IOIndexToIntegrableObject= v;
1028 >  }
1029  
1030 <  // Fix the silly fortran indexing problem
1030 >  int SimInfo::getNGlobalConstraints() {
1031 >    int nGlobalConstraints;
1032   #ifdef IS_MPI
1033 <  numAtom = mpiSim->getNAtomsGlobal();
1033 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1034 >                              MPI::INT, MPI::SUM);
1035   #else
1036 <  numAtom = n_atoms;
1036 >    nGlobalConstraints =  nConstraints_;
1037   #endif
1038 <  for (int i = 0; i < numAtom; i++)
604 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
605 <  
606 <
607 <  myMols = info->molecules;
608 <  numMol = info->n_mol;
609 <  for(int i  = 0; i < numMol; i++){
610 <    numCutoffGroups = myMols[i].getNCutoffGroups();
611 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
612 <        myCutoffGroup != NULL;
613 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
614 <
615 <      totalMass = myCutoffGroup->getMass();
616 <      
617 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
618 <          cutoffAtom != NULL;
619 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
620 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
621 <      }  
622 <    }
1038 >    return nGlobalConstraints;
1039    }
1040  
1041 < }
1041 > }//end namespace OpenMD
1042 >

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 124 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines