35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
59 |
|
#include "utils/simError.h" |
60 |
|
#include "selection/SelectionManager.hpp" |
61 |
|
#include "io/ForceFieldOptions.hpp" |
62 |
< |
#include "UseTheForce/ForceField.hpp" |
62 |
> |
#include "brains/ForceField.hpp" |
63 |
|
#include "nonbonded/SwitchingFunction.hpp" |
64 |
+ |
#ifdef IS_MPI |
65 |
+ |
#include <mpi.h> |
66 |
+ |
#endif |
67 |
|
|
68 |
|
using namespace std; |
69 |
|
namespace OpenMD { |
72 |
|
forceField_(ff), simParams_(simParams), |
73 |
|
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
74 |
|
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
75 |
< |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
75 |
> |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
77 |
|
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
78 |
< |
nConstraints_(0), sman_(NULL), topologyDone_(false), |
78 |
> |
nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 |
|
calcBoxDipole_(false), useAtomicVirial_(true) { |
80 |
|
|
81 |
|
MoleculeStamp* molStamp; |
88 |
|
|
89 |
|
vector<Component*> components = simParams->getComponents(); |
90 |
|
|
91 |
< |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
91 |
> |
for (vector<Component*>::iterator i = components.begin(); |
92 |
> |
i !=components.end(); ++i) { |
93 |
|
molStamp = (*i)->getMoleculeStamp(); |
94 |
|
nMolWithSameStamp = (*i)->getNMol(); |
95 |
|
|
130 |
|
//equal to the total number of atoms minus number of atoms belong to |
131 |
|
//cutoff group defined in meta-data file plus the number of cutoff |
132 |
|
//groups defined in meta-data file |
128 |
– |
std::cerr << "nGA = " << nGlobalAtoms_ << "\n"; |
129 |
– |
std::cerr << "nCA = " << nCutoffAtoms << "\n"; |
130 |
– |
std::cerr << "nG = " << nGroups << "\n"; |
133 |
|
|
134 |
|
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
133 |
– |
|
134 |
– |
std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n"; |
135 |
|
|
136 |
|
//every free atom (atom does not belong to rigid bodies) is an |
137 |
|
//integrable object therefore the total number of integrable objects |
226 |
|
|
227 |
|
|
228 |
|
void SimInfo::calcNdf() { |
229 |
< |
int ndf_local; |
229 |
> |
int ndf_local, nfq_local; |
230 |
|
MoleculeIterator i; |
231 |
|
vector<StuntDouble*>::iterator j; |
232 |
+ |
vector<Atom*>::iterator k; |
233 |
+ |
|
234 |
|
Molecule* mol; |
235 |
< |
StuntDouble* integrableObject; |
235 |
> |
StuntDouble* sd; |
236 |
> |
Atom* atom; |
237 |
|
|
238 |
|
ndf_local = 0; |
239 |
+ |
nfq_local = 0; |
240 |
|
|
241 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
238 |
– |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
239 |
– |
integrableObject = mol->nextIntegrableObject(j)) { |
242 |
|
|
243 |
+ |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
244 |
+ |
sd = mol->nextIntegrableObject(j)) { |
245 |
+ |
|
246 |
|
ndf_local += 3; |
247 |
|
|
248 |
< |
if (integrableObject->isDirectional()) { |
249 |
< |
if (integrableObject->isLinear()) { |
248 |
> |
if (sd->isDirectional()) { |
249 |
> |
if (sd->isLinear()) { |
250 |
|
ndf_local += 2; |
251 |
|
} else { |
252 |
|
ndf_local += 3; |
253 |
|
} |
254 |
|
} |
250 |
– |
|
255 |
|
} |
256 |
+ |
|
257 |
+ |
for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
258 |
+ |
atom = mol->nextFluctuatingCharge(k)) { |
259 |
+ |
if (atom->isFluctuatingCharge()) { |
260 |
+ |
nfq_local++; |
261 |
+ |
} |
262 |
+ |
} |
263 |
|
} |
264 |
|
|
265 |
+ |
ndfLocal_ = ndf_local; |
266 |
+ |
|
267 |
|
// n_constraints is local, so subtract them on each processor |
268 |
|
ndf_local -= nConstraints_; |
269 |
|
|
270 |
|
#ifdef IS_MPI |
271 |
< |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
271 |
> |
MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM); |
272 |
> |
MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1, |
273 |
> |
MPI::INT, MPI::SUM); |
274 |
|
#else |
275 |
|
ndf_ = ndf_local; |
276 |
+ |
nGlobalFluctuatingCharges_ = nfq_local; |
277 |
|
#endif |
278 |
|
|
279 |
|
// nZconstraints_ is global, as are the 3 COM translations for the |
284 |
|
|
285 |
|
int SimInfo::getFdf() { |
286 |
|
#ifdef IS_MPI |
287 |
< |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
287 |
> |
MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM); |
288 |
|
#else |
289 |
|
fdf_ = fdf_local; |
290 |
|
#endif |
291 |
|
return fdf_; |
292 |
|
} |
293 |
+ |
|
294 |
+ |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
295 |
+ |
int nLocalCutoffAtoms = 0; |
296 |
+ |
Molecule* mol; |
297 |
+ |
MoleculeIterator mi; |
298 |
+ |
CutoffGroup* cg; |
299 |
+ |
Molecule::CutoffGroupIterator ci; |
300 |
|
|
301 |
+ |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
302 |
+ |
|
303 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
304 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
305 |
+ |
nLocalCutoffAtoms += cg->getNumAtom(); |
306 |
+ |
|
307 |
+ |
} |
308 |
+ |
} |
309 |
+ |
|
310 |
+ |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
311 |
+ |
} |
312 |
+ |
|
313 |
|
void SimInfo::calcNdfRaw() { |
314 |
|
int ndfRaw_local; |
315 |
|
|
316 |
|
MoleculeIterator i; |
317 |
|
vector<StuntDouble*>::iterator j; |
318 |
|
Molecule* mol; |
319 |
< |
StuntDouble* integrableObject; |
319 |
> |
StuntDouble* sd; |
320 |
|
|
321 |
|
// Raw degrees of freedom that we have to set |
322 |
|
ndfRaw_local = 0; |
323 |
|
|
324 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
290 |
– |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
291 |
– |
integrableObject = mol->nextIntegrableObject(j)) { |
325 |
|
|
326 |
+ |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
327 |
+ |
sd = mol->nextIntegrableObject(j)) { |
328 |
+ |
|
329 |
|
ndfRaw_local += 3; |
330 |
|
|
331 |
< |
if (integrableObject->isDirectional()) { |
332 |
< |
if (integrableObject->isLinear()) { |
331 |
> |
if (sd->isDirectional()) { |
332 |
> |
if (sd->isLinear()) { |
333 |
|
ndfRaw_local += 2; |
334 |
|
} else { |
335 |
|
ndfRaw_local += 3; |
340 |
|
} |
341 |
|
|
342 |
|
#ifdef IS_MPI |
343 |
< |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
343 |
> |
MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM); |
344 |
|
#else |
345 |
|
ndfRaw_ = ndfRaw_local; |
346 |
|
#endif |
353 |
|
|
354 |
|
|
355 |
|
#ifdef IS_MPI |
356 |
< |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
356 |
> |
MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1, |
357 |
> |
MPI::INT, MPI::SUM); |
358 |
|
#else |
359 |
|
ndfTrans_ = ndfTrans_local; |
360 |
|
#endif |
390 |
|
Molecule::RigidBodyIterator rbIter; |
391 |
|
RigidBody* rb; |
392 |
|
Molecule::IntegrableObjectIterator ii; |
393 |
< |
StuntDouble* integrableObject; |
393 |
> |
StuntDouble* sd; |
394 |
|
|
395 |
< |
for (integrableObject = mol->beginIntegrableObject(ii); |
396 |
< |
integrableObject != NULL; |
360 |
< |
integrableObject = mol->nextIntegrableObject(ii)) { |
395 |
> |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
396 |
> |
sd = mol->nextIntegrableObject(ii)) { |
397 |
|
|
398 |
< |
if (integrableObject->isRigidBody()) { |
399 |
< |
rb = static_cast<RigidBody*>(integrableObject); |
398 |
> |
if (sd->isRigidBody()) { |
399 |
> |
rb = static_cast<RigidBody*>(sd); |
400 |
|
vector<Atom*> atoms = rb->getAtoms(); |
401 |
|
set<int> rigidAtoms; |
402 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
407 |
|
} |
408 |
|
} else { |
409 |
|
set<int> oneAtomSet; |
410 |
< |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
411 |
< |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
410 |
> |
oneAtomSet.insert(sd->getGlobalIndex()); |
411 |
> |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
412 |
|
} |
413 |
|
} |
414 |
|
|
542 |
|
Molecule::RigidBodyIterator rbIter; |
543 |
|
RigidBody* rb; |
544 |
|
Molecule::IntegrableObjectIterator ii; |
545 |
< |
StuntDouble* integrableObject; |
546 |
< |
|
547 |
< |
for (integrableObject = mol->beginIntegrableObject(ii); |
548 |
< |
integrableObject != NULL; |
513 |
< |
integrableObject = mol->nextIntegrableObject(ii)) { |
545 |
> |
StuntDouble* sd; |
546 |
> |
|
547 |
> |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
548 |
> |
sd = mol->nextIntegrableObject(ii)) { |
549 |
|
|
550 |
< |
if (integrableObject->isRigidBody()) { |
551 |
< |
rb = static_cast<RigidBody*>(integrableObject); |
550 |
> |
if (sd->isRigidBody()) { |
551 |
> |
rb = static_cast<RigidBody*>(sd); |
552 |
|
vector<Atom*> atoms = rb->getAtoms(); |
553 |
|
set<int> rigidAtoms; |
554 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
559 |
|
} |
560 |
|
} else { |
561 |
|
set<int> oneAtomSet; |
562 |
< |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
563 |
< |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
562 |
> |
oneAtomSet.insert(sd->getGlobalIndex()); |
563 |
> |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
564 |
|
} |
565 |
|
} |
566 |
|
|
715 |
|
Atom* atom; |
716 |
|
set<AtomType*> atomTypes; |
717 |
|
|
718 |
< |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
719 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
718 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
719 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
720 |
> |
atom = mol->nextAtom(ai)) { |
721 |
|
atomTypes.insert(atom->getAtomType()); |
722 |
|
} |
723 |
|
} |
724 |
< |
|
724 |
> |
|
725 |
|
#ifdef IS_MPI |
726 |
|
|
727 |
|
// loop over the found atom types on this processor, and add their |
728 |
|
// numerical idents to a vector: |
729 |
< |
|
729 |
> |
|
730 |
|
vector<int> foundTypes; |
731 |
|
set<AtomType*>::iterator i; |
732 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
735 |
|
// count_local holds the number of found types on this processor |
736 |
|
int count_local = foundTypes.size(); |
737 |
|
|
702 |
– |
// count holds the total number of found types on all processors |
703 |
– |
// (some will be redundant with the ones found locally): |
704 |
– |
int count; |
705 |
– |
MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
706 |
– |
|
707 |
– |
// create a vector to hold the globally found types, and resize it: |
708 |
– |
vector<int> ftGlobal; |
709 |
– |
ftGlobal.resize(count); |
710 |
– |
vector<int> counts; |
711 |
– |
|
738 |
|
int nproc = MPI::COMM_WORLD.Get_size(); |
713 |
– |
counts.resize(nproc); |
714 |
– |
vector<int> disps; |
715 |
– |
disps.resize(nproc); |
739 |
|
|
740 |
< |
// now spray out the foundTypes to all the other processors: |
740 |
> |
// we need arrays to hold the counts and displacement vectors for |
741 |
> |
// all processors |
742 |
> |
vector<int> counts(nproc, 0); |
743 |
> |
vector<int> disps(nproc, 0); |
744 |
> |
|
745 |
> |
// fill the counts array |
746 |
> |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
747 |
> |
1, MPI::INT); |
748 |
> |
|
749 |
> |
// use the processor counts to compute the displacement array |
750 |
> |
disps[0] = 0; |
751 |
> |
int totalCount = counts[0]; |
752 |
> |
for (int iproc = 1; iproc < nproc; iproc++) { |
753 |
> |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
754 |
> |
totalCount += counts[iproc]; |
755 |
> |
} |
756 |
> |
|
757 |
> |
// we need a (possibly redundant) set of all found types: |
758 |
> |
vector<int> ftGlobal(totalCount); |
759 |
|
|
760 |
+ |
// now spray out the foundTypes to all the other processors: |
761 |
|
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
762 |
< |
&ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
762 |
> |
&ftGlobal[0], &counts[0], &disps[0], |
763 |
> |
MPI::INT); |
764 |
|
|
765 |
+ |
vector<int>::iterator j; |
766 |
+ |
|
767 |
|
// foundIdents is a stl set, so inserting an already found ident |
768 |
|
// will have no effect. |
769 |
|
set<int> foundIdents; |
770 |
< |
vector<int>::iterator j; |
770 |
> |
|
771 |
|
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
772 |
|
foundIdents.insert((*j)); |
773 |
|
|
774 |
|
// now iterate over the foundIdents and get the actual atom types |
775 |
|
// that correspond to these: |
776 |
|
set<int>::iterator it; |
777 |
< |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
777 |
> |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
778 |
|
atomTypes.insert( forceField_->getAtomType((*it)) ); |
779 |
|
|
780 |
|
#endif |
781 |
< |
|
781 |
> |
|
782 |
|
return atomTypes; |
783 |
|
} |
784 |
|
|
785 |
+ |
|
786 |
+ |
int getGlobalCountOfType(AtomType* atype) { |
787 |
+ |
/* |
788 |
+ |
set<AtomType*> atypes = getSimulatedAtomTypes(); |
789 |
+ |
map<AtomType*, int> counts_; |
790 |
+ |
|
791 |
+ |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
792 |
+ |
for(atom = mol->beginAtom(ai); atom != NULL; |
793 |
+ |
atom = mol->nextAtom(ai)) { |
794 |
+ |
atom->getAtomType(); |
795 |
+ |
} |
796 |
+ |
} |
797 |
+ |
*/ |
798 |
+ |
return 0; |
799 |
+ |
} |
800 |
+ |
|
801 |
|
void SimInfo::setupSimVariables() { |
802 |
|
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
803 |
< |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
803 |
> |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole |
804 |
> |
// parameter is true |
805 |
|
calcBoxDipole_ = false; |
806 |
|
if ( simParams_->haveAccumulateBoxDipole() ) |
807 |
|
if ( simParams_->getAccumulateBoxDipole() ) { |
808 |
|
calcBoxDipole_ = true; |
809 |
|
} |
810 |
< |
|
810 |
> |
|
811 |
|
set<AtomType*>::iterator i; |
812 |
|
set<AtomType*> atomTypes; |
813 |
|
atomTypes = getSimulatedAtomTypes(); |
814 |
< |
int usesElectrostatic = 0; |
815 |
< |
int usesMetallic = 0; |
816 |
< |
int usesDirectional = 0; |
814 |
> |
bool usesElectrostatic = false; |
815 |
> |
bool usesMetallic = false; |
816 |
> |
bool usesDirectional = false; |
817 |
> |
bool usesFluctuatingCharges = false; |
818 |
|
//loop over all of the atom types |
819 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
820 |
|
usesElectrostatic |= (*i)->isElectrostatic(); |
821 |
|
usesMetallic |= (*i)->isMetal(); |
822 |
|
usesDirectional |= (*i)->isDirectional(); |
823 |
+ |
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
824 |
|
} |
825 |
|
|
826 |
< |
#ifdef IS_MPI |
827 |
< |
int temp; |
826 |
> |
#ifdef IS_MPI |
827 |
> |
bool temp; |
828 |
|
temp = usesDirectional; |
829 |
< |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
830 |
< |
|
829 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, |
830 |
> |
MPI::LOR); |
831 |
> |
|
832 |
|
temp = usesMetallic; |
833 |
< |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
834 |
< |
|
833 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, |
834 |
> |
MPI::LOR); |
835 |
> |
|
836 |
|
temp = usesElectrostatic; |
837 |
< |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
837 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, |
838 |
> |
MPI::LOR); |
839 |
> |
|
840 |
> |
temp = usesFluctuatingCharges; |
841 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, |
842 |
> |
MPI::LOR); |
843 |
> |
#else |
844 |
> |
|
845 |
> |
usesDirectionalAtoms_ = usesDirectional; |
846 |
> |
usesMetallicAtoms_ = usesMetallic; |
847 |
> |
usesElectrostaticAtoms_ = usesElectrostatic; |
848 |
> |
usesFluctuatingCharges_ = usesFluctuatingCharges; |
849 |
> |
|
850 |
|
#endif |
851 |
+ |
|
852 |
+ |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
853 |
+ |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
854 |
+ |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
855 |
|
} |
856 |
|
|
857 |
|
|
895 |
|
|
896 |
|
|
897 |
|
void SimInfo::prepareTopology() { |
816 |
– |
int nExclude, nOneTwo, nOneThree, nOneFour; |
898 |
|
|
899 |
|
//calculate mass ratio of cutoff group |
900 |
|
SimInfo::MoleculeIterator mi; |
905 |
|
Atom* atom; |
906 |
|
RealType totalMass; |
907 |
|
|
908 |
< |
//to avoid memory reallocation, reserve enough space for massFactors_ |
908 |
> |
/** |
909 |
> |
* The mass factor is the relative mass of an atom to the total |
910 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
911 |
> |
* are their own cutoff groups, and therefore have mass factors of |
912 |
> |
* 1. We need some special handling for massless atoms, which |
913 |
> |
* will be treated as carrying the entire mass of the cutoff |
914 |
> |
* group. |
915 |
> |
*/ |
916 |
|
massFactors_.clear(); |
917 |
< |
massFactors_.reserve(getNCutoffGroups()); |
917 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
918 |
|
|
919 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
920 |
|
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
923 |
|
totalMass = cg->getMass(); |
924 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
925 |
|
// Check for massless groups - set mfact to 1 if true |
926 |
< |
if (totalMass != 0) |
927 |
< |
massFactors_.push_back(atom->getMass()/totalMass); |
926 |
> |
if (totalMass != 0) |
927 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
928 |
|
else |
929 |
< |
massFactors_.push_back( 1.0 ); |
929 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
930 |
|
} |
931 |
|
} |
932 |
|
} |
943 |
|
|
944 |
|
//scan topology |
945 |
|
|
858 |
– |
nExclude = excludedInteractions_.getSize(); |
859 |
– |
nOneTwo = oneTwoInteractions_.getSize(); |
860 |
– |
nOneThree = oneThreeInteractions_.getSize(); |
861 |
– |
nOneFour = oneFourInteractions_.getSize(); |
862 |
– |
|
946 |
|
int* excludeList = excludedInteractions_.getPairList(); |
947 |
|
int* oneTwoList = oneTwoInteractions_.getPairList(); |
948 |
|
int* oneThreeList = oneThreeInteractions_.getPairList(); |
949 |
|
int* oneFourList = oneFourInteractions_.getPairList(); |
950 |
|
|
868 |
– |
//setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0], |
869 |
– |
// &nExclude, excludeList, |
870 |
– |
// &nOneTwo, oneTwoList, |
871 |
– |
// &nOneThree, oneThreeList, |
872 |
– |
// &nOneFour, oneFourList, |
873 |
– |
// &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
874 |
– |
// &fortranGlobalGroupMembership[0], &isError); |
875 |
– |
|
951 |
|
topologyDone_ = true; |
952 |
|
} |
953 |
|
|
993 |
|
|
994 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
995 |
|
|
996 |
< |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
996 |
> |
for (atom = mol->beginAtom(atomIter); atom != NULL; |
997 |
> |
atom = mol->nextAtom(atomIter)) { |
998 |
|
atom->setSnapshotManager(sman_); |
999 |
|
} |
1000 |
|
|
1001 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
1001 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
1002 |
> |
rb = mol->nextRigidBody(rbIter)) { |
1003 |
|
rb->setSnapshotManager(sman_); |
1004 |
|
} |
1005 |
|
|
1006 |
< |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
1006 |
> |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; |
1007 |
> |
cg = mol->nextCutoffGroup(cgIter)) { |
1008 |
|
cg->setSnapshotManager(sman_); |
1009 |
|
} |
1010 |
|
} |
1011 |
|
|
1012 |
|
} |
1013 |
|
|
936 |
– |
Vector3d SimInfo::getComVel(){ |
937 |
– |
SimInfo::MoleculeIterator i; |
938 |
– |
Molecule* mol; |
1014 |
|
|
940 |
– |
Vector3d comVel(0.0); |
941 |
– |
RealType totalMass = 0.0; |
942 |
– |
|
943 |
– |
|
944 |
– |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
945 |
– |
RealType mass = mol->getMass(); |
946 |
– |
totalMass += mass; |
947 |
– |
comVel += mass * mol->getComVel(); |
948 |
– |
} |
949 |
– |
|
950 |
– |
#ifdef IS_MPI |
951 |
– |
RealType tmpMass = totalMass; |
952 |
– |
Vector3d tmpComVel(comVel); |
953 |
– |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
954 |
– |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
955 |
– |
#endif |
956 |
– |
|
957 |
– |
comVel /= totalMass; |
958 |
– |
|
959 |
– |
return comVel; |
960 |
– |
} |
961 |
– |
|
962 |
– |
Vector3d SimInfo::getCom(){ |
963 |
– |
SimInfo::MoleculeIterator i; |
964 |
– |
Molecule* mol; |
965 |
– |
|
966 |
– |
Vector3d com(0.0); |
967 |
– |
RealType totalMass = 0.0; |
968 |
– |
|
969 |
– |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
970 |
– |
RealType mass = mol->getMass(); |
971 |
– |
totalMass += mass; |
972 |
– |
com += mass * mol->getCom(); |
973 |
– |
} |
974 |
– |
|
975 |
– |
#ifdef IS_MPI |
976 |
– |
RealType tmpMass = totalMass; |
977 |
– |
Vector3d tmpCom(com); |
978 |
– |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
979 |
– |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
980 |
– |
#endif |
981 |
– |
|
982 |
– |
com /= totalMass; |
983 |
– |
|
984 |
– |
return com; |
985 |
– |
|
986 |
– |
} |
987 |
– |
|
1015 |
|
ostream& operator <<(ostream& o, SimInfo& info) { |
1016 |
|
|
1017 |
|
return o; |
1018 |
|
} |
1019 |
|
|
1020 |
< |
|
994 |
< |
/* |
995 |
< |
Returns center of mass and center of mass velocity in one function call. |
996 |
< |
*/ |
997 |
< |
|
998 |
< |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
999 |
< |
SimInfo::MoleculeIterator i; |
1000 |
< |
Molecule* mol; |
1001 |
< |
|
1002 |
< |
|
1003 |
< |
RealType totalMass = 0.0; |
1004 |
< |
|
1005 |
< |
|
1006 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1007 |
< |
RealType mass = mol->getMass(); |
1008 |
< |
totalMass += mass; |
1009 |
< |
com += mass * mol->getCom(); |
1010 |
< |
comVel += mass * mol->getComVel(); |
1011 |
< |
} |
1012 |
< |
|
1013 |
< |
#ifdef IS_MPI |
1014 |
< |
RealType tmpMass = totalMass; |
1015 |
< |
Vector3d tmpCom(com); |
1016 |
< |
Vector3d tmpComVel(comVel); |
1017 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1018 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1019 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1020 |
< |
#endif |
1021 |
< |
|
1022 |
< |
com /= totalMass; |
1023 |
< |
comVel /= totalMass; |
1024 |
< |
} |
1025 |
< |
|
1026 |
< |
/* |
1027 |
< |
Return intertia tensor for entire system and angular momentum Vector. |
1028 |
< |
|
1029 |
< |
|
1030 |
< |
[ Ixx -Ixy -Ixz ] |
1031 |
< |
J =| -Iyx Iyy -Iyz | |
1032 |
< |
[ -Izx -Iyz Izz ] |
1033 |
< |
*/ |
1034 |
< |
|
1035 |
< |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1036 |
< |
|
1037 |
< |
|
1038 |
< |
RealType xx = 0.0; |
1039 |
< |
RealType yy = 0.0; |
1040 |
< |
RealType zz = 0.0; |
1041 |
< |
RealType xy = 0.0; |
1042 |
< |
RealType xz = 0.0; |
1043 |
< |
RealType yz = 0.0; |
1044 |
< |
Vector3d com(0.0); |
1045 |
< |
Vector3d comVel(0.0); |
1046 |
< |
|
1047 |
< |
getComAll(com, comVel); |
1048 |
< |
|
1049 |
< |
SimInfo::MoleculeIterator i; |
1050 |
< |
Molecule* mol; |
1051 |
< |
|
1052 |
< |
Vector3d thisq(0.0); |
1053 |
< |
Vector3d thisv(0.0); |
1054 |
< |
|
1055 |
< |
RealType thisMass = 0.0; |
1056 |
< |
|
1057 |
< |
|
1058 |
< |
|
1059 |
< |
|
1060 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1061 |
< |
|
1062 |
< |
thisq = mol->getCom()-com; |
1063 |
< |
thisv = mol->getComVel()-comVel; |
1064 |
< |
thisMass = mol->getMass(); |
1065 |
< |
// Compute moment of intertia coefficients. |
1066 |
< |
xx += thisq[0]*thisq[0]*thisMass; |
1067 |
< |
yy += thisq[1]*thisq[1]*thisMass; |
1068 |
< |
zz += thisq[2]*thisq[2]*thisMass; |
1069 |
< |
|
1070 |
< |
// compute products of intertia |
1071 |
< |
xy += thisq[0]*thisq[1]*thisMass; |
1072 |
< |
xz += thisq[0]*thisq[2]*thisMass; |
1073 |
< |
yz += thisq[1]*thisq[2]*thisMass; |
1074 |
< |
|
1075 |
< |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1076 |
< |
|
1077 |
< |
} |
1078 |
< |
|
1079 |
< |
|
1080 |
< |
inertiaTensor(0,0) = yy + zz; |
1081 |
< |
inertiaTensor(0,1) = -xy; |
1082 |
< |
inertiaTensor(0,2) = -xz; |
1083 |
< |
inertiaTensor(1,0) = -xy; |
1084 |
< |
inertiaTensor(1,1) = xx + zz; |
1085 |
< |
inertiaTensor(1,2) = -yz; |
1086 |
< |
inertiaTensor(2,0) = -xz; |
1087 |
< |
inertiaTensor(2,1) = -yz; |
1088 |
< |
inertiaTensor(2,2) = xx + yy; |
1089 |
< |
|
1090 |
< |
#ifdef IS_MPI |
1091 |
< |
Mat3x3d tmpI(inertiaTensor); |
1092 |
< |
Vector3d tmpAngMom; |
1093 |
< |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1094 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1095 |
< |
#endif |
1096 |
< |
|
1097 |
< |
return; |
1098 |
< |
} |
1099 |
< |
|
1100 |
< |
//Returns the angular momentum of the system |
1101 |
< |
Vector3d SimInfo::getAngularMomentum(){ |
1102 |
< |
|
1103 |
< |
Vector3d com(0.0); |
1104 |
< |
Vector3d comVel(0.0); |
1105 |
< |
Vector3d angularMomentum(0.0); |
1106 |
< |
|
1107 |
< |
getComAll(com,comVel); |
1108 |
< |
|
1109 |
< |
SimInfo::MoleculeIterator i; |
1110 |
< |
Molecule* mol; |
1111 |
< |
|
1112 |
< |
Vector3d thisr(0.0); |
1113 |
< |
Vector3d thisp(0.0); |
1114 |
< |
|
1115 |
< |
RealType thisMass; |
1116 |
< |
|
1117 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1118 |
< |
thisMass = mol->getMass(); |
1119 |
< |
thisr = mol->getCom()-com; |
1120 |
< |
thisp = (mol->getComVel()-comVel)*thisMass; |
1121 |
< |
|
1122 |
< |
angularMomentum += cross( thisr, thisp ); |
1123 |
< |
|
1124 |
< |
} |
1125 |
< |
|
1126 |
< |
#ifdef IS_MPI |
1127 |
< |
Vector3d tmpAngMom; |
1128 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1129 |
< |
#endif |
1130 |
< |
|
1131 |
< |
return angularMomentum; |
1132 |
< |
} |
1133 |
< |
|
1020 |
> |
|
1021 |
|
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1022 |
< |
return IOIndexToIntegrableObject.at(index); |
1022 |
> |
if (index >= int(IOIndexToIntegrableObject.size())) { |
1023 |
> |
sprintf(painCave.errMsg, |
1024 |
> |
"SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n" |
1025 |
> |
"\tindex exceeds number of known objects!\n"); |
1026 |
> |
painCave.isFatal = 1; |
1027 |
> |
simError(); |
1028 |
> |
return NULL; |
1029 |
> |
} else |
1030 |
> |
return IOIndexToIntegrableObject.at(index); |
1031 |
|
} |
1032 |
|
|
1033 |
|
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1034 |
|
IOIndexToIntegrableObject= v; |
1035 |
|
} |
1036 |
|
|
1142 |
– |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1143 |
– |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1144 |
– |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1145 |
– |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1146 |
– |
*/ |
1147 |
– |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1148 |
– |
Mat3x3d intTensor; |
1149 |
– |
RealType det; |
1150 |
– |
Vector3d dummyAngMom; |
1151 |
– |
RealType sysconstants; |
1152 |
– |
RealType geomCnst; |
1153 |
– |
|
1154 |
– |
geomCnst = 3.0/2.0; |
1155 |
– |
/* Get the inertial tensor and angular momentum for free*/ |
1156 |
– |
getInertiaTensor(intTensor,dummyAngMom); |
1157 |
– |
|
1158 |
– |
det = intTensor.determinant(); |
1159 |
– |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1160 |
– |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1161 |
– |
return; |
1162 |
– |
} |
1163 |
– |
|
1164 |
– |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1165 |
– |
Mat3x3d intTensor; |
1166 |
– |
Vector3d dummyAngMom; |
1167 |
– |
RealType sysconstants; |
1168 |
– |
RealType geomCnst; |
1169 |
– |
|
1170 |
– |
geomCnst = 3.0/2.0; |
1171 |
– |
/* Get the inertial tensor and angular momentum for free*/ |
1172 |
– |
getInertiaTensor(intTensor,dummyAngMom); |
1173 |
– |
|
1174 |
– |
detI = intTensor.determinant(); |
1175 |
– |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1176 |
– |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1177 |
– |
return; |
1178 |
– |
} |
1179 |
– |
/* |
1180 |
– |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1181 |
– |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1182 |
– |
sdByGlobalIndex_ = v; |
1183 |
– |
} |
1184 |
– |
|
1185 |
– |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1186 |
– |
//assert(index < nAtoms_ + nRigidBodies_); |
1187 |
– |
return sdByGlobalIndex_.at(index); |
1188 |
– |
} |
1189 |
– |
*/ |
1037 |
|
int SimInfo::getNGlobalConstraints() { |
1038 |
|
int nGlobalConstraints; |
1039 |
|
#ifdef IS_MPI |
1040 |
< |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1041 |
< |
MPI_COMM_WORLD); |
1040 |
> |
MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1, |
1041 |
> |
MPI::INT, MPI::SUM); |
1042 |
|
#else |
1043 |
|
nGlobalConstraints = nConstraints_; |
1044 |
|
#endif |