ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1503 by gezelter, Sat Oct 2 19:54:41 2010 UTC vs.
Revision 1850 by gezelter, Wed Feb 20 15:39:39 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 #include "UseTheForce/doForces_interface.h"
60 #include "UseTheForce/DarkSide/neighborLists_interface.h"
61 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
63 <
68 <
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
72 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 + using namespace std;
69   namespace OpenMD {
75  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76    std::map<int, std::set<int> >::iterator i = container.find(index);
77    std::set<int> result;
78    if (i != container.end()) {
79        result = i->second;
80    }
81
82    return result;
83  }
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
79 <    calcBoxDipole_(false), useAtomicVirial_(true) {
80 <
81 <
82 <      MoleculeStamp* molStamp;
83 <      int nMolWithSameStamp;
84 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
85 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
86 <      CutoffGroupStamp* cgStamp;    
87 <      RigidBodyStamp* rbStamp;
88 <      int nRigidAtoms = 0;
89 <
90 <      std::vector<Component*> components = simParams->getComponents();
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      nMolWithSameStamp = (*i)->getNMol();
95        
96 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
97 <        molStamp = (*i)->getMoleculeStamp();
98 <        nMolWithSameStamp = (*i)->getNMol();
99 <        
100 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
101 <
102 <        //calculate atoms in molecules
103 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
104 <
105 <        //calculate atoms in cutoff groups
106 <        int nAtomsInGroups = 0;
107 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118 <        
119 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 <          cgStamp = molStamp->getCutoffGroupStamp(j);
121 <          nAtomsInGroups += cgStamp->getNMembers();
122 <        }
123 <
124 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125 <
126 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
127 <
128 <        //calculate atoms in rigid bodies
129 <        int nAtomsInRigidBodies = 0;
130 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131 <        
132 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
133 <          rbStamp = molStamp->getRigidBodyStamp(j);
134 <          nAtomsInRigidBodies += rbStamp->getNMembers();
135 <        }
136 <
137 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
138 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
139 <        
96 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
97 >      
98 >      //calculate atoms in molecules
99 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
100 >      
101 >      //calculate atoms in cutoff groups
102 >      int nAtomsInGroups = 0;
103 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104 >      
105 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 >        cgStamp = molStamp->getCutoffGroupStamp(j);
107 >        nAtomsInGroups += cgStamp->getNMembers();
108        }
109 <
110 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
111 <      //group therefore the total number of cutoff groups in the system is
112 <      //equal to the total number of atoms minus number of atoms belong to
113 <      //cutoff group defined in meta-data file plus the number of cutoff
114 <      //groups defined in meta-data file
115 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
116 <
117 <      //every free atom (atom does not belong to rigid bodies) is an
118 <      //integrable object therefore the total number of integrable objects
119 <      //in the system is equal to the total number of atoms minus number of
120 <      //atoms belong to rigid body defined in meta-data file plus the number
121 <      //of rigid bodies defined in meta-data file
122 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
123 <                                                + nGlobalRigidBodies_;
124 <  
125 <      nGlobalMols_ = molStampIds_.size();
158 <      molToProcMap_.resize(nGlobalMols_);
109 >      
110 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 >      
112 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113 >      
114 >      //calculate atoms in rigid bodies
115 >      int nAtomsInRigidBodies = 0;
116 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 >      
118 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
119 >        rbStamp = molStamp->getRigidBodyStamp(j);
120 >        nAtomsInRigidBodies += rbStamp->getNMembers();
121 >      }
122 >      
123 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 >      
126      }
127 +    
128 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
129 +    //group therefore the total number of cutoff groups in the system is
130 +    //equal to the total number of atoms minus number of atoms belong to
131 +    //cutoff group defined in meta-data file plus the number of cutoff
132 +    //groups defined in meta-data file
133  
134 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135 +    
136 +    //every free atom (atom does not belong to rigid bodies) is an
137 +    //integrable object therefore the total number of integrable objects
138 +    //in the system is equal to the total number of atoms minus number of
139 +    //atoms belong to rigid body defined in meta-data file plus the number
140 +    //of rigid bodies defined in meta-data file
141 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 +      + nGlobalRigidBodies_;
143 +    
144 +    nGlobalMols_ = molStampIds_.size();
145 +    molToProcMap_.resize(nGlobalMols_);
146 +  }
147 +  
148    SimInfo::~SimInfo() {
149 <    std::map<int, Molecule*>::iterator i;
149 >    map<int, Molecule*>::iterator i;
150      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151        delete i->second;
152      }
# Line 170 | Line 157 | namespace OpenMD {
157      delete forceField_;
158    }
159  
173  int SimInfo::getNGlobalConstraints() {
174    int nGlobalConstraints;
175 #ifdef IS_MPI
176    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
177                  MPI_COMM_WORLD);    
178 #else
179    nGlobalConstraints =  nConstraints_;
180 #endif
181    return nGlobalConstraints;
182  }
160  
161    bool SimInfo::addMolecule(Molecule* mol) {
162      MoleculeIterator i;
163 <
163 >    
164      i = molecules_.find(mol->getGlobalIndex());
165      if (i == molecules_.end() ) {
166 <
167 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
168 <        
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169        nAtoms_ += mol->getNAtoms();
170        nBonds_ += mol->getNBonds();
171        nBends_ += mol->getNBends();
# Line 198 | Line 175 | namespace OpenMD {
175        nIntegrableObjects_ += mol->getNIntegrableObjects();
176        nCutoffGroups_ += mol->getNCutoffGroups();
177        nConstraints_ += mol->getNConstraintPairs();
178 <
178 >      
179        addInteractionPairs(mol);
180 <  
180 >      
181        return true;
182      } else {
183        return false;
184      }
185    }
186 <
186 >  
187    bool SimInfo::removeMolecule(Molecule* mol) {
188      MoleculeIterator i;
189      i = molecules_.find(mol->getGlobalIndex());
# Line 234 | Line 211 | namespace OpenMD {
211      } else {
212        return false;
213      }
237
238
214    }    
215  
216          
# Line 251 | Line 226 | namespace OpenMD {
226  
227  
228    void SimInfo::calcNdf() {
229 <    int ndf_local;
229 >    int ndf_local, nfq_local;
230      MoleculeIterator i;
231 <    std::vector<StuntDouble*>::iterator j;
231 >    vector<StuntDouble*>::iterator j;
232 >    vector<Atom*>::iterator k;
233 >
234      Molecule* mol;
235 <    StuntDouble* integrableObject;
235 >    StuntDouble* sd;
236 >    Atom* atom;
237  
238      ndf_local = 0;
239 +    nfq_local = 0;
240      
241      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
263      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
264           integrableObject = mol->nextIntegrableObject(j)) {
242  
243 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
244 +           sd = mol->nextIntegrableObject(j)) {
245 +
246          ndf_local += 3;
247  
248 <        if (integrableObject->isDirectional()) {
249 <          if (integrableObject->isLinear()) {
248 >        if (sd->isDirectional()) {
249 >          if (sd->isLinear()) {
250              ndf_local += 2;
251            } else {
252              ndf_local += 3;
253            }
254          }
275            
255        }
256 +
257 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
258 +           atom = mol->nextFluctuatingCharge(k)) {
259 +        if (atom->isFluctuatingCharge()) {
260 +          nfq_local++;
261 +        }
262 +      }
263      }
264      
265 +    ndfLocal_ = ndf_local;
266 +
267      // n_constraints is local, so subtract them on each processor
268      ndf_local -= nConstraints_;
269  
270   #ifdef IS_MPI
271 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
271 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
272 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
273 >                              MPI::INT, MPI::SUM);
274   #else
275      ndf_ = ndf_local;
276 +    nGlobalFluctuatingCharges_ = nfq_local;
277   #endif
278  
279      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 293 | Line 284 | namespace OpenMD {
284  
285    int SimInfo::getFdf() {
286   #ifdef IS_MPI
287 <    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
288   #else
289      fdf_ = fdf_local;
290   #endif
291      return fdf_;
292    }
293 +  
294 +  unsigned int SimInfo::getNLocalCutoffGroups(){
295 +    int nLocalCutoffAtoms = 0;
296 +    Molecule* mol;
297 +    MoleculeIterator mi;
298 +    CutoffGroup* cg;
299 +    Molecule::CutoffGroupIterator ci;
300      
301 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
302 +      
303 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
304 +           cg = mol->nextCutoffGroup(ci)) {
305 +        nLocalCutoffAtoms += cg->getNumAtom();
306 +        
307 +      }        
308 +    }
309 +    
310 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
311 +  }
312 +    
313    void SimInfo::calcNdfRaw() {
314      int ndfRaw_local;
315  
316      MoleculeIterator i;
317 <    std::vector<StuntDouble*>::iterator j;
317 >    vector<StuntDouble*>::iterator j;
318      Molecule* mol;
319 <    StuntDouble* integrableObject;
319 >    StuntDouble* sd;
320  
321      // Raw degrees of freedom that we have to set
322      ndfRaw_local = 0;
323      
324      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
315      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
316           integrableObject = mol->nextIntegrableObject(j)) {
325  
326 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
327 +           sd = mol->nextIntegrableObject(j)) {
328 +
329          ndfRaw_local += 3;
330  
331 <        if (integrableObject->isDirectional()) {
332 <          if (integrableObject->isLinear()) {
331 >        if (sd->isDirectional()) {
332 >          if (sd->isLinear()) {
333              ndfRaw_local += 2;
334            } else {
335              ndfRaw_local += 3;
# Line 329 | Line 340 | namespace OpenMD {
340      }
341      
342   #ifdef IS_MPI
343 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
343 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
344   #else
345      ndfRaw_ = ndfRaw_local;
346   #endif
# Line 342 | Line 353 | namespace OpenMD {
353  
354  
355   #ifdef IS_MPI
356 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
356 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
357 >                              MPI::INT, MPI::SUM);
358   #else
359      ndfTrans_ = ndfTrans_local;
360   #endif
# Line 353 | Line 365 | namespace OpenMD {
365  
366    void SimInfo::addInteractionPairs(Molecule* mol) {
367      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
368 <    std::vector<Bond*>::iterator bondIter;
369 <    std::vector<Bend*>::iterator bendIter;
370 <    std::vector<Torsion*>::iterator torsionIter;
371 <    std::vector<Inversion*>::iterator inversionIter;
368 >    vector<Bond*>::iterator bondIter;
369 >    vector<Bend*>::iterator bendIter;
370 >    vector<Torsion*>::iterator torsionIter;
371 >    vector<Inversion*>::iterator inversionIter;
372      Bond* bond;
373      Bend* bend;
374      Torsion* torsion;
# Line 374 | Line 386 | namespace OpenMD {
386      // always be excluded.  These are done at the bottom of this
387      // function.
388  
389 <    std::map<int, std::set<int> > atomGroups;
389 >    map<int, set<int> > atomGroups;
390      Molecule::RigidBodyIterator rbIter;
391      RigidBody* rb;
392      Molecule::IntegrableObjectIterator ii;
393 <    StuntDouble* integrableObject;
393 >    StuntDouble* sd;
394      
395 <    for (integrableObject = mol->beginIntegrableObject(ii);
396 <         integrableObject != NULL;
385 <         integrableObject = mol->nextIntegrableObject(ii)) {
395 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
396 >         sd = mol->nextIntegrableObject(ii)) {
397        
398 <      if (integrableObject->isRigidBody()) {
399 <        rb = static_cast<RigidBody*>(integrableObject);
400 <        std::vector<Atom*> atoms = rb->getAtoms();
401 <        std::set<int> rigidAtoms;
398 >      if (sd->isRigidBody()) {
399 >        rb = static_cast<RigidBody*>(sd);
400 >        vector<Atom*> atoms = rb->getAtoms();
401 >        set<int> rigidAtoms;
402          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
403            rigidAtoms.insert(atoms[i]->getGlobalIndex());
404          }
405          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
406 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
406 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
407          }      
408        } else {
409 <        std::set<int> oneAtomSet;
410 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
411 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
409 >        set<int> oneAtomSet;
410 >        oneAtomSet.insert(sd->getGlobalIndex());
411 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
412        }
413      }  
414            
# Line 500 | Line 511 | namespace OpenMD {
511  
512      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
513           rb = mol->nextRigidBody(rbIter)) {
514 <      std::vector<Atom*> atoms = rb->getAtoms();
514 >      vector<Atom*> atoms = rb->getAtoms();
515        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
516          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
517            a = atoms[i]->getGlobalIndex();
# Line 514 | Line 525 | namespace OpenMD {
525  
526    void SimInfo::removeInteractionPairs(Molecule* mol) {
527      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
528 <    std::vector<Bond*>::iterator bondIter;
529 <    std::vector<Bend*>::iterator bendIter;
530 <    std::vector<Torsion*>::iterator torsionIter;
531 <    std::vector<Inversion*>::iterator inversionIter;
528 >    vector<Bond*>::iterator bondIter;
529 >    vector<Bend*>::iterator bendIter;
530 >    vector<Torsion*>::iterator torsionIter;
531 >    vector<Inversion*>::iterator inversionIter;
532      Bond* bond;
533      Bend* bend;
534      Torsion* torsion;
# Line 527 | Line 538 | namespace OpenMD {
538      int c;
539      int d;
540  
541 <    std::map<int, std::set<int> > atomGroups;
541 >    map<int, set<int> > atomGroups;
542      Molecule::RigidBodyIterator rbIter;
543      RigidBody* rb;
544      Molecule::IntegrableObjectIterator ii;
545 <    StuntDouble* integrableObject;
545 >    StuntDouble* sd;
546      
547 <    for (integrableObject = mol->beginIntegrableObject(ii);
548 <         integrableObject != NULL;
538 <         integrableObject = mol->nextIntegrableObject(ii)) {
547 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
548 >         sd = mol->nextIntegrableObject(ii)) {
549        
550 <      if (integrableObject->isRigidBody()) {
551 <        rb = static_cast<RigidBody*>(integrableObject);
552 <        std::vector<Atom*> atoms = rb->getAtoms();
553 <        std::set<int> rigidAtoms;
550 >      if (sd->isRigidBody()) {
551 >        rb = static_cast<RigidBody*>(sd);
552 >        vector<Atom*> atoms = rb->getAtoms();
553 >        set<int> rigidAtoms;
554          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
555            rigidAtoms.insert(atoms[i]->getGlobalIndex());
556          }
557          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
558 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
558 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
559          }      
560        } else {
561 <        std::set<int> oneAtomSet;
562 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
563 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
561 >        set<int> oneAtomSet;
562 >        oneAtomSet.insert(sd->getGlobalIndex());
563 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
564        }
565      }  
566  
# Line 653 | Line 663 | namespace OpenMD {
663  
664      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
665           rb = mol->nextRigidBody(rbIter)) {
666 <      std::vector<Atom*> atoms = rb->getAtoms();
666 >      vector<Atom*> atoms = rb->getAtoms();
667        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
668          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
669            a = atoms[i]->getGlobalIndex();
# Line 676 | Line 686 | namespace OpenMD {
686      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
687    }
688  
679  void SimInfo::update() {
689  
690 <    setupSimType();
691 <
692 < #ifdef IS_MPI
693 <    setupFortranParallel();
694 < #endif
695 <
696 <    setupFortranSim();
697 <
698 <    //setup fortran force field
690 <    /** @deprecate */    
691 <    int isError = 0;
692 <    
693 <    setupCutoff();
694 <    
695 <    setupElectrostaticSummationMethod( isError );
696 <    setupSwitchingFunction();
697 <    setupAccumulateBoxDipole();
698 <
699 <    if(isError){
700 <      sprintf( painCave.errMsg,
701 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
702 <      painCave.isFatal = 1;
703 <      simError();
704 <    }
705 <
690 >  /**
691 >   * update
692 >   *
693 >   *  Performs the global checks and variable settings after the
694 >   *  objects have been created.
695 >   *
696 >   */
697 >  void SimInfo::update() {  
698 >    setupSimVariables();
699      calcNdf();
700      calcNdfRaw();
701      calcNdfTrans();
709
710    fortranInitialized_ = true;
702    }
703 <
704 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
703 >  
704 >  /**
705 >   * getSimulatedAtomTypes
706 >   *
707 >   * Returns an STL set of AtomType* that are actually present in this
708 >   * simulation.  Must query all processors to assemble this information.
709 >   *
710 >   */
711 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
712      SimInfo::MoleculeIterator mi;
713      Molecule* mol;
714      Molecule::AtomIterator ai;
715      Atom* atom;
716 <    std::set<AtomType*> atomTypes;
717 <
716 >    set<AtomType*> atomTypes;
717 >    
718      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
719 <
720 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
719 >      for(atom = mol->beginAtom(ai); atom != NULL;
720 >          atom = mol->nextAtom(ai)) {
721          atomTypes.insert(atom->getAtomType());
722 <      }
723 <        
726 <    }
727 <
728 <    return atomTypes;        
729 <  }
730 <
731 <  void SimInfo::setupSimType() {
732 <    std::set<AtomType*>::iterator i;
733 <    std::set<AtomType*> atomTypes;
734 <    atomTypes = getUniqueAtomTypes();
722 >      }      
723 >    }    
724      
725 <    int useLennardJones = 0;
737 <    int useElectrostatic = 0;
738 <    int useEAM = 0;
739 <    int useSC = 0;
740 <    int useCharge = 0;
741 <    int useDirectional = 0;
742 <    int useDipole = 0;
743 <    int useGayBerne = 0;
744 <    int useSticky = 0;
745 <    int useStickyPower = 0;
746 <    int useShape = 0;
747 <    int useFLARB = 0; //it is not in AtomType yet
748 <    int useDirectionalAtom = 0;    
749 <    int useElectrostatics = 0;
750 <    //usePBC and useRF are from simParams
751 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
752 <    int useRF;
753 <    int useSF;
754 <    int useSP;
755 <    int useBoxDipole;
725 > #ifdef IS_MPI
726  
727 <    std::string myMethod;
728 <
759 <    // set the useRF logical
760 <    useRF = 0;
761 <    useSF = 0;
762 <    useSP = 0;
763 <    useBoxDipole = 0;
764 <
765 <
766 <    if (simParams_->haveElectrostaticSummationMethod()) {
767 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
768 <      toUpper(myMethod);
769 <      if (myMethod == "REACTION_FIELD"){
770 <        useRF = 1;
771 <      } else if (myMethod == "SHIFTED_FORCE"){
772 <        useSF = 1;
773 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
774 <        useSP = 1;
775 <      }
776 <    }
727 >    // loop over the found atom types on this processor, and add their
728 >    // numerical idents to a vector:
729      
730 <    if (simParams_->haveAccumulateBoxDipole())
731 <      if (simParams_->getAccumulateBoxDipole())
732 <        useBoxDipole = 1;
730 >    vector<int> foundTypes;
731 >    set<AtomType*>::iterator i;
732 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
733 >      foundTypes.push_back( (*i)->getIdent() );
734  
735 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
735 >    // count_local holds the number of found types on this processor
736 >    int count_local = foundTypes.size();
737  
738 <    //loop over all of the atom types
785 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
786 <      useLennardJones |= (*i)->isLennardJones();
787 <      useElectrostatic |= (*i)->isElectrostatic();
788 <      useEAM |= (*i)->isEAM();
789 <      useSC |= (*i)->isSC();
790 <      useCharge |= (*i)->isCharge();
791 <      useDirectional |= (*i)->isDirectional();
792 <      useDipole |= (*i)->isDipole();
793 <      useGayBerne |= (*i)->isGayBerne();
794 <      useSticky |= (*i)->isSticky();
795 <      useStickyPower |= (*i)->isStickyPower();
796 <      useShape |= (*i)->isShape();
797 <    }
738 >    int nproc = MPI::COMM_WORLD.Get_size();
739  
740 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
741 <      useDirectionalAtom = 1;
742 <    }
740 >    // we need arrays to hold the counts and displacement vectors for
741 >    // all processors
742 >    vector<int> counts(nproc, 0);
743 >    vector<int> disps(nproc, 0);
744  
745 <    if (useCharge || useDipole) {
746 <      useElectrostatics = 1;
745 >    // fill the counts array
746 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
747 >                              1, MPI::INT);
748 >  
749 >    // use the processor counts to compute the displacement array
750 >    disps[0] = 0;    
751 >    int totalCount = counts[0];
752 >    for (int iproc = 1; iproc < nproc; iproc++) {
753 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
754 >      totalCount += counts[iproc];
755      }
756  
757 < #ifdef IS_MPI    
758 <    int temp;
757 >    // we need a (possibly redundant) set of all found types:
758 >    vector<int> ftGlobal(totalCount);
759 >    
760 >    // now spray out the foundTypes to all the other processors:    
761 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
762 >                               &ftGlobal[0], &counts[0], &disps[0],
763 >                               MPI::INT);
764  
765 <    temp = usePBC;
811 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
765 >    vector<int>::iterator j;
766  
767 <    temp = useDirectionalAtom;
768 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767 >    // foundIdents is a stl set, so inserting an already found ident
768 >    // will have no effect.
769 >    set<int> foundIdents;
770  
771 <    temp = useLennardJones;
772 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
771 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
772 >      foundIdents.insert((*j));
773 >    
774 >    // now iterate over the foundIdents and get the actual atom types
775 >    // that correspond to these:
776 >    set<int>::iterator it;
777 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
778 >      atomTypes.insert( forceField_->getAtomType((*it)) );
779 >
780 > #endif
781  
782 <    temp = useElectrostatics;
783 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
782 >    return atomTypes;        
783 >  }
784  
822    temp = useCharge;
823    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
785  
786 <    temp = useDipole;
787 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
786 >  int getGlobalCountOfType(AtomType* atype) {
787 >    /*
788 >    set<AtomType*> atypes = getSimulatedAtomTypes();
789 >    map<AtomType*, int> counts_;
790  
791 <    temp = useSticky;
792 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
791 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
792 >      for(atom = mol->beginAtom(ai); atom != NULL;
793 >          atom = mol->nextAtom(ai)) {
794 >        atom->getAtomType();
795 >      }      
796 >    }    
797 >    */
798 >    return 0;
799 >  }
800  
801 <    temp = useStickyPower;
802 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
801 >  void SimInfo::setupSimVariables() {
802 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
803 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
804 >    // parameter is true
805 >    calcBoxDipole_ = false;
806 >    if ( simParams_->haveAccumulateBoxDipole() )
807 >      if ( simParams_->getAccumulateBoxDipole() ) {
808 >        calcBoxDipole_ = true;      
809 >      }
810      
811 <    temp = useGayBerne;
812 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
811 >    set<AtomType*>::iterator i;
812 >    set<AtomType*> atomTypes;
813 >    atomTypes = getSimulatedAtomTypes();    
814 >    bool usesElectrostatic = false;
815 >    bool usesMetallic = false;
816 >    bool usesDirectional = false;
817 >    bool usesFluctuatingCharges =  false;
818 >    //loop over all of the atom types
819 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
820 >      usesElectrostatic |= (*i)->isElectrostatic();
821 >      usesMetallic |= (*i)->isMetal();
822 >      usesDirectional |= (*i)->isDirectional();
823 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
824 >    }
825  
826 <    temp = useEAM;
827 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
828 <
829 <    temp = useSC;
830 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
826 > #ifdef IS_MPI
827 >    bool temp;
828 >    temp = usesDirectional;
829 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
830 >                              MPI::LOR);
831 >        
832 >    temp = usesMetallic;
833 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
834 >                              MPI::LOR);
835      
836 <    temp = useShape;
837 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
836 >    temp = usesElectrostatic;
837 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
838 >                              MPI::LOR);
839  
840 <    temp = useFLARB;
841 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
840 >    temp = usesFluctuatingCharges;
841 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
842 >                              MPI::LOR);
843 > #else
844  
845 <    temp = useRF;
846 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
845 >    usesDirectionalAtoms_ = usesDirectional;
846 >    usesMetallicAtoms_ = usesMetallic;
847 >    usesElectrostaticAtoms_ = usesElectrostatic;
848 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
849  
850 <    temp = useSF;
851 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
850 > #endif
851 >    
852 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
853 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
854 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
855 >  }
856  
855    temp = useSP;
856    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
857  
858 <    temp = useBoxDipole;
859 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
858 >  vector<int> SimInfo::getGlobalAtomIndices() {
859 >    SimInfo::MoleculeIterator mi;
860 >    Molecule* mol;
861 >    Molecule::AtomIterator ai;
862 >    Atom* atom;
863  
864 <    temp = useAtomicVirial_;
865 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
864 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
865 >    
866 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
867 >      
868 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
869 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
870 >      }
871 >    }
872 >    return GlobalAtomIndices;
873 >  }
874  
864 #endif
875  
876 <    fInfo_.SIM_uses_PBC = usePBC;    
877 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
878 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
879 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
880 <    fInfo_.SIM_uses_Charges = useCharge;
871 <    fInfo_.SIM_uses_Dipoles = useDipole;
872 <    fInfo_.SIM_uses_Sticky = useSticky;
873 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
874 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
875 <    fInfo_.SIM_uses_EAM = useEAM;
876 <    fInfo_.SIM_uses_SC = useSC;
877 <    fInfo_.SIM_uses_Shapes = useShape;
878 <    fInfo_.SIM_uses_FLARB = useFLARB;
879 <    fInfo_.SIM_uses_RF = useRF;
880 <    fInfo_.SIM_uses_SF = useSF;
881 <    fInfo_.SIM_uses_SP = useSP;
882 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
883 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
884 <  }
876 >  vector<int> SimInfo::getGlobalGroupIndices() {
877 >    SimInfo::MoleculeIterator mi;
878 >    Molecule* mol;
879 >    Molecule::CutoffGroupIterator ci;
880 >    CutoffGroup* cg;
881  
882 <  void SimInfo::setupFortranSim() {
887 <    int isError;
888 <    int nExclude, nOneTwo, nOneThree, nOneFour;
889 <    std::vector<int> fortranGlobalGroupMembership;
882 >    vector<int> GlobalGroupIndices;
883      
884 <    isError = 0;
885 <
886 <    //globalGroupMembership_ is filled by SimCreator    
887 <    for (int i = 0; i < nGlobalAtoms_; i++) {
888 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
884 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
885 >      
886 >      //local index of cutoff group is trivial, it only depends on the
887 >      //order of travesing
888 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
889 >           cg = mol->nextCutoffGroup(ci)) {
890 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
891 >      }        
892      }
893 +    return GlobalGroupIndices;
894 +  }
895  
896 +
897 +  void SimInfo::prepareTopology() {
898 +
899      //calculate mass ratio of cutoff group
899    std::vector<RealType> mfact;
900      SimInfo::MoleculeIterator mi;
901      Molecule* mol;
902      Molecule::CutoffGroupIterator ci;
# Line 905 | Line 905 | namespace OpenMD {
905      Atom* atom;
906      RealType totalMass;
907  
908 <    //to avoid memory reallocation, reserve enough space for mfact
909 <    mfact.reserve(getNCutoffGroups());
908 >    /**
909 >     * The mass factor is the relative mass of an atom to the total
910 >     * mass of the cutoff group it belongs to.  By default, all atoms
911 >     * are their own cutoff groups, and therefore have mass factors of
912 >     * 1.  We need some special handling for massless atoms, which
913 >     * will be treated as carrying the entire mass of the cutoff
914 >     * group.
915 >     */
916 >    massFactors_.clear();
917 >    massFactors_.resize(getNAtoms(), 1.0);
918      
919      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
920 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
920 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
921 >           cg = mol->nextCutoffGroup(ci)) {
922  
923          totalMass = cg->getMass();
924          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
925            // Check for massless groups - set mfact to 1 if true
926 <          if (totalMass != 0)
927 <            mfact.push_back(atom->getMass()/totalMass);
926 >          if (totalMass != 0)
927 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
928            else
929 <            mfact.push_back( 1.0 );
929 >            massFactors_[atom->getLocalIndex()] = 1.0;
930          }
931        }      
932      }
933  
934 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
926 <    std::vector<int> identArray;
934 >    // Build the identArray_
935  
936 <    //to avoid memory reallocation, reserve enough space identArray
937 <    identArray.reserve(getNAtoms());
930 <    
936 >    identArray_.clear();
937 >    identArray_.reserve(getNAtoms());    
938      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
939        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
940 <        identArray.push_back(atom->getIdent());
940 >        identArray_.push_back(atom->getIdent());
941        }
942      }    
936
937    //fill molMembershipArray
938    //molMembershipArray is filled by SimCreator    
939    std::vector<int> molMembershipArray(nGlobalAtoms_);
940    for (int i = 0; i < nGlobalAtoms_; i++) {
941      molMembershipArray[i] = globalMolMembership_[i] + 1;
942    }
943      
944 <    //setup fortran simulation
944 >    //scan topology
945  
946    nExclude = excludedInteractions_.getSize();
947    nOneTwo = oneTwoInteractions_.getSize();
948    nOneThree = oneThreeInteractions_.getSize();
949    nOneFour = oneFourInteractions_.getSize();
950
946      int* excludeList = excludedInteractions_.getPairList();
947      int* oneTwoList = oneTwoInteractions_.getPairList();
948      int* oneThreeList = oneThreeInteractions_.getPairList();
949      int* oneFourList = oneFourInteractions_.getPairList();
950  
951 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
952 <                   &nExclude, excludeList,
958 <                   &nOneTwo, oneTwoList,
959 <                   &nOneThree, oneThreeList,
960 <                   &nOneFour, oneFourList,
961 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
962 <                   &fortranGlobalGroupMembership[0], &isError);
963 <    
964 <    if( isError ){
965 <      
966 <      sprintf( painCave.errMsg,
967 <               "There was an error setting the simulation information in fortran.\n" );
968 <      painCave.isFatal = 1;
969 <      painCave.severity = OPENMD_ERROR;
970 <      simError();
971 <    }
972 <    
973 <    
974 <    sprintf( checkPointMsg,
975 <             "succesfully sent the simulation information to fortran.\n");
976 <    
977 <    errorCheckPoint();
978 <    
979 <    // Setup number of neighbors in neighbor list if present
980 <    if (simParams_->haveNeighborListNeighbors()) {
981 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
982 <      setNeighbors(&nlistNeighbors);
983 <    }
984 <  
951 >    topologyDone_ = true;
952 >  }
953  
954 +  void SimInfo::addProperty(GenericData* genData) {
955 +    properties_.addProperty(genData);  
956    }
957  
958 +  void SimInfo::removeProperty(const string& propName) {
959 +    properties_.removeProperty(propName);  
960 +  }
961  
962 <  void SimInfo::setupFortranParallel() {
963 < #ifdef IS_MPI    
991 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
992 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
993 <    std::vector<int> localToGlobalCutoffGroupIndex;
994 <    SimInfo::MoleculeIterator mi;
995 <    Molecule::AtomIterator ai;
996 <    Molecule::CutoffGroupIterator ci;
997 <    Molecule* mol;
998 <    Atom* atom;
999 <    CutoffGroup* cg;
1000 <    mpiSimData parallelData;
1001 <    int isError;
1002 <
1003 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1004 <
1005 <      //local index(index in DataStorge) of atom is important
1006 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1007 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1008 <      }
1009 <
1010 <      //local index of cutoff group is trivial, it only depends on the order of travesing
1011 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1012 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1013 <      }        
1014 <        
1015 <    }
1016 <
1017 <    //fill up mpiSimData struct
1018 <    parallelData.nMolGlobal = getNGlobalMolecules();
1019 <    parallelData.nMolLocal = getNMolecules();
1020 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
1021 <    parallelData.nAtomsLocal = getNAtoms();
1022 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1023 <    parallelData.nGroupsLocal = getNCutoffGroups();
1024 <    parallelData.myNode = worldRank;
1025 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1026 <
1027 <    //pass mpiSimData struct and index arrays to fortran
1028 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1029 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
1030 <                    &localToGlobalCutoffGroupIndex[0], &isError);
1031 <
1032 <    if (isError) {
1033 <      sprintf(painCave.errMsg,
1034 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1035 <      painCave.isFatal = 1;
1036 <      simError();
1037 <    }
1038 <
1039 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
1040 <    errorCheckPoint();
1041 <
1042 < #endif
962 >  void SimInfo::clearProperties() {
963 >    properties_.clearProperties();
964    }
965  
966 <  void SimInfo::setupCutoff() {          
967 <    
968 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1048 <
1049 <    // Check the cutoff policy
1050 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1051 <
1052 <    // Set LJ shifting bools to false
1053 <    ljsp_ = 0;
1054 <    ljsf_ = 0;
1055 <
1056 <    std::string myPolicy;
1057 <    if (forceFieldOptions_.haveCutoffPolicy()){
1058 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
1059 <    }else if (simParams_->haveCutoffPolicy()) {
1060 <      myPolicy = simParams_->getCutoffPolicy();
1061 <    }
1062 <
1063 <    if (!myPolicy.empty()){
1064 <      toUpper(myPolicy);
1065 <      if (myPolicy == "MIX") {
1066 <        cp = MIX_CUTOFF_POLICY;
1067 <      } else {
1068 <        if (myPolicy == "MAX") {
1069 <          cp = MAX_CUTOFF_POLICY;
1070 <        } else {
1071 <          if (myPolicy == "TRADITIONAL") {            
1072 <            cp = TRADITIONAL_CUTOFF_POLICY;
1073 <          } else {
1074 <            // throw error        
1075 <            sprintf( painCave.errMsg,
1076 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1077 <            painCave.isFatal = 1;
1078 <            simError();
1079 <          }    
1080 <        }          
1081 <      }
1082 <    }          
1083 <    notifyFortranCutoffPolicy(&cp);
1084 <
1085 <    // Check the Skin Thickness for neighborlists
1086 <    RealType skin;
1087 <    if (simParams_->haveSkinThickness()) {
1088 <      skin = simParams_->getSkinThickness();
1089 <      notifyFortranSkinThickness(&skin);
1090 <    }            
1091 <        
1092 <    // Check if the cutoff was set explicitly:
1093 <    if (simParams_->haveCutoffRadius()) {
1094 <      rcut_ = simParams_->getCutoffRadius();
1095 <      if (simParams_->haveSwitchingRadius()) {
1096 <        rsw_  = simParams_->getSwitchingRadius();
1097 <      } else {
1098 <        if (fInfo_.SIM_uses_Charges |
1099 <            fInfo_.SIM_uses_Dipoles |
1100 <            fInfo_.SIM_uses_RF) {
1101 <          
1102 <          rsw_ = 0.85 * rcut_;
1103 <          sprintf(painCave.errMsg,
1104 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1105 <                  "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
1106 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1107 <        painCave.isFatal = 0;
1108 <        simError();
1109 <        } else {
1110 <          rsw_ = rcut_;
1111 <          sprintf(painCave.errMsg,
1112 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1113 <                  "\tOpenMD will use the same value as the cutoffRadius.\n"
1114 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1115 <          painCave.isFatal = 0;
1116 <          simError();
1117 <        }
1118 <      }
1119 <
1120 <      if (simParams_->haveElectrostaticSummationMethod()) {
1121 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1122 <        toUpper(myMethod);
1123 <        
1124 <        if (myMethod == "SHIFTED_POTENTIAL") {
1125 <          ljsp_ = 1;
1126 <        } else if (myMethod == "SHIFTED_FORCE") {
1127 <          ljsf_ = 1;
1128 <        }
1129 <      }
1130 <
1131 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
966 >  vector<string> SimInfo::getPropertyNames() {
967 >    return properties_.getPropertyNames();  
968 >  }
969        
970 <    } else {
971 <      
1135 <      // For electrostatic atoms, we'll assume a large safe value:
1136 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1137 <        sprintf(painCave.errMsg,
1138 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1139 <                "\tOpenMD will use a default value of 15.0 angstroms"
1140 <                "\tfor the cutoffRadius.\n");
1141 <        painCave.isFatal = 0;
1142 <        simError();
1143 <        rcut_ = 15.0;
1144 <      
1145 <        if (simParams_->haveElectrostaticSummationMethod()) {
1146 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1147 <          toUpper(myMethod);
1148 <          
1149 <          // For the time being, we're tethering the LJ shifted behavior to the
1150 <          // electrostaticSummationMethod keyword options
1151 <          if (myMethod == "SHIFTED_POTENTIAL") {
1152 <            ljsp_ = 1;
1153 <          } else if (myMethod == "SHIFTED_FORCE") {
1154 <            ljsf_ = 1;
1155 <          }
1156 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1157 <            if (simParams_->haveSwitchingRadius()){
1158 <              sprintf(painCave.errMsg,
1159 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1160 <                      "\teven though the electrostaticSummationMethod was\n"
1161 <                      "\tset to %s\n", myMethod.c_str());
1162 <              painCave.isFatal = 1;
1163 <              simError();            
1164 <            }
1165 <          }
1166 <        }
1167 <      
1168 <        if (simParams_->haveSwitchingRadius()){
1169 <          rsw_ = simParams_->getSwitchingRadius();
1170 <        } else {        
1171 <          sprintf(painCave.errMsg,
1172 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1173 <                  "\tOpenMD will use a default value of\n"
1174 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1175 <          painCave.isFatal = 0;
1176 <          simError();
1177 <          rsw_ = 0.85 * rcut_;
1178 <        }
1179 <
1180 <        Electrostatic::setElectrostaticCutoffRadius(rcut_, rsw_);
1181 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1182 <
1183 <      } else {
1184 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1185 <        // We'll punt and let fortran figure out the cutoffs later.
1186 <        
1187 <        notifyFortranYouAreOnYourOwn();
1188 <
1189 <      }
1190 <    }
970 >  vector<GenericData*> SimInfo::getProperties() {
971 >    return properties_.getProperties();
972    }
973  
974 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1194 <    
1195 <    int errorOut;
1196 <    ElectrostaticSummationMethod esm = NONE;
1197 <    ElectrostaticScreeningMethod sm = UNDAMPED;
1198 <    RealType alphaVal;
1199 <    RealType dielectric;
1200 <    
1201 <    errorOut = isError;
1202 <
1203 <    if (simParams_->haveElectrostaticSummationMethod()) {
1204 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1205 <      toUpper(myMethod);
1206 <      if (myMethod == "NONE") {
1207 <        esm = NONE;
1208 <      } else {
1209 <        if (myMethod == "SWITCHING_FUNCTION") {
1210 <          esm = SWITCHING_FUNCTION;
1211 <        } else {
1212 <          if (myMethod == "SHIFTED_POTENTIAL") {
1213 <            esm = SHIFTED_POTENTIAL;
1214 <          } else {
1215 <            if (myMethod == "SHIFTED_FORCE") {            
1216 <              esm = SHIFTED_FORCE;
1217 <            } else {
1218 <              if (myMethod == "REACTION_FIELD") {
1219 <                esm = REACTION_FIELD;
1220 <                dielectric = simParams_->getDielectric();
1221 <                if (!simParams_->haveDielectric()) {
1222 <                  // throw warning
1223 <                  sprintf( painCave.errMsg,
1224 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1225 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1226 <                  painCave.isFatal = 0;
1227 <                  simError();
1228 <                }
1229 <              } else {
1230 <                // throw error        
1231 <                sprintf( painCave.errMsg,
1232 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1233 <                         "\t(Input file specified %s .)\n"
1234 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1235 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1236 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1237 <                painCave.isFatal = 1;
1238 <                simError();
1239 <              }    
1240 <            }          
1241 <          }
1242 <        }
1243 <      }
1244 <    }
1245 <    
1246 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1247 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1248 <      toUpper(myScreen);
1249 <      if (myScreen == "UNDAMPED") {
1250 <        sm = UNDAMPED;
1251 <      } else {
1252 <        if (myScreen == "DAMPED") {
1253 <          sm = DAMPED;
1254 <          if (!simParams_->haveDampingAlpha()) {
1255 <            // first set a cutoff dependent alpha value
1256 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1257 <            alphaVal = 0.5125 - rcut_* 0.025;
1258 <            // for values rcut > 20.5, alpha is zero
1259 <            if (alphaVal < 0) alphaVal = 0;
1260 <
1261 <            // throw warning
1262 <            sprintf( painCave.errMsg,
1263 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1264 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1265 <            painCave.isFatal = 0;
1266 <            simError();
1267 <          } else {
1268 <            alphaVal = simParams_->getDampingAlpha();
1269 <          }
1270 <          
1271 <        } else {
1272 <          // throw error        
1273 <          sprintf( painCave.errMsg,
1274 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1275 <                   "\t(Input file specified %s .)\n"
1276 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1277 <                   "or \"damped\".\n", myScreen.c_str() );
1278 <          painCave.isFatal = 1;
1279 <          simError();
1280 <        }
1281 <      }
1282 <    }
1283 <    
1284 <
1285 <    Electrostatic::setElectrostaticSummationMethod( esm );
1286 <    Electrostatic::setElectrostaticScreeningMethod( sm );
1287 <    Electrostatic::setDampingAlpha( alphaVal );
1288 <    Electrostatic::setReactionFieldDielectric( dielectric );
1289 <    initFortranFF( &errorOut );
1290 <  }
1291 <
1292 <  void SimInfo::setupSwitchingFunction() {    
1293 <    int ft = CUBIC;
1294 <
1295 <    if (simParams_->haveSwitchingFunctionType()) {
1296 <      std::string funcType = simParams_->getSwitchingFunctionType();
1297 <      toUpper(funcType);
1298 <      if (funcType == "CUBIC") {
1299 <        ft = CUBIC;
1300 <      } else {
1301 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1302 <          ft = FIFTH_ORDER_POLY;
1303 <        } else {
1304 <          // throw error        
1305 <          sprintf( painCave.errMsg,
1306 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1307 <          painCave.isFatal = 1;
1308 <          simError();
1309 <        }          
1310 <      }
1311 <    }
1312 <
1313 <    // send switching function notification to switcheroo
1314 <    setFunctionType(&ft);
1315 <
1316 <  }
1317 <
1318 <  void SimInfo::setupAccumulateBoxDipole() {    
1319 <
1320 <    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1321 <    if ( simParams_->haveAccumulateBoxDipole() )
1322 <      if ( simParams_->getAccumulateBoxDipole() ) {
1323 <        setAccumulateBoxDipole();
1324 <        calcBoxDipole_ = true;
1325 <      }
1326 <
1327 <  }
1328 <
1329 <  void SimInfo::addProperty(GenericData* genData) {
1330 <    properties_.addProperty(genData);  
1331 <  }
1332 <
1333 <  void SimInfo::removeProperty(const std::string& propName) {
1334 <    properties_.removeProperty(propName);  
1335 <  }
1336 <
1337 <  void SimInfo::clearProperties() {
1338 <    properties_.clearProperties();
1339 <  }
1340 <
1341 <  std::vector<std::string> SimInfo::getPropertyNames() {
1342 <    return properties_.getPropertyNames();  
1343 <  }
1344 <      
1345 <  std::vector<GenericData*> SimInfo::getProperties() {
1346 <    return properties_.getProperties();
1347 <  }
1348 <
1349 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
974 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
975      return properties_.getPropertyByName(propName);
976    }
977  
# Line 1360 | Line 985 | namespace OpenMD {
985      Molecule* mol;
986      RigidBody* rb;
987      Atom* atom;
988 +    CutoffGroup* cg;
989      SimInfo::MoleculeIterator mi;
990      Molecule::RigidBodyIterator rbIter;
991 <    Molecule::AtomIterator atomIter;;
991 >    Molecule::AtomIterator atomIter;
992 >    Molecule::CutoffGroupIterator cgIter;
993  
994      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
995          
996 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
996 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
997 >           atom = mol->nextAtom(atomIter)) {
998          atom->setSnapshotManager(sman_);
999        }
1000          
1001 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1001 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1002 >           rb = mol->nextRigidBody(rbIter)) {
1003          rb->setSnapshotManager(sman_);
1004        }
1005 +
1006 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1007 +           cg = mol->nextCutoffGroup(cgIter)) {
1008 +        cg->setSnapshotManager(sman_);
1009 +      }
1010      }    
1011      
1012    }
1013  
1380  Vector3d SimInfo::getComVel(){
1381    SimInfo::MoleculeIterator i;
1382    Molecule* mol;
1014  
1015 <    Vector3d comVel(0.0);
1385 <    RealType totalMass = 0.0;
1386 <    
1387 <
1388 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1389 <      RealType mass = mol->getMass();
1390 <      totalMass += mass;
1391 <      comVel += mass * mol->getComVel();
1392 <    }  
1015 >  ostream& operator <<(ostream& o, SimInfo& info) {
1016  
1394 #ifdef IS_MPI
1395    RealType tmpMass = totalMass;
1396    Vector3d tmpComVel(comVel);    
1397    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1398    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1399 #endif
1400
1401    comVel /= totalMass;
1402
1403    return comVel;
1404  }
1405
1406  Vector3d SimInfo::getCom(){
1407    SimInfo::MoleculeIterator i;
1408    Molecule* mol;
1409
1410    Vector3d com(0.0);
1411    RealType totalMass = 0.0;
1412    
1413    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1414      RealType mass = mol->getMass();
1415      totalMass += mass;
1416      com += mass * mol->getCom();
1417    }  
1418
1419 #ifdef IS_MPI
1420    RealType tmpMass = totalMass;
1421    Vector3d tmpCom(com);    
1422    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1423    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1424 #endif
1425
1426    com /= totalMass;
1427
1428    return com;
1429
1430  }        
1431
1432  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1433
1017      return o;
1018    }
1019    
1020 <  
1438 <   /*
1439 <   Returns center of mass and center of mass velocity in one function call.
1440 <   */
1441 <  
1442 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1443 <      SimInfo::MoleculeIterator i;
1444 <      Molecule* mol;
1445 <      
1446 <    
1447 <      RealType totalMass = 0.0;
1448 <    
1449 <
1450 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1451 <         RealType mass = mol->getMass();
1452 <         totalMass += mass;
1453 <         com += mass * mol->getCom();
1454 <         comVel += mass * mol->getComVel();          
1455 <      }  
1456 <      
1457 < #ifdef IS_MPI
1458 <      RealType tmpMass = totalMass;
1459 <      Vector3d tmpCom(com);  
1460 <      Vector3d tmpComVel(comVel);
1461 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1462 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1463 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1464 < #endif
1465 <      
1466 <      com /= totalMass;
1467 <      comVel /= totalMass;
1468 <   }        
1469 <  
1470 <   /*
1471 <   Return intertia tensor for entire system and angular momentum Vector.
1472 <
1473 <
1474 <       [  Ixx -Ixy  -Ixz ]
1475 <  J =| -Iyx  Iyy  -Iyz |
1476 <       [ -Izx -Iyz   Izz ]
1477 <    */
1478 <
1479 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1480 <      
1481 <
1482 <      RealType xx = 0.0;
1483 <      RealType yy = 0.0;
1484 <      RealType zz = 0.0;
1485 <      RealType xy = 0.0;
1486 <      RealType xz = 0.0;
1487 <      RealType yz = 0.0;
1488 <      Vector3d com(0.0);
1489 <      Vector3d comVel(0.0);
1490 <      
1491 <      getComAll(com, comVel);
1492 <      
1493 <      SimInfo::MoleculeIterator i;
1494 <      Molecule* mol;
1495 <      
1496 <      Vector3d thisq(0.0);
1497 <      Vector3d thisv(0.0);
1498 <
1499 <      RealType thisMass = 0.0;
1500 <    
1501 <      
1502 <      
1503 <  
1504 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1505 <        
1506 <         thisq = mol->getCom()-com;
1507 <         thisv = mol->getComVel()-comVel;
1508 <         thisMass = mol->getMass();
1509 <         // Compute moment of intertia coefficients.
1510 <         xx += thisq[0]*thisq[0]*thisMass;
1511 <         yy += thisq[1]*thisq[1]*thisMass;
1512 <         zz += thisq[2]*thisq[2]*thisMass;
1513 <        
1514 <         // compute products of intertia
1515 <         xy += thisq[0]*thisq[1]*thisMass;
1516 <         xz += thisq[0]*thisq[2]*thisMass;
1517 <         yz += thisq[1]*thisq[2]*thisMass;
1518 <            
1519 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1520 <            
1521 <      }  
1522 <      
1523 <      
1524 <      inertiaTensor(0,0) = yy + zz;
1525 <      inertiaTensor(0,1) = -xy;
1526 <      inertiaTensor(0,2) = -xz;
1527 <      inertiaTensor(1,0) = -xy;
1528 <      inertiaTensor(1,1) = xx + zz;
1529 <      inertiaTensor(1,2) = -yz;
1530 <      inertiaTensor(2,0) = -xz;
1531 <      inertiaTensor(2,1) = -yz;
1532 <      inertiaTensor(2,2) = xx + yy;
1533 <      
1534 < #ifdef IS_MPI
1535 <      Mat3x3d tmpI(inertiaTensor);
1536 <      Vector3d tmpAngMom;
1537 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1538 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1539 < #endif
1540 <              
1541 <      return;
1542 <   }
1543 <
1544 <   //Returns the angular momentum of the system
1545 <   Vector3d SimInfo::getAngularMomentum(){
1546 <      
1547 <      Vector3d com(0.0);
1548 <      Vector3d comVel(0.0);
1549 <      Vector3d angularMomentum(0.0);
1550 <      
1551 <      getComAll(com,comVel);
1552 <      
1553 <      SimInfo::MoleculeIterator i;
1554 <      Molecule* mol;
1555 <      
1556 <      Vector3d thisr(0.0);
1557 <      Vector3d thisp(0.0);
1558 <      
1559 <      RealType thisMass;
1560 <      
1561 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1562 <        thisMass = mol->getMass();
1563 <        thisr = mol->getCom()-com;
1564 <        thisp = (mol->getComVel()-comVel)*thisMass;
1565 <        
1566 <        angularMomentum += cross( thisr, thisp );
1567 <        
1568 <      }  
1569 <      
1570 < #ifdef IS_MPI
1571 <      Vector3d tmpAngMom;
1572 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1573 < #endif
1574 <      
1575 <      return angularMomentum;
1576 <   }
1577 <  
1020 >  
1021    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1022 <    return IOIndexToIntegrableObject.at(index);
1022 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1023 >      sprintf(painCave.errMsg,
1024 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1025 >              "\tindex exceeds number of known objects!\n");
1026 >      painCave.isFatal = 1;
1027 >      simError();
1028 >      return NULL;
1029 >    } else
1030 >      return IOIndexToIntegrableObject.at(index);
1031    }
1032    
1033 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1033 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1034      IOIndexToIntegrableObject= v;
1035    }
1036  
1037 <  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1038 <     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1039 <     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1040 <     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1041 <  */
1042 <  void SimInfo::getGyrationalVolume(RealType &volume){
1043 <    Mat3x3d intTensor;
1044 <    RealType det;
1045 <    Vector3d dummyAngMom;
1595 <    RealType sysconstants;
1596 <    RealType geomCnst;
1597 <
1598 <    geomCnst = 3.0/2.0;
1599 <    /* Get the inertial tensor and angular momentum for free*/
1600 <    getInertiaTensor(intTensor,dummyAngMom);
1601 <    
1602 <    det = intTensor.determinant();
1603 <    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1604 <    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1605 <    return;
1037 >  int SimInfo::getNGlobalConstraints() {
1038 >    int nGlobalConstraints;
1039 > #ifdef IS_MPI
1040 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1041 >                              MPI::INT, MPI::SUM);
1042 > #else
1043 >    nGlobalConstraints =  nConstraints_;
1044 > #endif
1045 >    return nGlobalConstraints;
1046    }
1047  
1608  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1609    Mat3x3d intTensor;
1610    Vector3d dummyAngMom;
1611    RealType sysconstants;
1612    RealType geomCnst;
1613
1614    geomCnst = 3.0/2.0;
1615    /* Get the inertial tensor and angular momentum for free*/
1616    getInertiaTensor(intTensor,dummyAngMom);
1617    
1618    detI = intTensor.determinant();
1619    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1620    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1621    return;
1622  }
1623 /*
1624   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1625      assert( v.size() == nAtoms_ + nRigidBodies_);
1626      sdByGlobalIndex_ = v;
1627    }
1628
1629    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1630      //assert(index < nAtoms_ + nRigidBodies_);
1631      return sdByGlobalIndex_.at(index);
1632    }  
1633 */  
1048   }//end namespace OpenMD
1049  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines