36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
55 |
|
#include "math/Vector3.hpp" |
56 |
|
#include "primitives/Molecule.hpp" |
57 |
|
#include "primitives/StuntDouble.hpp" |
57 |
– |
#include "UseTheForce/fCutoffPolicy.h" |
58 |
– |
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
59 |
– |
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
60 |
– |
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
61 |
– |
#include "UseTheForce/doForces_interface.h" |
62 |
– |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
63 |
– |
#include "UseTheForce/DarkSide/electrostatic_interface.h" |
64 |
– |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
58 |
|
#include "utils/MemoryUtils.hpp" |
59 |
|
#include "utils/simError.h" |
60 |
|
#include "selection/SelectionManager.hpp" |
61 |
|
#include "io/ForceFieldOptions.hpp" |
62 |
< |
#include "UseTheForce/ForceField.hpp" |
63 |
< |
|
71 |
< |
|
62 |
> |
#include "brains/ForceField.hpp" |
63 |
> |
#include "nonbonded/SwitchingFunction.hpp" |
64 |
|
#ifdef IS_MPI |
65 |
< |
#include "UseTheForce/mpiComponentPlan.h" |
66 |
< |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
75 |
< |
#endif |
65 |
> |
#include <mpi.h> |
66 |
> |
#endif |
67 |
|
|
68 |
+ |
using namespace std; |
69 |
|
namespace OpenMD { |
78 |
– |
std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { |
79 |
– |
std::map<int, std::set<int> >::iterator i = container.find(index); |
80 |
– |
std::set<int> result; |
81 |
– |
if (i != container.end()) { |
82 |
– |
result = i->second; |
83 |
– |
} |
84 |
– |
|
85 |
– |
return result; |
86 |
– |
} |
70 |
|
|
71 |
|
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
72 |
|
forceField_(ff), simParams_(simParams), |
73 |
|
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
74 |
|
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
75 |
< |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
75 |
> |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
77 |
|
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
78 |
< |
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
79 |
< |
calcBoxDipole_(false), useAtomicVirial_(true) { |
80 |
< |
|
81 |
< |
|
82 |
< |
MoleculeStamp* molStamp; |
83 |
< |
int nMolWithSameStamp; |
84 |
< |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
85 |
< |
int nGroups = 0; //total cutoff groups defined in meta-data file |
86 |
< |
CutoffGroupStamp* cgStamp; |
87 |
< |
RigidBodyStamp* rbStamp; |
88 |
< |
int nRigidAtoms = 0; |
89 |
< |
|
90 |
< |
std::vector<Component*> components = simParams->getComponents(); |
78 |
> |
nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 |
> |
calcBoxDipole_(false), useAtomicVirial_(true) { |
80 |
> |
|
81 |
> |
MoleculeStamp* molStamp; |
82 |
> |
int nMolWithSameStamp; |
83 |
> |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
84 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
85 |
> |
CutoffGroupStamp* cgStamp; |
86 |
> |
RigidBodyStamp* rbStamp; |
87 |
> |
int nRigidAtoms = 0; |
88 |
> |
|
89 |
> |
vector<Component*> components = simParams->getComponents(); |
90 |
> |
|
91 |
> |
for (vector<Component*>::iterator i = components.begin(); |
92 |
> |
i !=components.end(); ++i) { |
93 |
> |
molStamp = (*i)->getMoleculeStamp(); |
94 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
95 |
|
|
96 |
< |
for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
97 |
< |
molStamp = (*i)->getMoleculeStamp(); |
98 |
< |
nMolWithSameStamp = (*i)->getNMol(); |
99 |
< |
|
100 |
< |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
101 |
< |
|
102 |
< |
//calculate atoms in molecules |
103 |
< |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
104 |
< |
|
105 |
< |
//calculate atoms in cutoff groups |
106 |
< |
int nAtomsInGroups = 0; |
107 |
< |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
121 |
< |
|
122 |
< |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
123 |
< |
cgStamp = molStamp->getCutoffGroupStamp(j); |
124 |
< |
nAtomsInGroups += cgStamp->getNMembers(); |
125 |
< |
} |
126 |
< |
|
127 |
< |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
128 |
< |
|
129 |
< |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
130 |
< |
|
131 |
< |
//calculate atoms in rigid bodies |
132 |
< |
int nAtomsInRigidBodies = 0; |
133 |
< |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
134 |
< |
|
135 |
< |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
136 |
< |
rbStamp = molStamp->getRigidBodyStamp(j); |
137 |
< |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
138 |
< |
} |
139 |
< |
|
140 |
< |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
141 |
< |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
142 |
< |
|
96 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
97 |
> |
|
98 |
> |
//calculate atoms in molecules |
99 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
100 |
> |
|
101 |
> |
//calculate atoms in cutoff groups |
102 |
> |
int nAtomsInGroups = 0; |
103 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
104 |
> |
|
105 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
106 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
107 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
108 |
|
} |
109 |
< |
|
110 |
< |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
111 |
< |
//group therefore the total number of cutoff groups in the system is |
112 |
< |
//equal to the total number of atoms minus number of atoms belong to |
113 |
< |
//cutoff group defined in meta-data file plus the number of cutoff |
114 |
< |
//groups defined in meta-data file |
115 |
< |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
116 |
< |
|
117 |
< |
//every free atom (atom does not belong to rigid bodies) is an |
118 |
< |
//integrable object therefore the total number of integrable objects |
119 |
< |
//in the system is equal to the total number of atoms minus number of |
120 |
< |
//atoms belong to rigid body defined in meta-data file plus the number |
121 |
< |
//of rigid bodies defined in meta-data file |
122 |
< |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
123 |
< |
+ nGlobalRigidBodies_; |
124 |
< |
|
125 |
< |
nGlobalMols_ = molStampIds_.size(); |
161 |
< |
molToProcMap_.resize(nGlobalMols_); |
109 |
> |
|
110 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
111 |
> |
|
112 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
113 |
> |
|
114 |
> |
//calculate atoms in rigid bodies |
115 |
> |
int nAtomsInRigidBodies = 0; |
116 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
117 |
> |
|
118 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
119 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
120 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
121 |
> |
} |
122 |
> |
|
123 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
124 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
125 |
> |
|
126 |
|
} |
127 |
+ |
|
128 |
+ |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
129 |
+ |
//group therefore the total number of cutoff groups in the system is |
130 |
+ |
//equal to the total number of atoms minus number of atoms belong to |
131 |
+ |
//cutoff group defined in meta-data file plus the number of cutoff |
132 |
+ |
//groups defined in meta-data file |
133 |
|
|
134 |
+ |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
135 |
+ |
|
136 |
+ |
//every free atom (atom does not belong to rigid bodies) is an |
137 |
+ |
//integrable object therefore the total number of integrable objects |
138 |
+ |
//in the system is equal to the total number of atoms minus number of |
139 |
+ |
//atoms belong to rigid body defined in meta-data file plus the number |
140 |
+ |
//of rigid bodies defined in meta-data file |
141 |
+ |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
142 |
+ |
+ nGlobalRigidBodies_; |
143 |
+ |
|
144 |
+ |
nGlobalMols_ = molStampIds_.size(); |
145 |
+ |
molToProcMap_.resize(nGlobalMols_); |
146 |
+ |
} |
147 |
+ |
|
148 |
|
SimInfo::~SimInfo() { |
149 |
< |
std::map<int, Molecule*>::iterator i; |
149 |
> |
map<int, Molecule*>::iterator i; |
150 |
|
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
151 |
|
delete i->second; |
152 |
|
} |
157 |
|
delete forceField_; |
158 |
|
} |
159 |
|
|
176 |
– |
int SimInfo::getNGlobalConstraints() { |
177 |
– |
int nGlobalConstraints; |
178 |
– |
#ifdef IS_MPI |
179 |
– |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
180 |
– |
MPI_COMM_WORLD); |
181 |
– |
#else |
182 |
– |
nGlobalConstraints = nConstraints_; |
183 |
– |
#endif |
184 |
– |
return nGlobalConstraints; |
185 |
– |
} |
160 |
|
|
161 |
|
bool SimInfo::addMolecule(Molecule* mol) { |
162 |
|
MoleculeIterator i; |
163 |
< |
|
163 |
> |
|
164 |
|
i = molecules_.find(mol->getGlobalIndex()); |
165 |
|
if (i == molecules_.end() ) { |
166 |
< |
|
167 |
< |
molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
168 |
< |
|
166 |
> |
|
167 |
> |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
168 |
> |
|
169 |
|
nAtoms_ += mol->getNAtoms(); |
170 |
|
nBonds_ += mol->getNBonds(); |
171 |
|
nBends_ += mol->getNBends(); |
175 |
|
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
176 |
|
nCutoffGroups_ += mol->getNCutoffGroups(); |
177 |
|
nConstraints_ += mol->getNConstraintPairs(); |
178 |
< |
|
178 |
> |
|
179 |
|
addInteractionPairs(mol); |
180 |
< |
|
180 |
> |
|
181 |
|
return true; |
182 |
|
} else { |
183 |
|
return false; |
184 |
|
} |
185 |
|
} |
186 |
< |
|
186 |
> |
|
187 |
|
bool SimInfo::removeMolecule(Molecule* mol) { |
188 |
|
MoleculeIterator i; |
189 |
|
i = molecules_.find(mol->getGlobalIndex()); |
211 |
|
} else { |
212 |
|
return false; |
213 |
|
} |
240 |
– |
|
241 |
– |
|
214 |
|
} |
215 |
|
|
216 |
|
|
226 |
|
|
227 |
|
|
228 |
|
void SimInfo::calcNdf() { |
229 |
< |
int ndf_local; |
229 |
> |
int ndf_local, nfq_local; |
230 |
|
MoleculeIterator i; |
231 |
< |
std::vector<StuntDouble*>::iterator j; |
231 |
> |
vector<StuntDouble*>::iterator j; |
232 |
> |
vector<Atom*>::iterator k; |
233 |
> |
|
234 |
|
Molecule* mol; |
235 |
< |
StuntDouble* integrableObject; |
235 |
> |
StuntDouble* sd; |
236 |
> |
Atom* atom; |
237 |
|
|
238 |
|
ndf_local = 0; |
239 |
+ |
nfq_local = 0; |
240 |
|
|
241 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
266 |
– |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
267 |
– |
integrableObject = mol->nextIntegrableObject(j)) { |
242 |
|
|
243 |
+ |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
244 |
+ |
sd = mol->nextIntegrableObject(j)) { |
245 |
+ |
|
246 |
|
ndf_local += 3; |
247 |
|
|
248 |
< |
if (integrableObject->isDirectional()) { |
249 |
< |
if (integrableObject->isLinear()) { |
248 |
> |
if (sd->isDirectional()) { |
249 |
> |
if (sd->isLinear()) { |
250 |
|
ndf_local += 2; |
251 |
|
} else { |
252 |
|
ndf_local += 3; |
253 |
|
} |
254 |
|
} |
278 |
– |
|
255 |
|
} |
256 |
+ |
|
257 |
+ |
for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
258 |
+ |
atom = mol->nextFluctuatingCharge(k)) { |
259 |
+ |
if (atom->isFluctuatingCharge()) { |
260 |
+ |
nfq_local++; |
261 |
+ |
} |
262 |
+ |
} |
263 |
|
} |
264 |
|
|
265 |
+ |
ndfLocal_ = ndf_local; |
266 |
+ |
|
267 |
|
// n_constraints is local, so subtract them on each processor |
268 |
|
ndf_local -= nConstraints_; |
269 |
|
|
270 |
|
#ifdef IS_MPI |
271 |
< |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
271 |
> |
MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM); |
272 |
> |
MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1, |
273 |
> |
MPI::INT, MPI::SUM); |
274 |
|
#else |
275 |
|
ndf_ = ndf_local; |
276 |
+ |
nGlobalFluctuatingCharges_ = nfq_local; |
277 |
|
#endif |
278 |
|
|
279 |
|
// nZconstraints_ is global, as are the 3 COM translations for the |
284 |
|
|
285 |
|
int SimInfo::getFdf() { |
286 |
|
#ifdef IS_MPI |
287 |
< |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
287 |
> |
MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM); |
288 |
|
#else |
289 |
|
fdf_ = fdf_local; |
290 |
|
#endif |
291 |
|
return fdf_; |
292 |
|
} |
293 |
+ |
|
294 |
+ |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
295 |
+ |
int nLocalCutoffAtoms = 0; |
296 |
+ |
Molecule* mol; |
297 |
+ |
MoleculeIterator mi; |
298 |
+ |
CutoffGroup* cg; |
299 |
+ |
Molecule::CutoffGroupIterator ci; |
300 |
|
|
301 |
+ |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
302 |
+ |
|
303 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
304 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
305 |
+ |
nLocalCutoffAtoms += cg->getNumAtom(); |
306 |
+ |
|
307 |
+ |
} |
308 |
+ |
} |
309 |
+ |
|
310 |
+ |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
311 |
+ |
} |
312 |
+ |
|
313 |
|
void SimInfo::calcNdfRaw() { |
314 |
|
int ndfRaw_local; |
315 |
|
|
316 |
|
MoleculeIterator i; |
317 |
< |
std::vector<StuntDouble*>::iterator j; |
317 |
> |
vector<StuntDouble*>::iterator j; |
318 |
|
Molecule* mol; |
319 |
< |
StuntDouble* integrableObject; |
319 |
> |
StuntDouble* sd; |
320 |
|
|
321 |
|
// Raw degrees of freedom that we have to set |
322 |
|
ndfRaw_local = 0; |
323 |
|
|
324 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
318 |
– |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
319 |
– |
integrableObject = mol->nextIntegrableObject(j)) { |
325 |
|
|
326 |
+ |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
327 |
+ |
sd = mol->nextIntegrableObject(j)) { |
328 |
+ |
|
329 |
|
ndfRaw_local += 3; |
330 |
|
|
331 |
< |
if (integrableObject->isDirectional()) { |
332 |
< |
if (integrableObject->isLinear()) { |
331 |
> |
if (sd->isDirectional()) { |
332 |
> |
if (sd->isLinear()) { |
333 |
|
ndfRaw_local += 2; |
334 |
|
} else { |
335 |
|
ndfRaw_local += 3; |
340 |
|
} |
341 |
|
|
342 |
|
#ifdef IS_MPI |
343 |
< |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
343 |
> |
MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM); |
344 |
|
#else |
345 |
|
ndfRaw_ = ndfRaw_local; |
346 |
|
#endif |
353 |
|
|
354 |
|
|
355 |
|
#ifdef IS_MPI |
356 |
< |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
356 |
> |
MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1, |
357 |
> |
MPI::INT, MPI::SUM); |
358 |
|
#else |
359 |
|
ndfTrans_ = ndfTrans_local; |
360 |
|
#endif |
365 |
|
|
366 |
|
void SimInfo::addInteractionPairs(Molecule* mol) { |
367 |
|
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
368 |
< |
std::vector<Bond*>::iterator bondIter; |
369 |
< |
std::vector<Bend*>::iterator bendIter; |
370 |
< |
std::vector<Torsion*>::iterator torsionIter; |
371 |
< |
std::vector<Inversion*>::iterator inversionIter; |
368 |
> |
vector<Bond*>::iterator bondIter; |
369 |
> |
vector<Bend*>::iterator bendIter; |
370 |
> |
vector<Torsion*>::iterator torsionIter; |
371 |
> |
vector<Inversion*>::iterator inversionIter; |
372 |
|
Bond* bond; |
373 |
|
Bend* bend; |
374 |
|
Torsion* torsion; |
386 |
|
// always be excluded. These are done at the bottom of this |
387 |
|
// function. |
388 |
|
|
389 |
< |
std::map<int, std::set<int> > atomGroups; |
389 |
> |
map<int, set<int> > atomGroups; |
390 |
|
Molecule::RigidBodyIterator rbIter; |
391 |
|
RigidBody* rb; |
392 |
|
Molecule::IntegrableObjectIterator ii; |
393 |
< |
StuntDouble* integrableObject; |
393 |
> |
StuntDouble* sd; |
394 |
|
|
395 |
< |
for (integrableObject = mol->beginIntegrableObject(ii); |
396 |
< |
integrableObject != NULL; |
388 |
< |
integrableObject = mol->nextIntegrableObject(ii)) { |
395 |
> |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
396 |
> |
sd = mol->nextIntegrableObject(ii)) { |
397 |
|
|
398 |
< |
if (integrableObject->isRigidBody()) { |
399 |
< |
rb = static_cast<RigidBody*>(integrableObject); |
400 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
401 |
< |
std::set<int> rigidAtoms; |
398 |
> |
if (sd->isRigidBody()) { |
399 |
> |
rb = static_cast<RigidBody*>(sd); |
400 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
401 |
> |
set<int> rigidAtoms; |
402 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
403 |
|
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
404 |
|
} |
405 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
406 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
406 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
407 |
|
} |
408 |
|
} else { |
409 |
< |
std::set<int> oneAtomSet; |
410 |
< |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
411 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
409 |
> |
set<int> oneAtomSet; |
410 |
> |
oneAtomSet.insert(sd->getGlobalIndex()); |
411 |
> |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
412 |
|
} |
413 |
|
} |
414 |
|
|
511 |
|
|
512 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
513 |
|
rb = mol->nextRigidBody(rbIter)) { |
514 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
514 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
515 |
|
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
516 |
|
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
517 |
|
a = atoms[i]->getGlobalIndex(); |
525 |
|
|
526 |
|
void SimInfo::removeInteractionPairs(Molecule* mol) { |
527 |
|
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
528 |
< |
std::vector<Bond*>::iterator bondIter; |
529 |
< |
std::vector<Bend*>::iterator bendIter; |
530 |
< |
std::vector<Torsion*>::iterator torsionIter; |
531 |
< |
std::vector<Inversion*>::iterator inversionIter; |
528 |
> |
vector<Bond*>::iterator bondIter; |
529 |
> |
vector<Bend*>::iterator bendIter; |
530 |
> |
vector<Torsion*>::iterator torsionIter; |
531 |
> |
vector<Inversion*>::iterator inversionIter; |
532 |
|
Bond* bond; |
533 |
|
Bend* bend; |
534 |
|
Torsion* torsion; |
538 |
|
int c; |
539 |
|
int d; |
540 |
|
|
541 |
< |
std::map<int, std::set<int> > atomGroups; |
541 |
> |
map<int, set<int> > atomGroups; |
542 |
|
Molecule::RigidBodyIterator rbIter; |
543 |
|
RigidBody* rb; |
544 |
|
Molecule::IntegrableObjectIterator ii; |
545 |
< |
StuntDouble* integrableObject; |
545 |
> |
StuntDouble* sd; |
546 |
|
|
547 |
< |
for (integrableObject = mol->beginIntegrableObject(ii); |
548 |
< |
integrableObject != NULL; |
541 |
< |
integrableObject = mol->nextIntegrableObject(ii)) { |
547 |
> |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
548 |
> |
sd = mol->nextIntegrableObject(ii)) { |
549 |
|
|
550 |
< |
if (integrableObject->isRigidBody()) { |
551 |
< |
rb = static_cast<RigidBody*>(integrableObject); |
552 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
553 |
< |
std::set<int> rigidAtoms; |
550 |
> |
if (sd->isRigidBody()) { |
551 |
> |
rb = static_cast<RigidBody*>(sd); |
552 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
553 |
> |
set<int> rigidAtoms; |
554 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
555 |
|
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
556 |
|
} |
557 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
558 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
558 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
559 |
|
} |
560 |
|
} else { |
561 |
< |
std::set<int> oneAtomSet; |
562 |
< |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
563 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
561 |
> |
set<int> oneAtomSet; |
562 |
> |
oneAtomSet.insert(sd->getGlobalIndex()); |
563 |
> |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
564 |
|
} |
565 |
|
} |
566 |
|
|
663 |
|
|
664 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
665 |
|
rb = mol->nextRigidBody(rbIter)) { |
666 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
666 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
667 |
|
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
668 |
|
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
669 |
|
a = atoms[i]->getGlobalIndex(); |
686 |
|
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
687 |
|
} |
688 |
|
|
682 |
– |
void SimInfo::update() { |
689 |
|
|
690 |
< |
setupSimType(); |
691 |
< |
|
692 |
< |
#ifdef IS_MPI |
693 |
< |
setupFortranParallel(); |
694 |
< |
#endif |
695 |
< |
|
696 |
< |
setupFortranSim(); |
697 |
< |
|
698 |
< |
//setup fortran force field |
693 |
< |
/** @deprecate */ |
694 |
< |
int isError = 0; |
695 |
< |
|
696 |
< |
setupCutoff(); |
697 |
< |
|
698 |
< |
setupElectrostaticSummationMethod( isError ); |
699 |
< |
setupSwitchingFunction(); |
700 |
< |
setupAccumulateBoxDipole(); |
701 |
< |
|
702 |
< |
if(isError){ |
703 |
< |
sprintf( painCave.errMsg, |
704 |
< |
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
705 |
< |
painCave.isFatal = 1; |
706 |
< |
simError(); |
707 |
< |
} |
708 |
< |
|
690 |
> |
/** |
691 |
> |
* update |
692 |
> |
* |
693 |
> |
* Performs the global checks and variable settings after the |
694 |
> |
* objects have been created. |
695 |
> |
* |
696 |
> |
*/ |
697 |
> |
void SimInfo::update() { |
698 |
> |
setupSimVariables(); |
699 |
|
calcNdf(); |
700 |
|
calcNdfRaw(); |
701 |
|
calcNdfTrans(); |
712 |
– |
|
713 |
– |
fortranInitialized_ = true; |
702 |
|
} |
703 |
< |
|
704 |
< |
std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
703 |
> |
|
704 |
> |
/** |
705 |
> |
* getSimulatedAtomTypes |
706 |
> |
* |
707 |
> |
* Returns an STL set of AtomType* that are actually present in this |
708 |
> |
* simulation. Must query all processors to assemble this information. |
709 |
> |
* |
710 |
> |
*/ |
711 |
> |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
712 |
|
SimInfo::MoleculeIterator mi; |
713 |
|
Molecule* mol; |
714 |
|
Molecule::AtomIterator ai; |
715 |
|
Atom* atom; |
716 |
< |
std::set<AtomType*> atomTypes; |
717 |
< |
|
716 |
> |
set<AtomType*> atomTypes; |
717 |
> |
|
718 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
719 |
< |
|
720 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
719 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
720 |
> |
atom = mol->nextAtom(ai)) { |
721 |
|
atomTypes.insert(atom->getAtomType()); |
722 |
< |
} |
723 |
< |
|
729 |
< |
} |
730 |
< |
|
731 |
< |
return atomTypes; |
732 |
< |
} |
733 |
< |
|
734 |
< |
void SimInfo::setupSimType() { |
735 |
< |
std::set<AtomType*>::iterator i; |
736 |
< |
std::set<AtomType*> atomTypes; |
737 |
< |
atomTypes = getUniqueAtomTypes(); |
722 |
> |
} |
723 |
> |
} |
724 |
|
|
725 |
< |
int useLennardJones = 0; |
740 |
< |
int useElectrostatic = 0; |
741 |
< |
int useEAM = 0; |
742 |
< |
int useSC = 0; |
743 |
< |
int useCharge = 0; |
744 |
< |
int useDirectional = 0; |
745 |
< |
int useDipole = 0; |
746 |
< |
int useGayBerne = 0; |
747 |
< |
int useSticky = 0; |
748 |
< |
int useStickyPower = 0; |
749 |
< |
int useShape = 0; |
750 |
< |
int useFLARB = 0; //it is not in AtomType yet |
751 |
< |
int useDirectionalAtom = 0; |
752 |
< |
int useElectrostatics = 0; |
753 |
< |
//usePBC and useRF are from simParams |
754 |
< |
int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
755 |
< |
int useRF; |
756 |
< |
int useSF; |
757 |
< |
int useSP; |
758 |
< |
int useBoxDipole; |
725 |
> |
#ifdef IS_MPI |
726 |
|
|
727 |
< |
std::string myMethod; |
728 |
< |
|
762 |
< |
// set the useRF logical |
763 |
< |
useRF = 0; |
764 |
< |
useSF = 0; |
765 |
< |
useSP = 0; |
766 |
< |
useBoxDipole = 0; |
767 |
< |
|
768 |
< |
|
769 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
770 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
771 |
< |
toUpper(myMethod); |
772 |
< |
if (myMethod == "REACTION_FIELD"){ |
773 |
< |
useRF = 1; |
774 |
< |
} else if (myMethod == "SHIFTED_FORCE"){ |
775 |
< |
useSF = 1; |
776 |
< |
} else if (myMethod == "SHIFTED_POTENTIAL"){ |
777 |
< |
useSP = 1; |
778 |
< |
} |
779 |
< |
} |
727 |
> |
// loop over the found atom types on this processor, and add their |
728 |
> |
// numerical idents to a vector: |
729 |
|
|
730 |
< |
if (simParams_->haveAccumulateBoxDipole()) |
731 |
< |
if (simParams_->getAccumulateBoxDipole()) |
732 |
< |
useBoxDipole = 1; |
730 |
> |
vector<int> foundTypes; |
731 |
> |
set<AtomType*>::iterator i; |
732 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
733 |
> |
foundTypes.push_back( (*i)->getIdent() ); |
734 |
|
|
735 |
< |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
735 |
> |
// count_local holds the number of found types on this processor |
736 |
> |
int count_local = foundTypes.size(); |
737 |
|
|
738 |
< |
//loop over all of the atom types |
788 |
< |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
789 |
< |
useLennardJones |= (*i)->isLennardJones(); |
790 |
< |
useElectrostatic |= (*i)->isElectrostatic(); |
791 |
< |
useEAM |= (*i)->isEAM(); |
792 |
< |
useSC |= (*i)->isSC(); |
793 |
< |
useCharge |= (*i)->isCharge(); |
794 |
< |
useDirectional |= (*i)->isDirectional(); |
795 |
< |
useDipole |= (*i)->isDipole(); |
796 |
< |
useGayBerne |= (*i)->isGayBerne(); |
797 |
< |
useSticky |= (*i)->isSticky(); |
798 |
< |
useStickyPower |= (*i)->isStickyPower(); |
799 |
< |
useShape |= (*i)->isShape(); |
800 |
< |
} |
738 |
> |
int nproc = MPI::COMM_WORLD.Get_size(); |
739 |
|
|
740 |
< |
if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
741 |
< |
useDirectionalAtom = 1; |
742 |
< |
} |
740 |
> |
// we need arrays to hold the counts and displacement vectors for |
741 |
> |
// all processors |
742 |
> |
vector<int> counts(nproc, 0); |
743 |
> |
vector<int> disps(nproc, 0); |
744 |
|
|
745 |
< |
if (useCharge || useDipole) { |
746 |
< |
useElectrostatics = 1; |
745 |
> |
// fill the counts array |
746 |
> |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
747 |
> |
1, MPI::INT); |
748 |
> |
|
749 |
> |
// use the processor counts to compute the displacement array |
750 |
> |
disps[0] = 0; |
751 |
> |
int totalCount = counts[0]; |
752 |
> |
for (int iproc = 1; iproc < nproc; iproc++) { |
753 |
> |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
754 |
> |
totalCount += counts[iproc]; |
755 |
|
} |
756 |
|
|
757 |
< |
#ifdef IS_MPI |
758 |
< |
int temp; |
757 |
> |
// we need a (possibly redundant) set of all found types: |
758 |
> |
vector<int> ftGlobal(totalCount); |
759 |
> |
|
760 |
> |
// now spray out the foundTypes to all the other processors: |
761 |
> |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
762 |
> |
&ftGlobal[0], &counts[0], &disps[0], |
763 |
> |
MPI::INT); |
764 |
|
|
765 |
< |
temp = usePBC; |
814 |
< |
MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
765 |
> |
vector<int>::iterator j; |
766 |
|
|
767 |
< |
temp = useDirectionalAtom; |
768 |
< |
MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
767 |
> |
// foundIdents is a stl set, so inserting an already found ident |
768 |
> |
// will have no effect. |
769 |
> |
set<int> foundIdents; |
770 |
|
|
771 |
< |
temp = useLennardJones; |
772 |
< |
MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
771 |
> |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
772 |
> |
foundIdents.insert((*j)); |
773 |
> |
|
774 |
> |
// now iterate over the foundIdents and get the actual atom types |
775 |
> |
// that correspond to these: |
776 |
> |
set<int>::iterator it; |
777 |
> |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
778 |
> |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
779 |
> |
|
780 |
> |
#endif |
781 |
|
|
782 |
< |
temp = useElectrostatics; |
783 |
< |
MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
782 |
> |
return atomTypes; |
783 |
> |
} |
784 |
|
|
785 |
< |
temp = useCharge; |
786 |
< |
MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
787 |
< |
|
788 |
< |
temp = useDipole; |
789 |
< |
MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
790 |
< |
|
791 |
< |
temp = useSticky; |
792 |
< |
MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
793 |
< |
|
834 |
< |
temp = useStickyPower; |
835 |
< |
MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
785 |
> |
void SimInfo::setupSimVariables() { |
786 |
> |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
787 |
> |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole |
788 |
> |
// parameter is true |
789 |
> |
calcBoxDipole_ = false; |
790 |
> |
if ( simParams_->haveAccumulateBoxDipole() ) |
791 |
> |
if ( simParams_->getAccumulateBoxDipole() ) { |
792 |
> |
calcBoxDipole_ = true; |
793 |
> |
} |
794 |
|
|
795 |
< |
temp = useGayBerne; |
796 |
< |
MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
795 |
> |
set<AtomType*>::iterator i; |
796 |
> |
set<AtomType*> atomTypes; |
797 |
> |
atomTypes = getSimulatedAtomTypes(); |
798 |
> |
bool usesElectrostatic = false; |
799 |
> |
bool usesMetallic = false; |
800 |
> |
bool usesDirectional = false; |
801 |
> |
bool usesFluctuatingCharges = false; |
802 |
> |
//loop over all of the atom types |
803 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
804 |
> |
usesElectrostatic |= (*i)->isElectrostatic(); |
805 |
> |
usesMetallic |= (*i)->isMetal(); |
806 |
> |
usesDirectional |= (*i)->isDirectional(); |
807 |
> |
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
808 |
> |
} |
809 |
|
|
810 |
< |
temp = useEAM; |
811 |
< |
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
812 |
< |
|
813 |
< |
temp = useSC; |
814 |
< |
MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
810 |
> |
#ifdef IS_MPI |
811 |
> |
bool temp; |
812 |
> |
temp = usesDirectional; |
813 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, |
814 |
> |
MPI::LOR); |
815 |
> |
|
816 |
> |
temp = usesMetallic; |
817 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, |
818 |
> |
MPI::LOR); |
819 |
|
|
820 |
< |
temp = useShape; |
821 |
< |
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
820 |
> |
temp = usesElectrostatic; |
821 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, |
822 |
> |
MPI::LOR); |
823 |
|
|
824 |
< |
temp = useFLARB; |
825 |
< |
MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
824 |
> |
temp = usesFluctuatingCharges; |
825 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, |
826 |
> |
MPI::LOR); |
827 |
> |
#else |
828 |
|
|
829 |
< |
temp = useRF; |
830 |
< |
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
829 |
> |
usesDirectionalAtoms_ = usesDirectional; |
830 |
> |
usesMetallicAtoms_ = usesMetallic; |
831 |
> |
usesElectrostaticAtoms_ = usesElectrostatic; |
832 |
> |
usesFluctuatingCharges_ = usesFluctuatingCharges; |
833 |
|
|
834 |
< |
temp = useSF; |
835 |
< |
MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
834 |
> |
#endif |
835 |
> |
|
836 |
> |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
837 |
> |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
838 |
> |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
839 |
> |
} |
840 |
|
|
858 |
– |
temp = useSP; |
859 |
– |
MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
841 |
|
|
842 |
< |
temp = useBoxDipole; |
843 |
< |
MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
842 |
> |
vector<int> SimInfo::getGlobalAtomIndices() { |
843 |
> |
SimInfo::MoleculeIterator mi; |
844 |
> |
Molecule* mol; |
845 |
> |
Molecule::AtomIterator ai; |
846 |
> |
Atom* atom; |
847 |
|
|
848 |
< |
temp = useAtomicVirial_; |
849 |
< |
MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
848 |
> |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
849 |
> |
|
850 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
851 |
> |
|
852 |
> |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
853 |
> |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
854 |
> |
} |
855 |
> |
} |
856 |
> |
return GlobalAtomIndices; |
857 |
> |
} |
858 |
|
|
867 |
– |
#endif |
859 |
|
|
860 |
< |
fInfo_.SIM_uses_PBC = usePBC; |
861 |
< |
fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
862 |
< |
fInfo_.SIM_uses_LennardJones = useLennardJones; |
863 |
< |
fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
864 |
< |
fInfo_.SIM_uses_Charges = useCharge; |
874 |
< |
fInfo_.SIM_uses_Dipoles = useDipole; |
875 |
< |
fInfo_.SIM_uses_Sticky = useSticky; |
876 |
< |
fInfo_.SIM_uses_StickyPower = useStickyPower; |
877 |
< |
fInfo_.SIM_uses_GayBerne = useGayBerne; |
878 |
< |
fInfo_.SIM_uses_EAM = useEAM; |
879 |
< |
fInfo_.SIM_uses_SC = useSC; |
880 |
< |
fInfo_.SIM_uses_Shapes = useShape; |
881 |
< |
fInfo_.SIM_uses_FLARB = useFLARB; |
882 |
< |
fInfo_.SIM_uses_RF = useRF; |
883 |
< |
fInfo_.SIM_uses_SF = useSF; |
884 |
< |
fInfo_.SIM_uses_SP = useSP; |
885 |
< |
fInfo_.SIM_uses_BoxDipole = useBoxDipole; |
886 |
< |
fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; |
887 |
< |
} |
860 |
> |
vector<int> SimInfo::getGlobalGroupIndices() { |
861 |
> |
SimInfo::MoleculeIterator mi; |
862 |
> |
Molecule* mol; |
863 |
> |
Molecule::CutoffGroupIterator ci; |
864 |
> |
CutoffGroup* cg; |
865 |
|
|
866 |
< |
void SimInfo::setupFortranSim() { |
890 |
< |
int isError; |
891 |
< |
int nExclude, nOneTwo, nOneThree, nOneFour; |
892 |
< |
std::vector<int> fortranGlobalGroupMembership; |
866 |
> |
vector<int> GlobalGroupIndices; |
867 |
|
|
868 |
< |
isError = 0; |
869 |
< |
|
870 |
< |
//globalGroupMembership_ is filled by SimCreator |
871 |
< |
for (int i = 0; i < nGlobalAtoms_; i++) { |
872 |
< |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
868 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
869 |
> |
|
870 |
> |
//local index of cutoff group is trivial, it only depends on the |
871 |
> |
//order of travesing |
872 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
873 |
> |
cg = mol->nextCutoffGroup(ci)) { |
874 |
> |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
875 |
> |
} |
876 |
|
} |
877 |
+ |
return GlobalGroupIndices; |
878 |
+ |
} |
879 |
|
|
880 |
+ |
|
881 |
+ |
void SimInfo::prepareTopology() { |
882 |
+ |
|
883 |
|
//calculate mass ratio of cutoff group |
902 |
– |
std::vector<RealType> mfact; |
884 |
|
SimInfo::MoleculeIterator mi; |
885 |
|
Molecule* mol; |
886 |
|
Molecule::CutoffGroupIterator ci; |
889 |
|
Atom* atom; |
890 |
|
RealType totalMass; |
891 |
|
|
892 |
< |
//to avoid memory reallocation, reserve enough space for mfact |
893 |
< |
mfact.reserve(getNCutoffGroups()); |
892 |
> |
/** |
893 |
> |
* The mass factor is the relative mass of an atom to the total |
894 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
895 |
> |
* are their own cutoff groups, and therefore have mass factors of |
896 |
> |
* 1. We need some special handling for massless atoms, which |
897 |
> |
* will be treated as carrying the entire mass of the cutoff |
898 |
> |
* group. |
899 |
> |
*/ |
900 |
> |
massFactors_.clear(); |
901 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
902 |
|
|
903 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
904 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
904 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
905 |
> |
cg = mol->nextCutoffGroup(ci)) { |
906 |
|
|
907 |
|
totalMass = cg->getMass(); |
908 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
909 |
|
// Check for massless groups - set mfact to 1 if true |
910 |
< |
if (totalMass != 0) |
911 |
< |
mfact.push_back(atom->getMass()/totalMass); |
910 |
> |
if (totalMass != 0) |
911 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
912 |
|
else |
913 |
< |
mfact.push_back( 1.0 ); |
913 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
914 |
|
} |
915 |
|
} |
916 |
|
} |
917 |
|
|
918 |
< |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
929 |
< |
std::vector<int> identArray; |
918 |
> |
// Build the identArray_ |
919 |
|
|
920 |
< |
//to avoid memory reallocation, reserve enough space identArray |
921 |
< |
identArray.reserve(getNAtoms()); |
933 |
< |
|
920 |
> |
identArray_.clear(); |
921 |
> |
identArray_.reserve(getNAtoms()); |
922 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
923 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
924 |
< |
identArray.push_back(atom->getIdent()); |
924 |
> |
identArray_.push_back(atom->getIdent()); |
925 |
|
} |
926 |
|
} |
939 |
– |
|
940 |
– |
//fill molMembershipArray |
941 |
– |
//molMembershipArray is filled by SimCreator |
942 |
– |
std::vector<int> molMembershipArray(nGlobalAtoms_); |
943 |
– |
for (int i = 0; i < nGlobalAtoms_; i++) { |
944 |
– |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
945 |
– |
} |
927 |
|
|
928 |
< |
//setup fortran simulation |
928 |
> |
//scan topology |
929 |
|
|
949 |
– |
nExclude = excludedInteractions_.getSize(); |
950 |
– |
nOneTwo = oneTwoInteractions_.getSize(); |
951 |
– |
nOneThree = oneThreeInteractions_.getSize(); |
952 |
– |
nOneFour = oneFourInteractions_.getSize(); |
953 |
– |
|
930 |
|
int* excludeList = excludedInteractions_.getPairList(); |
931 |
|
int* oneTwoList = oneTwoInteractions_.getPairList(); |
932 |
|
int* oneThreeList = oneThreeInteractions_.getPairList(); |
933 |
|
int* oneFourList = oneFourInteractions_.getPairList(); |
934 |
|
|
935 |
< |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
936 |
< |
&nExclude, excludeList, |
961 |
< |
&nOneTwo, oneTwoList, |
962 |
< |
&nOneThree, oneThreeList, |
963 |
< |
&nOneFour, oneFourList, |
964 |
< |
&molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
965 |
< |
&fortranGlobalGroupMembership[0], &isError); |
966 |
< |
|
967 |
< |
if( isError ){ |
968 |
< |
|
969 |
< |
sprintf( painCave.errMsg, |
970 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
971 |
< |
painCave.isFatal = 1; |
972 |
< |
painCave.severity = OPENMD_ERROR; |
973 |
< |
simError(); |
974 |
< |
} |
975 |
< |
|
976 |
< |
|
977 |
< |
sprintf( checkPointMsg, |
978 |
< |
"succesfully sent the simulation information to fortran.\n"); |
979 |
< |
|
980 |
< |
errorCheckPoint(); |
981 |
< |
|
982 |
< |
// Setup number of neighbors in neighbor list if present |
983 |
< |
if (simParams_->haveNeighborListNeighbors()) { |
984 |
< |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
985 |
< |
setNeighbors(&nlistNeighbors); |
986 |
< |
} |
987 |
< |
|
935 |
> |
topologyDone_ = true; |
936 |
> |
} |
937 |
|
|
938 |
+ |
void SimInfo::addProperty(GenericData* genData) { |
939 |
+ |
properties_.addProperty(genData); |
940 |
|
} |
941 |
|
|
942 |
+ |
void SimInfo::removeProperty(const string& propName) { |
943 |
+ |
properties_.removeProperty(propName); |
944 |
+ |
} |
945 |
|
|
946 |
< |
void SimInfo::setupFortranParallel() { |
947 |
< |
#ifdef IS_MPI |
994 |
< |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
995 |
< |
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
996 |
< |
std::vector<int> localToGlobalCutoffGroupIndex; |
997 |
< |
SimInfo::MoleculeIterator mi; |
998 |
< |
Molecule::AtomIterator ai; |
999 |
< |
Molecule::CutoffGroupIterator ci; |
1000 |
< |
Molecule* mol; |
1001 |
< |
Atom* atom; |
1002 |
< |
CutoffGroup* cg; |
1003 |
< |
mpiSimData parallelData; |
1004 |
< |
int isError; |
1005 |
< |
|
1006 |
< |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1007 |
< |
|
1008 |
< |
//local index(index in DataStorge) of atom is important |
1009 |
< |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
1010 |
< |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
1011 |
< |
} |
1012 |
< |
|
1013 |
< |
//local index of cutoff group is trivial, it only depends on the order of travesing |
1014 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
1015 |
< |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
1016 |
< |
} |
1017 |
< |
|
1018 |
< |
} |
1019 |
< |
|
1020 |
< |
//fill up mpiSimData struct |
1021 |
< |
parallelData.nMolGlobal = getNGlobalMolecules(); |
1022 |
< |
parallelData.nMolLocal = getNMolecules(); |
1023 |
< |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
1024 |
< |
parallelData.nAtomsLocal = getNAtoms(); |
1025 |
< |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
1026 |
< |
parallelData.nGroupsLocal = getNCutoffGroups(); |
1027 |
< |
parallelData.myNode = worldRank; |
1028 |
< |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
1029 |
< |
|
1030 |
< |
//pass mpiSimData struct and index arrays to fortran |
1031 |
< |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
1032 |
< |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
1033 |
< |
&localToGlobalCutoffGroupIndex[0], &isError); |
1034 |
< |
|
1035 |
< |
if (isError) { |
1036 |
< |
sprintf(painCave.errMsg, |
1037 |
< |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
1038 |
< |
painCave.isFatal = 1; |
1039 |
< |
simError(); |
1040 |
< |
} |
1041 |
< |
|
1042 |
< |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
1043 |
< |
errorCheckPoint(); |
1044 |
< |
|
1045 |
< |
#endif |
946 |
> |
void SimInfo::clearProperties() { |
947 |
> |
properties_.clearProperties(); |
948 |
|
} |
949 |
|
|
950 |
< |
void SimInfo::setupCutoff() { |
951 |
< |
|
952 |
< |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
1051 |
< |
|
1052 |
< |
// Check the cutoff policy |
1053 |
< |
int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
1054 |
< |
|
1055 |
< |
// Set LJ shifting bools to false |
1056 |
< |
ljsp_ = 0; |
1057 |
< |
ljsf_ = 0; |
1058 |
< |
|
1059 |
< |
std::string myPolicy; |
1060 |
< |
if (forceFieldOptions_.haveCutoffPolicy()){ |
1061 |
< |
myPolicy = forceFieldOptions_.getCutoffPolicy(); |
1062 |
< |
}else if (simParams_->haveCutoffPolicy()) { |
1063 |
< |
myPolicy = simParams_->getCutoffPolicy(); |
1064 |
< |
} |
1065 |
< |
|
1066 |
< |
if (!myPolicy.empty()){ |
1067 |
< |
toUpper(myPolicy); |
1068 |
< |
if (myPolicy == "MIX") { |
1069 |
< |
cp = MIX_CUTOFF_POLICY; |
1070 |
< |
} else { |
1071 |
< |
if (myPolicy == "MAX") { |
1072 |
< |
cp = MAX_CUTOFF_POLICY; |
1073 |
< |
} else { |
1074 |
< |
if (myPolicy == "TRADITIONAL") { |
1075 |
< |
cp = TRADITIONAL_CUTOFF_POLICY; |
1076 |
< |
} else { |
1077 |
< |
// throw error |
1078 |
< |
sprintf( painCave.errMsg, |
1079 |
< |
"SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
1080 |
< |
painCave.isFatal = 1; |
1081 |
< |
simError(); |
1082 |
< |
} |
1083 |
< |
} |
1084 |
< |
} |
1085 |
< |
} |
1086 |
< |
notifyFortranCutoffPolicy(&cp); |
1087 |
< |
|
1088 |
< |
// Check the Skin Thickness for neighborlists |
1089 |
< |
RealType skin; |
1090 |
< |
if (simParams_->haveSkinThickness()) { |
1091 |
< |
skin = simParams_->getSkinThickness(); |
1092 |
< |
notifyFortranSkinThickness(&skin); |
1093 |
< |
} |
1094 |
< |
|
1095 |
< |
// Check if the cutoff was set explicitly: |
1096 |
< |
if (simParams_->haveCutoffRadius()) { |
1097 |
< |
rcut_ = simParams_->getCutoffRadius(); |
1098 |
< |
if (simParams_->haveSwitchingRadius()) { |
1099 |
< |
rsw_ = simParams_->getSwitchingRadius(); |
1100 |
< |
} else { |
1101 |
< |
if (fInfo_.SIM_uses_Charges | |
1102 |
< |
fInfo_.SIM_uses_Dipoles | |
1103 |
< |
fInfo_.SIM_uses_RF) { |
1104 |
< |
|
1105 |
< |
rsw_ = 0.85 * rcut_; |
1106 |
< |
sprintf(painCave.errMsg, |
1107 |
< |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1108 |
< |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
1109 |
< |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1110 |
< |
painCave.isFatal = 0; |
1111 |
< |
simError(); |
1112 |
< |
} else { |
1113 |
< |
rsw_ = rcut_; |
1114 |
< |
sprintf(painCave.errMsg, |
1115 |
< |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1116 |
< |
"\tOpenMD will use the same value as the cutoffRadius.\n" |
1117 |
< |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1118 |
< |
painCave.isFatal = 0; |
1119 |
< |
simError(); |
1120 |
< |
} |
1121 |
< |
} |
1122 |
< |
|
1123 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
1124 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1125 |
< |
toUpper(myMethod); |
1126 |
< |
|
1127 |
< |
if (myMethod == "SHIFTED_POTENTIAL") { |
1128 |
< |
ljsp_ = 1; |
1129 |
< |
} else if (myMethod == "SHIFTED_FORCE") { |
1130 |
< |
ljsf_ = 1; |
1131 |
< |
} |
1132 |
< |
} |
1133 |
< |
|
1134 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
950 |
> |
vector<string> SimInfo::getPropertyNames() { |
951 |
> |
return properties_.getPropertyNames(); |
952 |
> |
} |
953 |
|
|
954 |
< |
} else { |
955 |
< |
|
1138 |
< |
// For electrostatic atoms, we'll assume a large safe value: |
1139 |
< |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
1140 |
< |
sprintf(painCave.errMsg, |
1141 |
< |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
1142 |
< |
"\tOpenMD will use a default value of 15.0 angstroms" |
1143 |
< |
"\tfor the cutoffRadius.\n"); |
1144 |
< |
painCave.isFatal = 0; |
1145 |
< |
simError(); |
1146 |
< |
rcut_ = 15.0; |
1147 |
< |
|
1148 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
1149 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1150 |
< |
toUpper(myMethod); |
1151 |
< |
|
1152 |
< |
// For the time being, we're tethering the LJ shifted behavior to the |
1153 |
< |
// electrostaticSummationMethod keyword options |
1154 |
< |
if (myMethod == "SHIFTED_POTENTIAL") { |
1155 |
< |
ljsp_ = 1; |
1156 |
< |
} else if (myMethod == "SHIFTED_FORCE") { |
1157 |
< |
ljsf_ = 1; |
1158 |
< |
} |
1159 |
< |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1160 |
< |
if (simParams_->haveSwitchingRadius()){ |
1161 |
< |
sprintf(painCave.errMsg, |
1162 |
< |
"SimInfo Warning: A value was set for the switchingRadius\n" |
1163 |
< |
"\teven though the electrostaticSummationMethod was\n" |
1164 |
< |
"\tset to %s\n", myMethod.c_str()); |
1165 |
< |
painCave.isFatal = 1; |
1166 |
< |
simError(); |
1167 |
< |
} |
1168 |
< |
} |
1169 |
< |
} |
1170 |
< |
|
1171 |
< |
if (simParams_->haveSwitchingRadius()){ |
1172 |
< |
rsw_ = simParams_->getSwitchingRadius(); |
1173 |
< |
} else { |
1174 |
< |
sprintf(painCave.errMsg, |
1175 |
< |
"SimCreator Warning: No value was set for switchingRadius.\n" |
1176 |
< |
"\tOpenMD will use a default value of\n" |
1177 |
< |
"\t0.85 * cutoffRadius for the switchingRadius\n"); |
1178 |
< |
painCave.isFatal = 0; |
1179 |
< |
simError(); |
1180 |
< |
rsw_ = 0.85 * rcut_; |
1181 |
< |
} |
1182 |
< |
|
1183 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1184 |
< |
|
1185 |
< |
} else { |
1186 |
< |
// We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1187 |
< |
// We'll punt and let fortran figure out the cutoffs later. |
1188 |
< |
|
1189 |
< |
notifyFortranYouAreOnYourOwn(); |
1190 |
< |
|
1191 |
< |
} |
1192 |
< |
} |
954 |
> |
vector<GenericData*> SimInfo::getProperties() { |
955 |
> |
return properties_.getProperties(); |
956 |
|
} |
957 |
|
|
958 |
< |
void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
1196 |
< |
|
1197 |
< |
int errorOut; |
1198 |
< |
int esm = NONE; |
1199 |
< |
int sm = UNDAMPED; |
1200 |
< |
RealType alphaVal; |
1201 |
< |
RealType dielectric; |
1202 |
< |
|
1203 |
< |
errorOut = isError; |
1204 |
< |
|
1205 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
1206 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1207 |
< |
toUpper(myMethod); |
1208 |
< |
if (myMethod == "NONE") { |
1209 |
< |
esm = NONE; |
1210 |
< |
} else { |
1211 |
< |
if (myMethod == "SWITCHING_FUNCTION") { |
1212 |
< |
esm = SWITCHING_FUNCTION; |
1213 |
< |
} else { |
1214 |
< |
if (myMethod == "SHIFTED_POTENTIAL") { |
1215 |
< |
esm = SHIFTED_POTENTIAL; |
1216 |
< |
} else { |
1217 |
< |
if (myMethod == "SHIFTED_FORCE") { |
1218 |
< |
esm = SHIFTED_FORCE; |
1219 |
< |
} else { |
1220 |
< |
if (myMethod == "REACTION_FIELD") { |
1221 |
< |
esm = REACTION_FIELD; |
1222 |
< |
dielectric = simParams_->getDielectric(); |
1223 |
< |
if (!simParams_->haveDielectric()) { |
1224 |
< |
// throw warning |
1225 |
< |
sprintf( painCave.errMsg, |
1226 |
< |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
1227 |
< |
"\tA default value of %f will be used for the dielectric.\n", dielectric); |
1228 |
< |
painCave.isFatal = 0; |
1229 |
< |
simError(); |
1230 |
< |
} |
1231 |
< |
} else { |
1232 |
< |
// throw error |
1233 |
< |
sprintf( painCave.errMsg, |
1234 |
< |
"SimInfo error: Unknown electrostaticSummationMethod.\n" |
1235 |
< |
"\t(Input file specified %s .)\n" |
1236 |
< |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
1237 |
< |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
1238 |
< |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
1239 |
< |
painCave.isFatal = 1; |
1240 |
< |
simError(); |
1241 |
< |
} |
1242 |
< |
} |
1243 |
< |
} |
1244 |
< |
} |
1245 |
< |
} |
1246 |
< |
} |
1247 |
< |
|
1248 |
< |
if (simParams_->haveElectrostaticScreeningMethod()) { |
1249 |
< |
std::string myScreen = simParams_->getElectrostaticScreeningMethod(); |
1250 |
< |
toUpper(myScreen); |
1251 |
< |
if (myScreen == "UNDAMPED") { |
1252 |
< |
sm = UNDAMPED; |
1253 |
< |
} else { |
1254 |
< |
if (myScreen == "DAMPED") { |
1255 |
< |
sm = DAMPED; |
1256 |
< |
if (!simParams_->haveDampingAlpha()) { |
1257 |
< |
// first set a cutoff dependent alpha value |
1258 |
< |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
1259 |
< |
alphaVal = 0.5125 - rcut_* 0.025; |
1260 |
< |
// for values rcut > 20.5, alpha is zero |
1261 |
< |
if (alphaVal < 0) alphaVal = 0; |
1262 |
< |
|
1263 |
< |
// throw warning |
1264 |
< |
sprintf( painCave.errMsg, |
1265 |
< |
"SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1266 |
< |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); |
1267 |
< |
painCave.isFatal = 0; |
1268 |
< |
simError(); |
1269 |
< |
} else { |
1270 |
< |
alphaVal = simParams_->getDampingAlpha(); |
1271 |
< |
} |
1272 |
< |
|
1273 |
< |
} else { |
1274 |
< |
// throw error |
1275 |
< |
sprintf( painCave.errMsg, |
1276 |
< |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
1277 |
< |
"\t(Input file specified %s .)\n" |
1278 |
< |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
1279 |
< |
"or \"damped\".\n", myScreen.c_str() ); |
1280 |
< |
painCave.isFatal = 1; |
1281 |
< |
simError(); |
1282 |
< |
} |
1283 |
< |
} |
1284 |
< |
} |
1285 |
< |
|
1286 |
< |
// let's pass some summation method variables to fortran |
1287 |
< |
setElectrostaticSummationMethod( &esm ); |
1288 |
< |
setFortranElectrostaticMethod( &esm ); |
1289 |
< |
setScreeningMethod( &sm ); |
1290 |
< |
setDampingAlpha( &alphaVal ); |
1291 |
< |
setReactionFieldDielectric( &dielectric ); |
1292 |
< |
initFortranFF( &errorOut ); |
1293 |
< |
} |
1294 |
< |
|
1295 |
< |
void SimInfo::setupSwitchingFunction() { |
1296 |
< |
int ft = CUBIC; |
1297 |
< |
|
1298 |
< |
if (simParams_->haveSwitchingFunctionType()) { |
1299 |
< |
std::string funcType = simParams_->getSwitchingFunctionType(); |
1300 |
< |
toUpper(funcType); |
1301 |
< |
if (funcType == "CUBIC") { |
1302 |
< |
ft = CUBIC; |
1303 |
< |
} else { |
1304 |
< |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1305 |
< |
ft = FIFTH_ORDER_POLY; |
1306 |
< |
} else { |
1307 |
< |
// throw error |
1308 |
< |
sprintf( painCave.errMsg, |
1309 |
< |
"SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1310 |
< |
painCave.isFatal = 1; |
1311 |
< |
simError(); |
1312 |
< |
} |
1313 |
< |
} |
1314 |
< |
} |
1315 |
< |
|
1316 |
< |
// send switching function notification to switcheroo |
1317 |
< |
setFunctionType(&ft); |
1318 |
< |
|
1319 |
< |
} |
1320 |
< |
|
1321 |
< |
void SimInfo::setupAccumulateBoxDipole() { |
1322 |
< |
|
1323 |
< |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1324 |
< |
if ( simParams_->haveAccumulateBoxDipole() ) |
1325 |
< |
if ( simParams_->getAccumulateBoxDipole() ) { |
1326 |
< |
setAccumulateBoxDipole(); |
1327 |
< |
calcBoxDipole_ = true; |
1328 |
< |
} |
1329 |
< |
|
1330 |
< |
} |
1331 |
< |
|
1332 |
< |
void SimInfo::addProperty(GenericData* genData) { |
1333 |
< |
properties_.addProperty(genData); |
1334 |
< |
} |
1335 |
< |
|
1336 |
< |
void SimInfo::removeProperty(const std::string& propName) { |
1337 |
< |
properties_.removeProperty(propName); |
1338 |
< |
} |
1339 |
< |
|
1340 |
< |
void SimInfo::clearProperties() { |
1341 |
< |
properties_.clearProperties(); |
1342 |
< |
} |
1343 |
< |
|
1344 |
< |
std::vector<std::string> SimInfo::getPropertyNames() { |
1345 |
< |
return properties_.getPropertyNames(); |
1346 |
< |
} |
1347 |
< |
|
1348 |
< |
std::vector<GenericData*> SimInfo::getProperties() { |
1349 |
< |
return properties_.getProperties(); |
1350 |
< |
} |
1351 |
< |
|
1352 |
< |
GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
958 |
> |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
959 |
|
return properties_.getPropertyByName(propName); |
960 |
|
} |
961 |
|
|
969 |
|
Molecule* mol; |
970 |
|
RigidBody* rb; |
971 |
|
Atom* atom; |
972 |
+ |
CutoffGroup* cg; |
973 |
|
SimInfo::MoleculeIterator mi; |
974 |
|
Molecule::RigidBodyIterator rbIter; |
975 |
< |
Molecule::AtomIterator atomIter;; |
975 |
> |
Molecule::AtomIterator atomIter; |
976 |
> |
Molecule::CutoffGroupIterator cgIter; |
977 |
|
|
978 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
979 |
|
|
980 |
< |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
980 |
> |
for (atom = mol->beginAtom(atomIter); atom != NULL; |
981 |
> |
atom = mol->nextAtom(atomIter)) { |
982 |
|
atom->setSnapshotManager(sman_); |
983 |
|
} |
984 |
|
|
985 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
985 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
986 |
> |
rb = mol->nextRigidBody(rbIter)) { |
987 |
|
rb->setSnapshotManager(sman_); |
988 |
|
} |
989 |
+ |
|
990 |
+ |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; |
991 |
+ |
cg = mol->nextCutoffGroup(cgIter)) { |
992 |
+ |
cg->setSnapshotManager(sman_); |
993 |
+ |
} |
994 |
|
} |
995 |
|
|
996 |
|
} |
997 |
|
|
1383 |
– |
Vector3d SimInfo::getComVel(){ |
1384 |
– |
SimInfo::MoleculeIterator i; |
1385 |
– |
Molecule* mol; |
998 |
|
|
999 |
< |
Vector3d comVel(0.0); |
1388 |
< |
RealType totalMass = 0.0; |
1389 |
< |
|
1390 |
< |
|
1391 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1392 |
< |
RealType mass = mol->getMass(); |
1393 |
< |
totalMass += mass; |
1394 |
< |
comVel += mass * mol->getComVel(); |
1395 |
< |
} |
999 |
> |
ostream& operator <<(ostream& o, SimInfo& info) { |
1000 |
|
|
1397 |
– |
#ifdef IS_MPI |
1398 |
– |
RealType tmpMass = totalMass; |
1399 |
– |
Vector3d tmpComVel(comVel); |
1400 |
– |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1401 |
– |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1402 |
– |
#endif |
1403 |
– |
|
1404 |
– |
comVel /= totalMass; |
1405 |
– |
|
1406 |
– |
return comVel; |
1407 |
– |
} |
1408 |
– |
|
1409 |
– |
Vector3d SimInfo::getCom(){ |
1410 |
– |
SimInfo::MoleculeIterator i; |
1411 |
– |
Molecule* mol; |
1412 |
– |
|
1413 |
– |
Vector3d com(0.0); |
1414 |
– |
RealType totalMass = 0.0; |
1415 |
– |
|
1416 |
– |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1417 |
– |
RealType mass = mol->getMass(); |
1418 |
– |
totalMass += mass; |
1419 |
– |
com += mass * mol->getCom(); |
1420 |
– |
} |
1421 |
– |
|
1422 |
– |
#ifdef IS_MPI |
1423 |
– |
RealType tmpMass = totalMass; |
1424 |
– |
Vector3d tmpCom(com); |
1425 |
– |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1426 |
– |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1427 |
– |
#endif |
1428 |
– |
|
1429 |
– |
com /= totalMass; |
1430 |
– |
|
1431 |
– |
return com; |
1432 |
– |
|
1433 |
– |
} |
1434 |
– |
|
1435 |
– |
std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1436 |
– |
|
1001 |
|
return o; |
1002 |
|
} |
1003 |
|
|
1004 |
< |
|
1441 |
< |
/* |
1442 |
< |
Returns center of mass and center of mass velocity in one function call. |
1443 |
< |
*/ |
1444 |
< |
|
1445 |
< |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1446 |
< |
SimInfo::MoleculeIterator i; |
1447 |
< |
Molecule* mol; |
1448 |
< |
|
1449 |
< |
|
1450 |
< |
RealType totalMass = 0.0; |
1451 |
< |
|
1452 |
< |
|
1453 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1454 |
< |
RealType mass = mol->getMass(); |
1455 |
< |
totalMass += mass; |
1456 |
< |
com += mass * mol->getCom(); |
1457 |
< |
comVel += mass * mol->getComVel(); |
1458 |
< |
} |
1459 |
< |
|
1460 |
< |
#ifdef IS_MPI |
1461 |
< |
RealType tmpMass = totalMass; |
1462 |
< |
Vector3d tmpCom(com); |
1463 |
< |
Vector3d tmpComVel(comVel); |
1464 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1465 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1466 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1467 |
< |
#endif |
1468 |
< |
|
1469 |
< |
com /= totalMass; |
1470 |
< |
comVel /= totalMass; |
1471 |
< |
} |
1472 |
< |
|
1473 |
< |
/* |
1474 |
< |
Return intertia tensor for entire system and angular momentum Vector. |
1475 |
< |
|
1476 |
< |
|
1477 |
< |
[ Ixx -Ixy -Ixz ] |
1478 |
< |
J =| -Iyx Iyy -Iyz | |
1479 |
< |
[ -Izx -Iyz Izz ] |
1480 |
< |
*/ |
1481 |
< |
|
1482 |
< |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1483 |
< |
|
1484 |
< |
|
1485 |
< |
RealType xx = 0.0; |
1486 |
< |
RealType yy = 0.0; |
1487 |
< |
RealType zz = 0.0; |
1488 |
< |
RealType xy = 0.0; |
1489 |
< |
RealType xz = 0.0; |
1490 |
< |
RealType yz = 0.0; |
1491 |
< |
Vector3d com(0.0); |
1492 |
< |
Vector3d comVel(0.0); |
1493 |
< |
|
1494 |
< |
getComAll(com, comVel); |
1495 |
< |
|
1496 |
< |
SimInfo::MoleculeIterator i; |
1497 |
< |
Molecule* mol; |
1498 |
< |
|
1499 |
< |
Vector3d thisq(0.0); |
1500 |
< |
Vector3d thisv(0.0); |
1501 |
< |
|
1502 |
< |
RealType thisMass = 0.0; |
1503 |
< |
|
1504 |
< |
|
1505 |
< |
|
1506 |
< |
|
1507 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1508 |
< |
|
1509 |
< |
thisq = mol->getCom()-com; |
1510 |
< |
thisv = mol->getComVel()-comVel; |
1511 |
< |
thisMass = mol->getMass(); |
1512 |
< |
// Compute moment of intertia coefficients. |
1513 |
< |
xx += thisq[0]*thisq[0]*thisMass; |
1514 |
< |
yy += thisq[1]*thisq[1]*thisMass; |
1515 |
< |
zz += thisq[2]*thisq[2]*thisMass; |
1516 |
< |
|
1517 |
< |
// compute products of intertia |
1518 |
< |
xy += thisq[0]*thisq[1]*thisMass; |
1519 |
< |
xz += thisq[0]*thisq[2]*thisMass; |
1520 |
< |
yz += thisq[1]*thisq[2]*thisMass; |
1521 |
< |
|
1522 |
< |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1523 |
< |
|
1524 |
< |
} |
1525 |
< |
|
1526 |
< |
|
1527 |
< |
inertiaTensor(0,0) = yy + zz; |
1528 |
< |
inertiaTensor(0,1) = -xy; |
1529 |
< |
inertiaTensor(0,2) = -xz; |
1530 |
< |
inertiaTensor(1,0) = -xy; |
1531 |
< |
inertiaTensor(1,1) = xx + zz; |
1532 |
< |
inertiaTensor(1,2) = -yz; |
1533 |
< |
inertiaTensor(2,0) = -xz; |
1534 |
< |
inertiaTensor(2,1) = -yz; |
1535 |
< |
inertiaTensor(2,2) = xx + yy; |
1536 |
< |
|
1537 |
< |
#ifdef IS_MPI |
1538 |
< |
Mat3x3d tmpI(inertiaTensor); |
1539 |
< |
Vector3d tmpAngMom; |
1540 |
< |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1541 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1542 |
< |
#endif |
1543 |
< |
|
1544 |
< |
return; |
1545 |
< |
} |
1546 |
< |
|
1547 |
< |
//Returns the angular momentum of the system |
1548 |
< |
Vector3d SimInfo::getAngularMomentum(){ |
1549 |
< |
|
1550 |
< |
Vector3d com(0.0); |
1551 |
< |
Vector3d comVel(0.0); |
1552 |
< |
Vector3d angularMomentum(0.0); |
1553 |
< |
|
1554 |
< |
getComAll(com,comVel); |
1555 |
< |
|
1556 |
< |
SimInfo::MoleculeIterator i; |
1557 |
< |
Molecule* mol; |
1558 |
< |
|
1559 |
< |
Vector3d thisr(0.0); |
1560 |
< |
Vector3d thisp(0.0); |
1561 |
< |
|
1562 |
< |
RealType thisMass; |
1563 |
< |
|
1564 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1565 |
< |
thisMass = mol->getMass(); |
1566 |
< |
thisr = mol->getCom()-com; |
1567 |
< |
thisp = (mol->getComVel()-comVel)*thisMass; |
1568 |
< |
|
1569 |
< |
angularMomentum += cross( thisr, thisp ); |
1570 |
< |
|
1571 |
< |
} |
1572 |
< |
|
1573 |
< |
#ifdef IS_MPI |
1574 |
< |
Vector3d tmpAngMom; |
1575 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1576 |
< |
#endif |
1577 |
< |
|
1578 |
< |
return angularMomentum; |
1579 |
< |
} |
1580 |
< |
|
1004 |
> |
|
1005 |
|
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1006 |
< |
return IOIndexToIntegrableObject.at(index); |
1006 |
> |
if (index >= IOIndexToIntegrableObject.size()) { |
1007 |
> |
sprintf(painCave.errMsg, |
1008 |
> |
"SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n" |
1009 |
> |
"\tindex exceeds number of known objects!\n"); |
1010 |
> |
painCave.isFatal = 1; |
1011 |
> |
simError(); |
1012 |
> |
return NULL; |
1013 |
> |
} else |
1014 |
> |
return IOIndexToIntegrableObject.at(index); |
1015 |
|
} |
1016 |
|
|
1017 |
< |
void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { |
1017 |
> |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1018 |
|
IOIndexToIntegrableObject= v; |
1019 |
|
} |
1020 |
|
|
1021 |
< |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1022 |
< |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1023 |
< |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1024 |
< |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1025 |
< |
*/ |
1026 |
< |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1027 |
< |
Mat3x3d intTensor; |
1028 |
< |
RealType det; |
1029 |
< |
Vector3d dummyAngMom; |
1598 |
< |
RealType sysconstants; |
1599 |
< |
RealType geomCnst; |
1600 |
< |
|
1601 |
< |
geomCnst = 3.0/2.0; |
1602 |
< |
/* Get the inertial tensor and angular momentum for free*/ |
1603 |
< |
getInertiaTensor(intTensor,dummyAngMom); |
1604 |
< |
|
1605 |
< |
det = intTensor.determinant(); |
1606 |
< |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1607 |
< |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1608 |
< |
return; |
1021 |
> |
int SimInfo::getNGlobalConstraints() { |
1022 |
> |
int nGlobalConstraints; |
1023 |
> |
#ifdef IS_MPI |
1024 |
> |
MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1, |
1025 |
> |
MPI::INT, MPI::SUM); |
1026 |
> |
#else |
1027 |
> |
nGlobalConstraints = nConstraints_; |
1028 |
> |
#endif |
1029 |
> |
return nGlobalConstraints; |
1030 |
|
} |
1031 |
|
|
1611 |
– |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1612 |
– |
Mat3x3d intTensor; |
1613 |
– |
Vector3d dummyAngMom; |
1614 |
– |
RealType sysconstants; |
1615 |
– |
RealType geomCnst; |
1616 |
– |
|
1617 |
– |
geomCnst = 3.0/2.0; |
1618 |
– |
/* Get the inertial tensor and angular momentum for free*/ |
1619 |
– |
getInertiaTensor(intTensor,dummyAngMom); |
1620 |
– |
|
1621 |
– |
detI = intTensor.determinant(); |
1622 |
– |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1623 |
– |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1624 |
– |
return; |
1625 |
– |
} |
1626 |
– |
/* |
1627 |
– |
void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { |
1628 |
– |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1629 |
– |
sdByGlobalIndex_ = v; |
1630 |
– |
} |
1631 |
– |
|
1632 |
– |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1633 |
– |
//assert(index < nAtoms_ + nRigidBodies_); |
1634 |
– |
return sdByGlobalIndex_.at(index); |
1635 |
– |
} |
1636 |
– |
*/ |
1032 |
|
}//end namespace OpenMD |
1033 |
|
|