88 |
|
|
89 |
|
vector<Component*> components = simParams->getComponents(); |
90 |
|
|
91 |
< |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
91 |
> |
for (vector<Component*>::iterator i = components.begin(); |
92 |
> |
i !=components.end(); ++i) { |
93 |
|
molStamp = (*i)->getMoleculeStamp(); |
94 |
|
nMolWithSameStamp = (*i)->getNMol(); |
95 |
|
|
232 |
|
vector<Atom*>::iterator k; |
233 |
|
|
234 |
|
Molecule* mol; |
235 |
< |
StuntDouble* integrableObject; |
235 |
> |
StuntDouble* sd; |
236 |
|
Atom* atom; |
237 |
|
|
238 |
|
ndf_local = 0; |
239 |
|
nfq_local = 0; |
240 |
|
|
241 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
241 |
– |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
242 |
– |
integrableObject = mol->nextIntegrableObject(j)) { |
242 |
|
|
243 |
+ |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
244 |
+ |
sd = mol->nextIntegrableObject(j)) { |
245 |
+ |
|
246 |
|
ndf_local += 3; |
247 |
|
|
248 |
< |
if (integrableObject->isDirectional()) { |
249 |
< |
if (integrableObject->isLinear()) { |
248 |
> |
if (sd->isDirectional()) { |
249 |
> |
if (sd->isLinear()) { |
250 |
|
ndf_local += 2; |
251 |
|
} else { |
252 |
|
ndf_local += 3; |
253 |
|
} |
254 |
|
} |
255 |
|
} |
256 |
+ |
|
257 |
|
for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
258 |
|
atom = mol->nextFluctuatingCharge(k)) { |
259 |
|
if (atom->isFluctuatingCharge()) { |
268 |
|
ndf_local -= nConstraints_; |
269 |
|
|
270 |
|
#ifdef IS_MPI |
271 |
< |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
272 |
< |
MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
271 |
> |
MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM); |
272 |
> |
MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1, |
273 |
> |
MPI::INT, MPI::SUM); |
274 |
|
#else |
275 |
|
ndf_ = ndf_local; |
276 |
|
nGlobalFluctuatingCharges_ = nfq_local; |
284 |
|
|
285 |
|
int SimInfo::getFdf() { |
286 |
|
#ifdef IS_MPI |
287 |
< |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
287 |
> |
MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM); |
288 |
|
#else |
289 |
|
fdf_ = fdf_local; |
290 |
|
#endif |
316 |
|
MoleculeIterator i; |
317 |
|
vector<StuntDouble*>::iterator j; |
318 |
|
Molecule* mol; |
319 |
< |
StuntDouble* integrableObject; |
319 |
> |
StuntDouble* sd; |
320 |
|
|
321 |
|
// Raw degrees of freedom that we have to set |
322 |
|
ndfRaw_local = 0; |
323 |
|
|
324 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
321 |
– |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
322 |
– |
integrableObject = mol->nextIntegrableObject(j)) { |
325 |
|
|
326 |
+ |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
327 |
+ |
sd = mol->nextIntegrableObject(j)) { |
328 |
+ |
|
329 |
|
ndfRaw_local += 3; |
330 |
|
|
331 |
< |
if (integrableObject->isDirectional()) { |
332 |
< |
if (integrableObject->isLinear()) { |
331 |
> |
if (sd->isDirectional()) { |
332 |
> |
if (sd->isLinear()) { |
333 |
|
ndfRaw_local += 2; |
334 |
|
} else { |
335 |
|
ndfRaw_local += 3; |
340 |
|
} |
341 |
|
|
342 |
|
#ifdef IS_MPI |
343 |
< |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
343 |
> |
MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM); |
344 |
|
#else |
345 |
|
ndfRaw_ = ndfRaw_local; |
346 |
|
#endif |
353 |
|
|
354 |
|
|
355 |
|
#ifdef IS_MPI |
356 |
< |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
356 |
> |
MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1, |
357 |
> |
MPI::INT, MPI::SUM); |
358 |
|
#else |
359 |
|
ndfTrans_ = ndfTrans_local; |
360 |
|
#endif |
390 |
|
Molecule::RigidBodyIterator rbIter; |
391 |
|
RigidBody* rb; |
392 |
|
Molecule::IntegrableObjectIterator ii; |
393 |
< |
StuntDouble* integrableObject; |
393 |
> |
StuntDouble* sd; |
394 |
|
|
395 |
< |
for (integrableObject = mol->beginIntegrableObject(ii); |
396 |
< |
integrableObject != NULL; |
391 |
< |
integrableObject = mol->nextIntegrableObject(ii)) { |
395 |
> |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
396 |
> |
sd = mol->nextIntegrableObject(ii)) { |
397 |
|
|
398 |
< |
if (integrableObject->isRigidBody()) { |
399 |
< |
rb = static_cast<RigidBody*>(integrableObject); |
398 |
> |
if (sd->isRigidBody()) { |
399 |
> |
rb = static_cast<RigidBody*>(sd); |
400 |
|
vector<Atom*> atoms = rb->getAtoms(); |
401 |
|
set<int> rigidAtoms; |
402 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
407 |
|
} |
408 |
|
} else { |
409 |
|
set<int> oneAtomSet; |
410 |
< |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
411 |
< |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
410 |
> |
oneAtomSet.insert(sd->getGlobalIndex()); |
411 |
> |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
412 |
|
} |
413 |
|
} |
414 |
|
|
542 |
|
Molecule::RigidBodyIterator rbIter; |
543 |
|
RigidBody* rb; |
544 |
|
Molecule::IntegrableObjectIterator ii; |
545 |
< |
StuntDouble* integrableObject; |
545 |
> |
StuntDouble* sd; |
546 |
|
|
547 |
< |
for (integrableObject = mol->beginIntegrableObject(ii); |
548 |
< |
integrableObject != NULL; |
544 |
< |
integrableObject = mol->nextIntegrableObject(ii)) { |
547 |
> |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
548 |
> |
sd = mol->nextIntegrableObject(ii)) { |
549 |
|
|
550 |
< |
if (integrableObject->isRigidBody()) { |
551 |
< |
rb = static_cast<RigidBody*>(integrableObject); |
550 |
> |
if (sd->isRigidBody()) { |
551 |
> |
rb = static_cast<RigidBody*>(sd); |
552 |
|
vector<Atom*> atoms = rb->getAtoms(); |
553 |
|
set<int> rigidAtoms; |
554 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
559 |
|
} |
560 |
|
} else { |
561 |
|
set<int> oneAtomSet; |
562 |
< |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
563 |
< |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
562 |
> |
oneAtomSet.insert(sd->getGlobalIndex()); |
563 |
> |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
564 |
|
} |
565 |
|
} |
566 |
|
|
780 |
|
#endif |
781 |
|
|
782 |
|
return atomTypes; |
783 |
+ |
} |
784 |
+ |
|
785 |
+ |
|
786 |
+ |
int getGlobalCountOfType(AtomType* atype) { |
787 |
+ |
/* |
788 |
+ |
set<AtomType*> atypes = getSimulatedAtomTypes(); |
789 |
+ |
map<AtomType*, int> counts_; |
790 |
+ |
|
791 |
+ |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
792 |
+ |
for(atom = mol->beginAtom(ai); atom != NULL; |
793 |
+ |
atom = mol->nextAtom(ai)) { |
794 |
+ |
atom->getAtomType(); |
795 |
+ |
} |
796 |
+ |
} |
797 |
+ |
*/ |
798 |
+ |
return 0; |
799 |
|
} |
800 |
|
|
801 |
|
void SimInfo::setupSimVariables() { |
802 |
|
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
803 |
< |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
803 |
> |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole |
804 |
> |
// parameter is true |
805 |
|
calcBoxDipole_ = false; |
806 |
|
if ( simParams_->haveAccumulateBoxDipole() ) |
807 |
|
if ( simParams_->getAccumulateBoxDipole() ) { |
811 |
|
set<AtomType*>::iterator i; |
812 |
|
set<AtomType*> atomTypes; |
813 |
|
atomTypes = getSimulatedAtomTypes(); |
814 |
< |
int usesElectrostatic = 0; |
815 |
< |
int usesMetallic = 0; |
816 |
< |
int usesDirectional = 0; |
817 |
< |
int usesFluctuatingCharges = 0; |
814 |
> |
bool usesElectrostatic = false; |
815 |
> |
bool usesMetallic = false; |
816 |
> |
bool usesDirectional = false; |
817 |
> |
bool usesFluctuatingCharges = false; |
818 |
|
//loop over all of the atom types |
819 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
820 |
|
usesElectrostatic |= (*i)->isElectrostatic(); |
822 |
|
usesDirectional |= (*i)->isDirectional(); |
823 |
|
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
824 |
|
} |
825 |
< |
|
826 |
< |
#ifdef IS_MPI |
827 |
< |
int temp; |
825 |
> |
|
826 |
> |
#ifdef IS_MPI |
827 |
> |
bool temp; |
828 |
|
temp = usesDirectional; |
829 |
< |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
830 |
< |
|
829 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, |
830 |
> |
MPI::LOR); |
831 |
> |
|
832 |
|
temp = usesMetallic; |
833 |
< |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
833 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, |
834 |
> |
MPI::LOR); |
835 |
|
|
836 |
|
temp = usesElectrostatic; |
837 |
< |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
837 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, |
838 |
> |
MPI::LOR); |
839 |
|
|
840 |
|
temp = usesFluctuatingCharges; |
841 |
< |
MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
841 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, |
842 |
> |
MPI::LOR); |
843 |
|
#else |
844 |
|
|
845 |
|
usesDirectionalAtoms_ = usesDirectional; |
895 |
|
|
896 |
|
|
897 |
|
void SimInfo::prepareTopology() { |
873 |
– |
int nExclude, nOneTwo, nOneThree, nOneFour; |
898 |
|
|
899 |
|
//calculate mass ratio of cutoff group |
900 |
|
SimInfo::MoleculeIterator mi; |
943 |
|
|
944 |
|
//scan topology |
945 |
|
|
922 |
– |
nExclude = excludedInteractions_.getSize(); |
923 |
– |
nOneTwo = oneTwoInteractions_.getSize(); |
924 |
– |
nOneThree = oneThreeInteractions_.getSize(); |
925 |
– |
nOneFour = oneFourInteractions_.getSize(); |
926 |
– |
|
946 |
|
int* excludeList = excludedInteractions_.getPairList(); |
947 |
|
int* oneTwoList = oneTwoInteractions_.getPairList(); |
948 |
|
int* oneThreeList = oneThreeInteractions_.getPairList(); |
993 |
|
|
994 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
995 |
|
|
996 |
< |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
996 |
> |
for (atom = mol->beginAtom(atomIter); atom != NULL; |
997 |
> |
atom = mol->nextAtom(atomIter)) { |
998 |
|
atom->setSnapshotManager(sman_); |
999 |
|
} |
1000 |
|
|
1001 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
1001 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
1002 |
> |
rb = mol->nextRigidBody(rbIter)) { |
1003 |
|
rb->setSnapshotManager(sman_); |
1004 |
|
} |
1005 |
|
|
1006 |
< |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
1006 |
> |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; |
1007 |
> |
cg = mol->nextCutoffGroup(cgIter)) { |
1008 |
|
cg->setSnapshotManager(sman_); |
1009 |
|
} |
1010 |
|
} |
1011 |
|
|
1012 |
|
} |
1013 |
|
|
992 |
– |
Vector3d SimInfo::getComVel(){ |
993 |
– |
SimInfo::MoleculeIterator i; |
994 |
– |
Molecule* mol; |
1014 |
|
|
996 |
– |
Vector3d comVel(0.0); |
997 |
– |
RealType totalMass = 0.0; |
998 |
– |
|
999 |
– |
|
1000 |
– |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1001 |
– |
RealType mass = mol->getMass(); |
1002 |
– |
totalMass += mass; |
1003 |
– |
comVel += mass * mol->getComVel(); |
1004 |
– |
} |
1005 |
– |
|
1006 |
– |
#ifdef IS_MPI |
1007 |
– |
RealType tmpMass = totalMass; |
1008 |
– |
Vector3d tmpComVel(comVel); |
1009 |
– |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1010 |
– |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1011 |
– |
#endif |
1012 |
– |
|
1013 |
– |
comVel /= totalMass; |
1014 |
– |
|
1015 |
– |
return comVel; |
1016 |
– |
} |
1017 |
– |
|
1018 |
– |
Vector3d SimInfo::getCom(){ |
1019 |
– |
SimInfo::MoleculeIterator i; |
1020 |
– |
Molecule* mol; |
1021 |
– |
|
1022 |
– |
Vector3d com(0.0); |
1023 |
– |
RealType totalMass = 0.0; |
1024 |
– |
|
1025 |
– |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1026 |
– |
RealType mass = mol->getMass(); |
1027 |
– |
totalMass += mass; |
1028 |
– |
com += mass * mol->getCom(); |
1029 |
– |
} |
1030 |
– |
|
1031 |
– |
#ifdef IS_MPI |
1032 |
– |
RealType tmpMass = totalMass; |
1033 |
– |
Vector3d tmpCom(com); |
1034 |
– |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1035 |
– |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1036 |
– |
#endif |
1037 |
– |
|
1038 |
– |
com /= totalMass; |
1039 |
– |
|
1040 |
– |
return com; |
1041 |
– |
|
1042 |
– |
} |
1043 |
– |
|
1015 |
|
ostream& operator <<(ostream& o, SimInfo& info) { |
1016 |
|
|
1017 |
|
return o; |
1018 |
|
} |
1019 |
|
|
1020 |
< |
|
1050 |
< |
/* |
1051 |
< |
Returns center of mass and center of mass velocity in one function call. |
1052 |
< |
*/ |
1053 |
< |
|
1054 |
< |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1055 |
< |
SimInfo::MoleculeIterator i; |
1056 |
< |
Molecule* mol; |
1057 |
< |
|
1058 |
< |
|
1059 |
< |
RealType totalMass = 0.0; |
1060 |
< |
|
1061 |
< |
|
1062 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1063 |
< |
RealType mass = mol->getMass(); |
1064 |
< |
totalMass += mass; |
1065 |
< |
com += mass * mol->getCom(); |
1066 |
< |
comVel += mass * mol->getComVel(); |
1067 |
< |
} |
1068 |
< |
|
1069 |
< |
#ifdef IS_MPI |
1070 |
< |
RealType tmpMass = totalMass; |
1071 |
< |
Vector3d tmpCom(com); |
1072 |
< |
Vector3d tmpComVel(comVel); |
1073 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1074 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1075 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1076 |
< |
#endif |
1077 |
< |
|
1078 |
< |
com /= totalMass; |
1079 |
< |
comVel /= totalMass; |
1080 |
< |
} |
1081 |
< |
|
1082 |
< |
/* |
1083 |
< |
Return intertia tensor for entire system and angular momentum Vector. |
1084 |
< |
|
1085 |
< |
|
1086 |
< |
[ Ixx -Ixy -Ixz ] |
1087 |
< |
J =| -Iyx Iyy -Iyz | |
1088 |
< |
[ -Izx -Iyz Izz ] |
1089 |
< |
*/ |
1090 |
< |
|
1091 |
< |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1092 |
< |
|
1093 |
< |
|
1094 |
< |
RealType xx = 0.0; |
1095 |
< |
RealType yy = 0.0; |
1096 |
< |
RealType zz = 0.0; |
1097 |
< |
RealType xy = 0.0; |
1098 |
< |
RealType xz = 0.0; |
1099 |
< |
RealType yz = 0.0; |
1100 |
< |
Vector3d com(0.0); |
1101 |
< |
Vector3d comVel(0.0); |
1102 |
< |
|
1103 |
< |
getComAll(com, comVel); |
1104 |
< |
|
1105 |
< |
SimInfo::MoleculeIterator i; |
1106 |
< |
Molecule* mol; |
1107 |
< |
|
1108 |
< |
Vector3d thisq(0.0); |
1109 |
< |
Vector3d thisv(0.0); |
1110 |
< |
|
1111 |
< |
RealType thisMass = 0.0; |
1112 |
< |
|
1113 |
< |
|
1114 |
< |
|
1115 |
< |
|
1116 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1117 |
< |
|
1118 |
< |
thisq = mol->getCom()-com; |
1119 |
< |
thisv = mol->getComVel()-comVel; |
1120 |
< |
thisMass = mol->getMass(); |
1121 |
< |
// Compute moment of intertia coefficients. |
1122 |
< |
xx += thisq[0]*thisq[0]*thisMass; |
1123 |
< |
yy += thisq[1]*thisq[1]*thisMass; |
1124 |
< |
zz += thisq[2]*thisq[2]*thisMass; |
1125 |
< |
|
1126 |
< |
// compute products of intertia |
1127 |
< |
xy += thisq[0]*thisq[1]*thisMass; |
1128 |
< |
xz += thisq[0]*thisq[2]*thisMass; |
1129 |
< |
yz += thisq[1]*thisq[2]*thisMass; |
1130 |
< |
|
1131 |
< |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1132 |
< |
|
1133 |
< |
} |
1134 |
< |
|
1135 |
< |
|
1136 |
< |
inertiaTensor(0,0) = yy + zz; |
1137 |
< |
inertiaTensor(0,1) = -xy; |
1138 |
< |
inertiaTensor(0,2) = -xz; |
1139 |
< |
inertiaTensor(1,0) = -xy; |
1140 |
< |
inertiaTensor(1,1) = xx + zz; |
1141 |
< |
inertiaTensor(1,2) = -yz; |
1142 |
< |
inertiaTensor(2,0) = -xz; |
1143 |
< |
inertiaTensor(2,1) = -yz; |
1144 |
< |
inertiaTensor(2,2) = xx + yy; |
1145 |
< |
|
1146 |
< |
#ifdef IS_MPI |
1147 |
< |
Mat3x3d tmpI(inertiaTensor); |
1148 |
< |
Vector3d tmpAngMom; |
1149 |
< |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1150 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1151 |
< |
#endif |
1152 |
< |
|
1153 |
< |
return; |
1154 |
< |
} |
1155 |
< |
|
1156 |
< |
//Returns the angular momentum of the system |
1157 |
< |
Vector3d SimInfo::getAngularMomentum(){ |
1158 |
< |
|
1159 |
< |
Vector3d com(0.0); |
1160 |
< |
Vector3d comVel(0.0); |
1161 |
< |
Vector3d angularMomentum(0.0); |
1162 |
< |
|
1163 |
< |
getComAll(com,comVel); |
1164 |
< |
|
1165 |
< |
SimInfo::MoleculeIterator i; |
1166 |
< |
Molecule* mol; |
1167 |
< |
|
1168 |
< |
Vector3d thisr(0.0); |
1169 |
< |
Vector3d thisp(0.0); |
1170 |
< |
|
1171 |
< |
RealType thisMass; |
1172 |
< |
|
1173 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1174 |
< |
thisMass = mol->getMass(); |
1175 |
< |
thisr = mol->getCom()-com; |
1176 |
< |
thisp = (mol->getComVel()-comVel)*thisMass; |
1177 |
< |
|
1178 |
< |
angularMomentum += cross( thisr, thisp ); |
1179 |
< |
|
1180 |
< |
} |
1181 |
< |
|
1182 |
< |
#ifdef IS_MPI |
1183 |
< |
Vector3d tmpAngMom; |
1184 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1185 |
< |
#endif |
1186 |
< |
|
1187 |
< |
return angularMomentum; |
1188 |
< |
} |
1189 |
< |
|
1020 |
> |
|
1021 |
|
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1022 |
< |
return IOIndexToIntegrableObject.at(index); |
1022 |
> |
if (index >= int(IOIndexToIntegrableObject.size())) { |
1023 |
> |
sprintf(painCave.errMsg, |
1024 |
> |
"SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n" |
1025 |
> |
"\tindex exceeds number of known objects!\n"); |
1026 |
> |
painCave.isFatal = 1; |
1027 |
> |
simError(); |
1028 |
> |
return NULL; |
1029 |
> |
} else |
1030 |
> |
return IOIndexToIntegrableObject.at(index); |
1031 |
|
} |
1032 |
|
|
1033 |
|
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1034 |
|
IOIndexToIntegrableObject= v; |
1035 |
|
} |
1036 |
|
|
1198 |
– |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1199 |
– |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1200 |
– |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1201 |
– |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1202 |
– |
*/ |
1203 |
– |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1204 |
– |
Mat3x3d intTensor; |
1205 |
– |
RealType det; |
1206 |
– |
Vector3d dummyAngMom; |
1207 |
– |
RealType sysconstants; |
1208 |
– |
RealType geomCnst; |
1209 |
– |
|
1210 |
– |
geomCnst = 3.0/2.0; |
1211 |
– |
/* Get the inertial tensor and angular momentum for free*/ |
1212 |
– |
getInertiaTensor(intTensor,dummyAngMom); |
1213 |
– |
|
1214 |
– |
det = intTensor.determinant(); |
1215 |
– |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1216 |
– |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
1217 |
– |
return; |
1218 |
– |
} |
1219 |
– |
|
1220 |
– |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1221 |
– |
Mat3x3d intTensor; |
1222 |
– |
Vector3d dummyAngMom; |
1223 |
– |
RealType sysconstants; |
1224 |
– |
RealType geomCnst; |
1225 |
– |
|
1226 |
– |
geomCnst = 3.0/2.0; |
1227 |
– |
/* Get the inertial tensor and angular momentum for free*/ |
1228 |
– |
getInertiaTensor(intTensor,dummyAngMom); |
1229 |
– |
|
1230 |
– |
detI = intTensor.determinant(); |
1231 |
– |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1232 |
– |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
1233 |
– |
return; |
1234 |
– |
} |
1235 |
– |
/* |
1236 |
– |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1237 |
– |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1238 |
– |
sdByGlobalIndex_ = v; |
1239 |
– |
} |
1240 |
– |
|
1241 |
– |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1242 |
– |
//assert(index < nAtoms_ + nRigidBodies_); |
1243 |
– |
return sdByGlobalIndex_.at(index); |
1244 |
– |
} |
1245 |
– |
*/ |
1037 |
|
int SimInfo::getNGlobalConstraints() { |
1038 |
|
int nGlobalConstraints; |
1039 |
|
#ifdef IS_MPI |
1040 |
< |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1041 |
< |
MPI_COMM_WORLD); |
1040 |
> |
MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1, |
1041 |
> |
MPI::INT, MPI::SUM); |
1042 |
|
#else |
1043 |
|
nGlobalConstraints = nConstraints_; |
1044 |
|
#endif |