ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 1024 by tim, Wed Aug 30 18:42:29 2006 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1825 by gezelter, Wed Jan 9 19:27:52 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/electrostatic_interface.h"
63 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
63 <
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
73 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
77 <    std::map<int, std::set<int> >::iterator i = container.find(index);
78 <    std::set<int> result;
79 <    if (i != container.end()) {
80 <        result = i->second;
81 <    }
82 <
83 <    return result;
84 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
79 <
80 <      MoleculeStamp* molStamp;
81 <      int nMolWithSameStamp;
82 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
84 <      CutoffGroupStamp* cgStamp;    
85 <      RigidBodyStamp* rbStamp;
86 <      int nRigidAtoms = 0;
87 <      std::vector<Component*> components = simParams->getComponents();
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      nMolWithSameStamp = (*i)->getNMol();
95        
96 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
97 <        molStamp = (*i)->getMoleculeStamp();
98 <        nMolWithSameStamp = (*i)->getNMol();
99 <        
100 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
101 <
102 <        //calculate atoms in molecules
103 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
104 <
105 <        //calculate atoms in cutoff groups
106 <        int nAtomsInGroups = 0;
107 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
116 <        
117 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
118 <          cgStamp = molStamp->getCutoffGroupStamp(j);
119 <          nAtomsInGroups += cgStamp->getNMembers();
120 <        }
121 <
122 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
123 <
124 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
125 <
126 <        //calculate atoms in rigid bodies
127 <        int nAtomsInRigidBodies = 0;
128 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129 <        
130 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
131 <          rbStamp = molStamp->getRigidBodyStamp(j);
132 <          nAtomsInRigidBodies += rbStamp->getNMembers();
133 <        }
134 <
135 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
136 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
137 <        
96 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
97 >      
98 >      //calculate atoms in molecules
99 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
100 >      
101 >      //calculate atoms in cutoff groups
102 >      int nAtomsInGroups = 0;
103 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104 >      
105 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 >        cgStamp = molStamp->getCutoffGroupStamp(j);
107 >        nAtomsInGroups += cgStamp->getNMembers();
108        }
109 <
110 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
111 <      //group therefore the total number of cutoff groups in the system is
112 <      //equal to the total number of atoms minus number of atoms belong to
113 <      //cutoff group defined in meta-data file plus the number of cutoff
114 <      //groups defined in meta-data file
115 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
116 <
117 <      //every free atom (atom does not belong to rigid bodies) is an
118 <      //integrable object therefore the total number of integrable objects
119 <      //in the system is equal to the total number of atoms minus number of
120 <      //atoms belong to rigid body defined in meta-data file plus the number
121 <      //of rigid bodies defined in meta-data file
122 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
123 <                                                + nGlobalRigidBodies_;
124 <  
125 <      nGlobalMols_ = molStampIds_.size();
156 <
157 < #ifdef IS_MPI    
158 <      molToProcMap_.resize(nGlobalMols_);
159 < #endif
160 <
109 >      
110 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 >      
112 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113 >      
114 >      //calculate atoms in rigid bodies
115 >      int nAtomsInRigidBodies = 0;
116 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 >      
118 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
119 >        rbStamp = molStamp->getRigidBodyStamp(j);
120 >        nAtomsInRigidBodies += rbStamp->getNMembers();
121 >      }
122 >      
123 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 >      
126      }
127 +    
128 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
129 +    //group therefore the total number of cutoff groups in the system is
130 +    //equal to the total number of atoms minus number of atoms belong to
131 +    //cutoff group defined in meta-data file plus the number of cutoff
132 +    //groups defined in meta-data file
133  
134 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135 +    
136 +    //every free atom (atom does not belong to rigid bodies) is an
137 +    //integrable object therefore the total number of integrable objects
138 +    //in the system is equal to the total number of atoms minus number of
139 +    //atoms belong to rigid body defined in meta-data file plus the number
140 +    //of rigid bodies defined in meta-data file
141 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 +      + nGlobalRigidBodies_;
143 +    
144 +    nGlobalMols_ = molStampIds_.size();
145 +    molToProcMap_.resize(nGlobalMols_);
146 +  }
147 +  
148    SimInfo::~SimInfo() {
149 <    std::map<int, Molecule*>::iterator i;
149 >    map<int, Molecule*>::iterator i;
150      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151        delete i->second;
152      }
# Line 172 | Line 157 | namespace oopse {
157      delete forceField_;
158    }
159  
175  int SimInfo::getNGlobalConstraints() {
176    int nGlobalConstraints;
177 #ifdef IS_MPI
178    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
179                  MPI_COMM_WORLD);    
180 #else
181    nGlobalConstraints =  nConstraints_;
182 #endif
183    return nGlobalConstraints;
184  }
160  
161    bool SimInfo::addMolecule(Molecule* mol) {
162      MoleculeIterator i;
163 <
163 >    
164      i = molecules_.find(mol->getGlobalIndex());
165      if (i == molecules_.end() ) {
166 <
167 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
168 <        
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169        nAtoms_ += mol->getNAtoms();
170        nBonds_ += mol->getNBonds();
171        nBends_ += mol->getNBends();
172        nTorsions_ += mol->getNTorsions();
173 +      nInversions_ += mol->getNInversions();
174        nRigidBodies_ += mol->getNRigidBodies();
175        nIntegrableObjects_ += mol->getNIntegrableObjects();
176        nCutoffGroups_ += mol->getNCutoffGroups();
177        nConstraints_ += mol->getNConstraintPairs();
178 <
179 <      addExcludePairs(mol);
180 <        
178 >      
179 >      addInteractionPairs(mol);
180 >      
181        return true;
182      } else {
183        return false;
184      }
185    }
186 <
186 >  
187    bool SimInfo::removeMolecule(Molecule* mol) {
188      MoleculeIterator i;
189      i = molecules_.find(mol->getGlobalIndex());
# Line 220 | Line 196 | namespace oopse {
196        nBonds_ -= mol->getNBonds();
197        nBends_ -= mol->getNBends();
198        nTorsions_ -= mol->getNTorsions();
199 +      nInversions_ -= mol->getNInversions();
200        nRigidBodies_ -= mol->getNRigidBodies();
201        nIntegrableObjects_ -= mol->getNIntegrableObjects();
202        nCutoffGroups_ -= mol->getNCutoffGroups();
203        nConstraints_ -= mol->getNConstraintPairs();
204  
205 <      removeExcludePairs(mol);
205 >      removeInteractionPairs(mol);
206        molecules_.erase(mol->getGlobalIndex());
207  
208        delete mol;
# Line 234 | Line 211 | namespace oopse {
211      } else {
212        return false;
213      }
237
238
214    }    
215  
216          
# Line 251 | Line 226 | namespace oopse {
226  
227  
228    void SimInfo::calcNdf() {
229 <    int ndf_local;
229 >    int ndf_local, nfq_local;
230      MoleculeIterator i;
231 <    std::vector<StuntDouble*>::iterator j;
231 >    vector<StuntDouble*>::iterator j;
232 >    vector<Atom*>::iterator k;
233 >
234      Molecule* mol;
235 <    StuntDouble* integrableObject;
235 >    StuntDouble* sd;
236 >    Atom* atom;
237  
238      ndf_local = 0;
239 +    nfq_local = 0;
240      
241      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
263      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
264           integrableObject = mol->nextIntegrableObject(j)) {
242  
243 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
244 +           sd = mol->nextIntegrableObject(j)) {
245 +
246          ndf_local += 3;
247  
248 <        if (integrableObject->isDirectional()) {
249 <          if (integrableObject->isLinear()) {
248 >        if (sd->isDirectional()) {
249 >          if (sd->isLinear()) {
250              ndf_local += 2;
251            } else {
252              ndf_local += 3;
253            }
254          }
275            
255        }
256 +
257 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
258 +           atom = mol->nextFluctuatingCharge(k)) {
259 +        if (atom->isFluctuatingCharge()) {
260 +          nfq_local++;
261 +        }
262 +      }
263      }
264      
265 +    ndfLocal_ = ndf_local;
266 +
267      // n_constraints is local, so subtract them on each processor
268      ndf_local -= nConstraints_;
269  
270   #ifdef IS_MPI
271 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
271 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
272 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
273 >                              MPI::INT, MPI::SUM);
274   #else
275      ndf_ = ndf_local;
276 +    nGlobalFluctuatingCharges_ = nfq_local;
277   #endif
278  
279      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 293 | Line 284 | namespace oopse {
284  
285    int SimInfo::getFdf() {
286   #ifdef IS_MPI
287 <    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
288   #else
289      fdf_ = fdf_local;
290   #endif
291      return fdf_;
292    }
293 +  
294 +  unsigned int SimInfo::getNLocalCutoffGroups(){
295 +    int nLocalCutoffAtoms = 0;
296 +    Molecule* mol;
297 +    MoleculeIterator mi;
298 +    CutoffGroup* cg;
299 +    Molecule::CutoffGroupIterator ci;
300      
301 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
302 +      
303 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
304 +           cg = mol->nextCutoffGroup(ci)) {
305 +        nLocalCutoffAtoms += cg->getNumAtom();
306 +        
307 +      }        
308 +    }
309 +    
310 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
311 +  }
312 +    
313    void SimInfo::calcNdfRaw() {
314      int ndfRaw_local;
315  
316      MoleculeIterator i;
317 <    std::vector<StuntDouble*>::iterator j;
317 >    vector<StuntDouble*>::iterator j;
318      Molecule* mol;
319 <    StuntDouble* integrableObject;
319 >    StuntDouble* sd;
320  
321      // Raw degrees of freedom that we have to set
322      ndfRaw_local = 0;
323      
324      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
315      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
316           integrableObject = mol->nextIntegrableObject(j)) {
325  
326 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
327 +           sd = mol->nextIntegrableObject(j)) {
328 +
329          ndfRaw_local += 3;
330  
331 <        if (integrableObject->isDirectional()) {
332 <          if (integrableObject->isLinear()) {
331 >        if (sd->isDirectional()) {
332 >          if (sd->isLinear()) {
333              ndfRaw_local += 2;
334            } else {
335              ndfRaw_local += 3;
# Line 329 | Line 340 | namespace oopse {
340      }
341      
342   #ifdef IS_MPI
343 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
343 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
344   #else
345      ndfRaw_ = ndfRaw_local;
346   #endif
# Line 342 | Line 353 | namespace oopse {
353  
354  
355   #ifdef IS_MPI
356 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
356 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
357 >                              MPI::INT, MPI::SUM);
358   #else
359      ndfTrans_ = ndfTrans_local;
360   #endif
# Line 351 | Line 363 | namespace oopse {
363  
364    }
365  
366 <  void SimInfo::addExcludePairs(Molecule* mol) {
367 <    std::vector<Bond*>::iterator bondIter;
368 <    std::vector<Bend*>::iterator bendIter;
369 <    std::vector<Torsion*>::iterator torsionIter;
366 >  void SimInfo::addInteractionPairs(Molecule* mol) {
367 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
368 >    vector<Bond*>::iterator bondIter;
369 >    vector<Bend*>::iterator bendIter;
370 >    vector<Torsion*>::iterator torsionIter;
371 >    vector<Inversion*>::iterator inversionIter;
372      Bond* bond;
373      Bend* bend;
374      Torsion* torsion;
375 +    Inversion* inversion;
376      int a;
377      int b;
378      int c;
379      int d;
380  
381 <    std::map<int, std::set<int> > atomGroups;
381 >    // atomGroups can be used to add special interaction maps between
382 >    // groups of atoms that are in two separate rigid bodies.
383 >    // However, most site-site interactions between two rigid bodies
384 >    // are probably not special, just the ones between the physically
385 >    // bonded atoms.  Interactions *within* a single rigid body should
386 >    // always be excluded.  These are done at the bottom of this
387 >    // function.
388  
389 +    map<int, set<int> > atomGroups;
390      Molecule::RigidBodyIterator rbIter;
391      RigidBody* rb;
392      Molecule::IntegrableObjectIterator ii;
393 <    StuntDouble* integrableObject;
393 >    StuntDouble* sd;
394      
395 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
396 <           integrableObject = mol->nextIntegrableObject(ii)) {
397 <
398 <      if (integrableObject->isRigidBody()) {
399 <          rb = static_cast<RigidBody*>(integrableObject);
400 <          std::vector<Atom*> atoms = rb->getAtoms();
401 <          std::set<int> rigidAtoms;
402 <          for (int i = 0; i < atoms.size(); ++i) {
403 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
404 <          }
405 <          for (int i = 0; i < atoms.size(); ++i) {
406 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
407 <          }      
395 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
396 >         sd = mol->nextIntegrableObject(ii)) {
397 >      
398 >      if (sd->isRigidBody()) {
399 >        rb = static_cast<RigidBody*>(sd);
400 >        vector<Atom*> atoms = rb->getAtoms();
401 >        set<int> rigidAtoms;
402 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
403 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
404 >        }
405 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
406 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
407 >        }      
408        } else {
409 <        std::set<int> oneAtomSet;
410 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
411 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
409 >        set<int> oneAtomSet;
410 >        oneAtomSet.insert(sd->getGlobalIndex());
411 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
412        }
413      }  
414 +          
415 +    for (bond= mol->beginBond(bondIter); bond != NULL;
416 +         bond = mol->nextBond(bondIter)) {
417  
393    
394    
395    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
418        a = bond->getAtomA()->getGlobalIndex();
419 <      b = bond->getAtomB()->getGlobalIndex();        
420 <      exclude_.addPair(a, b);
419 >      b = bond->getAtomB()->getGlobalIndex();  
420 >    
421 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
422 >        oneTwoInteractions_.addPair(a, b);
423 >      } else {
424 >        excludedInteractions_.addPair(a, b);
425 >      }
426      }
427  
428 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
428 >    for (bend= mol->beginBend(bendIter); bend != NULL;
429 >         bend = mol->nextBend(bendIter)) {
430 >
431        a = bend->getAtomA()->getGlobalIndex();
432        b = bend->getAtomB()->getGlobalIndex();        
433        c = bend->getAtomC()->getGlobalIndex();
405      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
406      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
407      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
408
409      exclude_.addPairs(rigidSetA, rigidSetB);
410      exclude_.addPairs(rigidSetA, rigidSetC);
411      exclude_.addPairs(rigidSetB, rigidSetC);
434        
435 <      //exclude_.addPair(a, b);
436 <      //exclude_.addPair(a, c);
437 <      //exclude_.addPair(b, c);        
435 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
436 >        oneTwoInteractions_.addPair(a, b);      
437 >        oneTwoInteractions_.addPair(b, c);
438 >      } else {
439 >        excludedInteractions_.addPair(a, b);
440 >        excludedInteractions_.addPair(b, c);
441 >      }
442 >
443 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
444 >        oneThreeInteractions_.addPair(a, c);      
445 >      } else {
446 >        excludedInteractions_.addPair(a, c);
447 >      }
448      }
449  
450 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
450 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
451 >         torsion = mol->nextTorsion(torsionIter)) {
452 >
453        a = torsion->getAtomA()->getGlobalIndex();
454        b = torsion->getAtomB()->getGlobalIndex();        
455        c = torsion->getAtomC()->getGlobalIndex();        
456 <      d = torsion->getAtomD()->getGlobalIndex();        
423 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
424 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
425 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
426 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
456 >      d = torsion->getAtomD()->getGlobalIndex();      
457  
458 <      exclude_.addPairs(rigidSetA, rigidSetB);
459 <      exclude_.addPairs(rigidSetA, rigidSetC);
460 <      exclude_.addPairs(rigidSetA, rigidSetD);
461 <      exclude_.addPairs(rigidSetB, rigidSetC);
462 <      exclude_.addPairs(rigidSetB, rigidSetD);
463 <      exclude_.addPairs(rigidSetC, rigidSetD);
458 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
459 >        oneTwoInteractions_.addPair(a, b);      
460 >        oneTwoInteractions_.addPair(b, c);
461 >        oneTwoInteractions_.addPair(c, d);
462 >      } else {
463 >        excludedInteractions_.addPair(a, b);
464 >        excludedInteractions_.addPair(b, c);
465 >        excludedInteractions_.addPair(c, d);
466 >      }
467  
468 <      /*
469 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
470 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
471 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
472 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
473 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
474 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
475 <        
476 <      
477 <      exclude_.addPair(a, b);
478 <      exclude_.addPair(a, c);
479 <      exclude_.addPair(a, d);
480 <      exclude_.addPair(b, c);
448 <      exclude_.addPair(b, d);
449 <      exclude_.addPair(c, d);        
450 <      */
468 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
469 >        oneThreeInteractions_.addPair(a, c);      
470 >        oneThreeInteractions_.addPair(b, d);      
471 >      } else {
472 >        excludedInteractions_.addPair(a, c);
473 >        excludedInteractions_.addPair(b, d);
474 >      }
475 >
476 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
477 >        oneFourInteractions_.addPair(a, d);      
478 >      } else {
479 >        excludedInteractions_.addPair(a, d);
480 >      }
481      }
482  
483 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
484 <      std::vector<Atom*> atoms = rb->getAtoms();
485 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
486 <        for (int j = i + 1; j < atoms.size(); ++j) {
483 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
484 >         inversion = mol->nextInversion(inversionIter)) {
485 >
486 >      a = inversion->getAtomA()->getGlobalIndex();
487 >      b = inversion->getAtomB()->getGlobalIndex();        
488 >      c = inversion->getAtomC()->getGlobalIndex();        
489 >      d = inversion->getAtomD()->getGlobalIndex();        
490 >
491 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
492 >        oneTwoInteractions_.addPair(a, b);      
493 >        oneTwoInteractions_.addPair(a, c);
494 >        oneTwoInteractions_.addPair(a, d);
495 >      } else {
496 >        excludedInteractions_.addPair(a, b);
497 >        excludedInteractions_.addPair(a, c);
498 >        excludedInteractions_.addPair(a, d);
499 >      }
500 >
501 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
502 >        oneThreeInteractions_.addPair(b, c);    
503 >        oneThreeInteractions_.addPair(b, d);    
504 >        oneThreeInteractions_.addPair(c, d);      
505 >      } else {
506 >        excludedInteractions_.addPair(b, c);
507 >        excludedInteractions_.addPair(b, d);
508 >        excludedInteractions_.addPair(c, d);
509 >      }
510 >    }
511 >
512 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
513 >         rb = mol->nextRigidBody(rbIter)) {
514 >      vector<Atom*> atoms = rb->getAtoms();
515 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
516 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
517            a = atoms[i]->getGlobalIndex();
518            b = atoms[j]->getGlobalIndex();
519 <          exclude_.addPair(a, b);
519 >          excludedInteractions_.addPair(a, b);
520          }
521        }
522      }        
523  
524    }
525  
526 <  void SimInfo::removeExcludePairs(Molecule* mol) {
527 <    std::vector<Bond*>::iterator bondIter;
528 <    std::vector<Bend*>::iterator bendIter;
529 <    std::vector<Torsion*>::iterator torsionIter;
526 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
527 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
528 >    vector<Bond*>::iterator bondIter;
529 >    vector<Bend*>::iterator bendIter;
530 >    vector<Torsion*>::iterator torsionIter;
531 >    vector<Inversion*>::iterator inversionIter;
532      Bond* bond;
533      Bend* bend;
534      Torsion* torsion;
535 +    Inversion* inversion;
536      int a;
537      int b;
538      int c;
539      int d;
540  
541 <    std::map<int, std::set<int> > atomGroups;
479 <
541 >    map<int, set<int> > atomGroups;
542      Molecule::RigidBodyIterator rbIter;
543      RigidBody* rb;
544      Molecule::IntegrableObjectIterator ii;
545 <    StuntDouble* integrableObject;
545 >    StuntDouble* sd;
546      
547 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
548 <           integrableObject = mol->nextIntegrableObject(ii)) {
549 <
550 <      if (integrableObject->isRigidBody()) {
551 <          rb = static_cast<RigidBody*>(integrableObject);
552 <          std::vector<Atom*> atoms = rb->getAtoms();
553 <          std::set<int> rigidAtoms;
554 <          for (int i = 0; i < atoms.size(); ++i) {
555 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
556 <          }
557 <          for (int i = 0; i < atoms.size(); ++i) {
558 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
559 <          }      
547 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
548 >         sd = mol->nextIntegrableObject(ii)) {
549 >      
550 >      if (sd->isRigidBody()) {
551 >        rb = static_cast<RigidBody*>(sd);
552 >        vector<Atom*> atoms = rb->getAtoms();
553 >        set<int> rigidAtoms;
554 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
555 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
556 >        }
557 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
558 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
559 >        }      
560        } else {
561 <        std::set<int> oneAtomSet;
562 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
563 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
561 >        set<int> oneAtomSet;
562 >        oneAtomSet.insert(sd->getGlobalIndex());
563 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
564        }
565      }  
566  
567 <    
568 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
567 >    for (bond= mol->beginBond(bondIter); bond != NULL;
568 >         bond = mol->nextBond(bondIter)) {
569 >      
570        a = bond->getAtomA()->getGlobalIndex();
571 <      b = bond->getAtomB()->getGlobalIndex();        
572 <      exclude_.removePair(a, b);
571 >      b = bond->getAtomB()->getGlobalIndex();  
572 >    
573 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
574 >        oneTwoInteractions_.removePair(a, b);
575 >      } else {
576 >        excludedInteractions_.removePair(a, b);
577 >      }
578      }
579  
580 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
580 >    for (bend= mol->beginBend(bendIter); bend != NULL;
581 >         bend = mol->nextBend(bendIter)) {
582 >
583        a = bend->getAtomA()->getGlobalIndex();
584        b = bend->getAtomB()->getGlobalIndex();        
585        c = bend->getAtomC()->getGlobalIndex();
516
517      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
518      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
519      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
520
521      exclude_.removePairs(rigidSetA, rigidSetB);
522      exclude_.removePairs(rigidSetA, rigidSetC);
523      exclude_.removePairs(rigidSetB, rigidSetC);
586        
587 <      //exclude_.removePair(a, b);
588 <      //exclude_.removePair(a, c);
589 <      //exclude_.removePair(b, c);        
587 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
588 >        oneTwoInteractions_.removePair(a, b);      
589 >        oneTwoInteractions_.removePair(b, c);
590 >      } else {
591 >        excludedInteractions_.removePair(a, b);
592 >        excludedInteractions_.removePair(b, c);
593 >      }
594 >
595 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
596 >        oneThreeInteractions_.removePair(a, c);      
597 >      } else {
598 >        excludedInteractions_.removePair(a, c);
599 >      }
600      }
601  
602 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
602 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
603 >         torsion = mol->nextTorsion(torsionIter)) {
604 >
605        a = torsion->getAtomA()->getGlobalIndex();
606        b = torsion->getAtomB()->getGlobalIndex();        
607        c = torsion->getAtomC()->getGlobalIndex();        
608 <      d = torsion->getAtomD()->getGlobalIndex();        
608 >      d = torsion->getAtomD()->getGlobalIndex();      
609 >  
610 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
611 >        oneTwoInteractions_.removePair(a, b);      
612 >        oneTwoInteractions_.removePair(b, c);
613 >        oneTwoInteractions_.removePair(c, d);
614 >      } else {
615 >        excludedInteractions_.removePair(a, b);
616 >        excludedInteractions_.removePair(b, c);
617 >        excludedInteractions_.removePair(c, d);
618 >      }
619  
620 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
621 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
622 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
623 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
620 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
621 >        oneThreeInteractions_.removePair(a, c);      
622 >        oneThreeInteractions_.removePair(b, d);      
623 >      } else {
624 >        excludedInteractions_.removePair(a, c);
625 >        excludedInteractions_.removePair(b, d);
626 >      }
627  
628 <      exclude_.removePairs(rigidSetA, rigidSetB);
629 <      exclude_.removePairs(rigidSetA, rigidSetC);
630 <      exclude_.removePairs(rigidSetA, rigidSetD);
631 <      exclude_.removePairs(rigidSetB, rigidSetC);
632 <      exclude_.removePairs(rigidSetB, rigidSetD);
633 <      exclude_.removePairs(rigidSetC, rigidSetD);
628 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
629 >        oneFourInteractions_.removePair(a, d);      
630 >      } else {
631 >        excludedInteractions_.removePair(a, d);
632 >      }
633 >    }
634  
635 <      /*
636 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
550 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
551 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
552 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
553 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
554 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
635 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
636 >         inversion = mol->nextInversion(inversionIter)) {
637  
638 <      
639 <      exclude_.removePair(a, b);
640 <      exclude_.removePair(a, c);
641 <      exclude_.removePair(a, d);
642 <      exclude_.removePair(b, c);
643 <      exclude_.removePair(b, d);
644 <      exclude_.removePair(c, d);        
645 <      */
638 >      a = inversion->getAtomA()->getGlobalIndex();
639 >      b = inversion->getAtomB()->getGlobalIndex();        
640 >      c = inversion->getAtomC()->getGlobalIndex();        
641 >      d = inversion->getAtomD()->getGlobalIndex();        
642 >
643 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
644 >        oneTwoInteractions_.removePair(a, b);      
645 >        oneTwoInteractions_.removePair(a, c);
646 >        oneTwoInteractions_.removePair(a, d);
647 >      } else {
648 >        excludedInteractions_.removePair(a, b);
649 >        excludedInteractions_.removePair(a, c);
650 >        excludedInteractions_.removePair(a, d);
651 >      }
652 >
653 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
654 >        oneThreeInteractions_.removePair(b, c);    
655 >        oneThreeInteractions_.removePair(b, d);    
656 >        oneThreeInteractions_.removePair(c, d);      
657 >      } else {
658 >        excludedInteractions_.removePair(b, c);
659 >        excludedInteractions_.removePair(b, d);
660 >        excludedInteractions_.removePair(c, d);
661 >      }
662      }
663  
664 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
665 <      std::vector<Atom*> atoms = rb->getAtoms();
666 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
667 <        for (int j = i + 1; j < atoms.size(); ++j) {
664 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
665 >         rb = mol->nextRigidBody(rbIter)) {
666 >      vector<Atom*> atoms = rb->getAtoms();
667 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
668 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
669            a = atoms[i]->getGlobalIndex();
670            b = atoms[j]->getGlobalIndex();
671 <          exclude_.removePair(a, b);
671 >          excludedInteractions_.removePair(a, b);
672          }
673        }
674      }        
675 <
675 >    
676    }
677 <
678 <
677 >  
678 >  
679    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
680      int curStampId;
681 <
681 >    
682      //index from 0
683      curStampId = moleculeStamps_.size();
684  
# Line 587 | Line 686 | namespace oopse {
686      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
687    }
688  
590  void SimInfo::update() {
689  
690 <    setupSimType();
691 <
692 < #ifdef IS_MPI
693 <    setupFortranParallel();
694 < #endif
695 <
696 <    setupFortranSim();
697 <
698 <    //setup fortran force field
601 <    /** @deprecate */    
602 <    int isError = 0;
603 <    
604 <    setupElectrostaticSummationMethod( isError );
605 <    setupSwitchingFunction();
606 <    setupAccumulateBoxDipole();
607 <
608 <    if(isError){
609 <      sprintf( painCave.errMsg,
610 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
611 <      painCave.isFatal = 1;
612 <      simError();
613 <    }
614 <  
615 <    
616 <    setupCutoff();
617 <
690 >  /**
691 >   * update
692 >   *
693 >   *  Performs the global checks and variable settings after the
694 >   *  objects have been created.
695 >   *
696 >   */
697 >  void SimInfo::update() {  
698 >    setupSimVariables();
699      calcNdf();
700      calcNdfRaw();
701      calcNdfTrans();
621
622    fortranInitialized_ = true;
702    }
703 <
704 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
703 >  
704 >  /**
705 >   * getSimulatedAtomTypes
706 >   *
707 >   * Returns an STL set of AtomType* that are actually present in this
708 >   * simulation.  Must query all processors to assemble this information.
709 >   *
710 >   */
711 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
712      SimInfo::MoleculeIterator mi;
713      Molecule* mol;
714      Molecule::AtomIterator ai;
715      Atom* atom;
716 <    std::set<AtomType*> atomTypes;
717 <
716 >    set<AtomType*> atomTypes;
717 >    
718      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
719 <
720 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
719 >      for(atom = mol->beginAtom(ai); atom != NULL;
720 >          atom = mol->nextAtom(ai)) {
721          atomTypes.insert(atom->getAtomType());
722 <      }
723 <        
724 <    }
722 >      }      
723 >    }    
724 >    
725 > #ifdef IS_MPI
726  
727 <    return atomTypes;        
728 <  }
642 <
643 <  void SimInfo::setupSimType() {
644 <    std::set<AtomType*>::iterator i;
645 <    std::set<AtomType*> atomTypes;
646 <    atomTypes = getUniqueAtomTypes();
727 >    // loop over the found atom types on this processor, and add their
728 >    // numerical idents to a vector:
729      
730 <    int useLennardJones = 0;
731 <    int useElectrostatic = 0;
732 <    int useEAM = 0;
733 <    int useSC = 0;
652 <    int useCharge = 0;
653 <    int useDirectional = 0;
654 <    int useDipole = 0;
655 <    int useGayBerne = 0;
656 <    int useSticky = 0;
657 <    int useStickyPower = 0;
658 <    int useShape = 0;
659 <    int useFLARB = 0; //it is not in AtomType yet
660 <    int useDirectionalAtom = 0;    
661 <    int useElectrostatics = 0;
662 <    //usePBC and useRF are from simParams
663 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
664 <    int useRF;
665 <    int useSF;
666 <    int useSP;
667 <    int useBoxDipole;
668 <    std::string myMethod;
730 >    vector<int> foundTypes;
731 >    set<AtomType*>::iterator i;
732 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
733 >      foundTypes.push_back( (*i)->getIdent() );
734  
735 <    // set the useRF logical
736 <    useRF = 0;
672 <    useSF = 0;
735 >    // count_local holds the number of found types on this processor
736 >    int count_local = foundTypes.size();
737  
738 +    int nproc = MPI::COMM_WORLD.Get_size();
739  
740 <    if (simParams_->haveElectrostaticSummationMethod()) {
741 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
742 <      toUpper(myMethod);
743 <      if (myMethod == "REACTION_FIELD"){
744 <        useRF=1;
745 <      } else if (myMethod == "SHIFTED_FORCE"){
746 <        useSF = 1;
747 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
748 <        useSP = 1;
749 <      }
740 >    // we need arrays to hold the counts and displacement vectors for
741 >    // all processors
742 >    vector<int> counts(nproc, 0);
743 >    vector<int> disps(nproc, 0);
744 >
745 >    // fill the counts array
746 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
747 >                              1, MPI::INT);
748 >  
749 >    // use the processor counts to compute the displacement array
750 >    disps[0] = 0;    
751 >    int totalCount = counts[0];
752 >    for (int iproc = 1; iproc < nproc; iproc++) {
753 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
754 >      totalCount += counts[iproc];
755      }
756 +
757 +    // we need a (possibly redundant) set of all found types:
758 +    vector<int> ftGlobal(totalCount);
759      
760 <    if (simParams_->haveAccumulateBoxDipole())
761 <      if (simParams_->getAccumulateBoxDipole())
762 <        useBoxDipole = 1;
760 >    // now spray out the foundTypes to all the other processors:    
761 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
762 >                               &ftGlobal[0], &counts[0], &disps[0],
763 >                               MPI::INT);
764  
765 <    //loop over all of the atom types
692 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
693 <      useLennardJones |= (*i)->isLennardJones();
694 <      useElectrostatic |= (*i)->isElectrostatic();
695 <      useEAM |= (*i)->isEAM();
696 <      useSC |= (*i)->isSC();
697 <      useCharge |= (*i)->isCharge();
698 <      useDirectional |= (*i)->isDirectional();
699 <      useDipole |= (*i)->isDipole();
700 <      useGayBerne |= (*i)->isGayBerne();
701 <      useSticky |= (*i)->isSticky();
702 <      useStickyPower |= (*i)->isStickyPower();
703 <      useShape |= (*i)->isShape();
704 <    }
765 >    vector<int>::iterator j;
766  
767 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
768 <      useDirectionalAtom = 1;
769 <    }
767 >    // foundIdents is a stl set, so inserting an already found ident
768 >    // will have no effect.
769 >    set<int> foundIdents;
770  
771 <    if (useCharge || useDipole) {
772 <      useElectrostatics = 1;
773 <    }
771 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
772 >      foundIdents.insert((*j));
773 >    
774 >    // now iterate over the foundIdents and get the actual atom types
775 >    // that correspond to these:
776 >    set<int>::iterator it;
777 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
778 >      atomTypes.insert( forceField_->getAtomType((*it)) );
779 >
780 > #endif
781  
782 < #ifdef IS_MPI    
783 <    int temp;
782 >    return atomTypes;        
783 >  }
784  
785 <    temp = usePBC;
786 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
787 <
788 <    temp = useDirectionalAtom;
789 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
790 <
791 <    temp = useLennardJones;
792 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793 <
726 <    temp = useElectrostatics;
727 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
728 <
729 <    temp = useCharge;
730 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
731 <
732 <    temp = useDipole;
733 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
734 <
735 <    temp = useSticky;
736 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
737 <
738 <    temp = useStickyPower;
739 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
785 >  void SimInfo::setupSimVariables() {
786 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
787 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
788 >    // parameter is true
789 >    calcBoxDipole_ = false;
790 >    if ( simParams_->haveAccumulateBoxDipole() )
791 >      if ( simParams_->getAccumulateBoxDipole() ) {
792 >        calcBoxDipole_ = true;      
793 >      }
794      
795 <    temp = useGayBerne;
796 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
795 >    set<AtomType*>::iterator i;
796 >    set<AtomType*> atomTypes;
797 >    atomTypes = getSimulatedAtomTypes();    
798 >    bool usesElectrostatic = false;
799 >    bool usesMetallic = false;
800 >    bool usesDirectional = false;
801 >    bool usesFluctuatingCharges =  false;
802 >    //loop over all of the atom types
803 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
804 >      usesElectrostatic |= (*i)->isElectrostatic();
805 >      usesMetallic |= (*i)->isMetal();
806 >      usesDirectional |= (*i)->isDirectional();
807 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
808 >    }
809  
810 <    temp = useEAM;
811 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
812 <
813 <    temp = useSC;
814 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
810 > #ifdef IS_MPI
811 >    bool temp;
812 >    temp = usesDirectional;
813 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
814 >                              MPI::LOR);
815 >        
816 >    temp = usesMetallic;
817 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
818 >                              MPI::LOR);
819      
820 <    temp = useShape;
821 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
820 >    temp = usesElectrostatic;
821 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
822 >                              MPI::LOR);
823  
824 <    temp = useFLARB;
825 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
824 >    temp = usesFluctuatingCharges;
825 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
826 >                              MPI::LOR);
827 > #else
828  
829 <    temp = useRF;
830 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
829 >    usesDirectionalAtoms_ = usesDirectional;
830 >    usesMetallicAtoms_ = usesMetallic;
831 >    usesElectrostaticAtoms_ = usesElectrostatic;
832 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
833  
834 <    temp = useSF;
835 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
834 > #endif
835 >    
836 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
837 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
838 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
839 >  }
840  
762    temp = useSP;
763    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
841  
842 <    temp = useBoxDipole;
843 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
842 >  vector<int> SimInfo::getGlobalAtomIndices() {
843 >    SimInfo::MoleculeIterator mi;
844 >    Molecule* mol;
845 >    Molecule::AtomIterator ai;
846 >    Atom* atom;
847  
848 < #endif
848 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
849 >    
850 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
851 >      
852 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
853 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
854 >      }
855 >    }
856 >    return GlobalAtomIndices;
857 >  }
858  
770    fInfo_.SIM_uses_PBC = usePBC;    
771    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
772    fInfo_.SIM_uses_LennardJones = useLennardJones;
773    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
774    fInfo_.SIM_uses_Charges = useCharge;
775    fInfo_.SIM_uses_Dipoles = useDipole;
776    fInfo_.SIM_uses_Sticky = useSticky;
777    fInfo_.SIM_uses_StickyPower = useStickyPower;
778    fInfo_.SIM_uses_GayBerne = useGayBerne;
779    fInfo_.SIM_uses_EAM = useEAM;
780    fInfo_.SIM_uses_SC = useSC;
781    fInfo_.SIM_uses_Shapes = useShape;
782    fInfo_.SIM_uses_FLARB = useFLARB;
783    fInfo_.SIM_uses_RF = useRF;
784    fInfo_.SIM_uses_SF = useSF;
785    fInfo_.SIM_uses_SP = useSP;
786    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
859  
860 <    if( myMethod == "REACTION_FIELD") {
860 >  vector<int> SimInfo::getGlobalGroupIndices() {
861 >    SimInfo::MoleculeIterator mi;
862 >    Molecule* mol;
863 >    Molecule::CutoffGroupIterator ci;
864 >    CutoffGroup* cg;
865 >
866 >    vector<int> GlobalGroupIndices;
867 >    
868 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
869        
870 <      if (simParams_->haveDielectric()) {
871 <        fInfo_.dielect = simParams_->getDielectric();
872 <      } else {
873 <        sprintf(painCave.errMsg,
874 <                "SimSetup Error: No Dielectric constant was set.\n"
875 <                "\tYou are trying to use Reaction Field without"
796 <                "\tsetting a dielectric constant!\n");
797 <        painCave.isFatal = 1;
798 <        simError();
799 <      }      
870 >      //local index of cutoff group is trivial, it only depends on the
871 >      //order of travesing
872 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
873 >           cg = mol->nextCutoffGroup(ci)) {
874 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
875 >      }        
876      }
877 <
877 >    return GlobalGroupIndices;
878    }
879  
804  void SimInfo::setupFortranSim() {
805    int isError;
806    int nExclude;
807    std::vector<int> fortranGlobalGroupMembership;
808    
809    nExclude = exclude_.getSize();
810    isError = 0;
880  
881 <    //globalGroupMembership_ is filled by SimCreator    
813 <    for (int i = 0; i < nGlobalAtoms_; i++) {
814 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
815 <    }
881 >  void SimInfo::prepareTopology() {
882  
883      //calculate mass ratio of cutoff group
818    std::vector<RealType> mfact;
884      SimInfo::MoleculeIterator mi;
885      Molecule* mol;
886      Molecule::CutoffGroupIterator ci;
# Line 824 | Line 889 | namespace oopse {
889      Atom* atom;
890      RealType totalMass;
891  
892 <    //to avoid memory reallocation, reserve enough space for mfact
893 <    mfact.reserve(getNCutoffGroups());
892 >    /**
893 >     * The mass factor is the relative mass of an atom to the total
894 >     * mass of the cutoff group it belongs to.  By default, all atoms
895 >     * are their own cutoff groups, and therefore have mass factors of
896 >     * 1.  We need some special handling for massless atoms, which
897 >     * will be treated as carrying the entire mass of the cutoff
898 >     * group.
899 >     */
900 >    massFactors_.clear();
901 >    massFactors_.resize(getNAtoms(), 1.0);
902      
903      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
904 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
904 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
905 >           cg = mol->nextCutoffGroup(ci)) {
906  
907          totalMass = cg->getMass();
908          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
909            // Check for massless groups - set mfact to 1 if true
910 <          if (totalMass != 0)
911 <            mfact.push_back(atom->getMass()/totalMass);
910 >          if (totalMass != 0)
911 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
912            else
913 <            mfact.push_back( 1.0 );
913 >            massFactors_[atom->getLocalIndex()] = 1.0;
914          }
841
915        }      
916      }
917  
918 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
846 <    std::vector<int> identArray;
918 >    // Build the identArray_
919  
920 <    //to avoid memory reallocation, reserve enough space identArray
921 <    identArray.reserve(getNAtoms());
850 <    
920 >    identArray_.clear();
921 >    identArray_.reserve(getNAtoms());    
922      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
923        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
924 <        identArray.push_back(atom->getIdent());
924 >        identArray_.push_back(atom->getIdent());
925        }
926      }    
856
857    //fill molMembershipArray
858    //molMembershipArray is filled by SimCreator    
859    std::vector<int> molMembershipArray(nGlobalAtoms_);
860    for (int i = 0; i < nGlobalAtoms_; i++) {
861      molMembershipArray[i] = globalMolMembership_[i] + 1;
862    }
927      
928 <    //setup fortran simulation
865 <    int nGlobalExcludes = 0;
866 <    int* globalExcludes = NULL;
867 <    int* excludeList = exclude_.getExcludeList();
868 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
869 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
870 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
928 >    //scan topology
929  
930 <    if( isError ){
930 >    int* excludeList = excludedInteractions_.getPairList();
931 >    int* oneTwoList = oneTwoInteractions_.getPairList();
932 >    int* oneThreeList = oneThreeInteractions_.getPairList();
933 >    int* oneFourList = oneFourInteractions_.getPairList();
934  
935 <      sprintf( painCave.errMsg,
875 <               "There was an error setting the simulation information in fortran.\n" );
876 <      painCave.isFatal = 1;
877 <      painCave.severity = OOPSE_ERROR;
878 <      simError();
879 <    }
880 <
881 < #ifdef IS_MPI
882 <    sprintf( checkPointMsg,
883 <             "succesfully sent the simulation information to fortran.\n");
884 <    MPIcheckPoint();
885 < #endif // is_mpi
886 <  }
887 <
888 <
889 < #ifdef IS_MPI
890 <  void SimInfo::setupFortranParallel() {
891 <    
892 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
893 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
894 <    std::vector<int> localToGlobalCutoffGroupIndex;
895 <    SimInfo::MoleculeIterator mi;
896 <    Molecule::AtomIterator ai;
897 <    Molecule::CutoffGroupIterator ci;
898 <    Molecule* mol;
899 <    Atom* atom;
900 <    CutoffGroup* cg;
901 <    mpiSimData parallelData;
902 <    int isError;
903 <
904 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
905 <
906 <      //local index(index in DataStorge) of atom is important
907 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
908 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
909 <      }
910 <
911 <      //local index of cutoff group is trivial, it only depends on the order of travesing
912 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
913 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
914 <      }        
915 <        
916 <    }
917 <
918 <    //fill up mpiSimData struct
919 <    parallelData.nMolGlobal = getNGlobalMolecules();
920 <    parallelData.nMolLocal = getNMolecules();
921 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
922 <    parallelData.nAtomsLocal = getNAtoms();
923 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
924 <    parallelData.nGroupsLocal = getNCutoffGroups();
925 <    parallelData.myNode = worldRank;
926 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
927 <
928 <    //pass mpiSimData struct and index arrays to fortran
929 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
930 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
931 <                    &localToGlobalCutoffGroupIndex[0], &isError);
932 <
933 <    if (isError) {
934 <      sprintf(painCave.errMsg,
935 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
936 <      painCave.isFatal = 1;
937 <      simError();
938 <    }
939 <
940 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
941 <    MPIcheckPoint();
942 <
943 <
944 <  }
945 <
946 < #endif
947 <
948 <  void SimInfo::setupCutoff() {          
949 <    
950 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
951 <
952 <    // Check the cutoff policy
953 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
954 <
955 <    std::string myPolicy;
956 <    if (forceFieldOptions_.haveCutoffPolicy()){
957 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
958 <    }else if (simParams_->haveCutoffPolicy()) {
959 <      myPolicy = simParams_->getCutoffPolicy();
960 <    }
961 <
962 <    if (!myPolicy.empty()){
963 <      toUpper(myPolicy);
964 <      if (myPolicy == "MIX") {
965 <        cp = MIX_CUTOFF_POLICY;
966 <      } else {
967 <        if (myPolicy == "MAX") {
968 <          cp = MAX_CUTOFF_POLICY;
969 <        } else {
970 <          if (myPolicy == "TRADITIONAL") {            
971 <            cp = TRADITIONAL_CUTOFF_POLICY;
972 <          } else {
973 <            // throw error        
974 <            sprintf( painCave.errMsg,
975 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
976 <            painCave.isFatal = 1;
977 <            simError();
978 <          }    
979 <        }          
980 <      }
981 <    }          
982 <    notifyFortranCutoffPolicy(&cp);
983 <
984 <    // Check the Skin Thickness for neighborlists
985 <    RealType skin;
986 <    if (simParams_->haveSkinThickness()) {
987 <      skin = simParams_->getSkinThickness();
988 <      notifyFortranSkinThickness(&skin);
989 <    }            
990 <        
991 <    // Check if the cutoff was set explicitly:
992 <    if (simParams_->haveCutoffRadius()) {
993 <      rcut_ = simParams_->getCutoffRadius();
994 <      if (simParams_->haveSwitchingRadius()) {
995 <        rsw_  = simParams_->getSwitchingRadius();
996 <      } else {
997 <        if (fInfo_.SIM_uses_Charges |
998 <            fInfo_.SIM_uses_Dipoles |
999 <            fInfo_.SIM_uses_RF) {
1000 <          
1001 <          rsw_ = 0.85 * rcut_;
1002 <          sprintf(painCave.errMsg,
1003 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1004 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1005 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1006 <        painCave.isFatal = 0;
1007 <        simError();
1008 <        } else {
1009 <          rsw_ = rcut_;
1010 <          sprintf(painCave.errMsg,
1011 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1012 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1013 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1014 <          painCave.isFatal = 0;
1015 <          simError();
1016 <        }
1017 <      }
1018 <      
1019 <      notifyFortranCutoffs(&rcut_, &rsw_);
1020 <      
1021 <    } else {
1022 <      
1023 <      // For electrostatic atoms, we'll assume a large safe value:
1024 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1025 <        sprintf(painCave.errMsg,
1026 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1027 <                "\tOOPSE will use a default value of 15.0 angstroms"
1028 <                "\tfor the cutoffRadius.\n");
1029 <        painCave.isFatal = 0;
1030 <        simError();
1031 <        rcut_ = 15.0;
1032 <      
1033 <        if (simParams_->haveElectrostaticSummationMethod()) {
1034 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1035 <          toUpper(myMethod);
1036 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1037 <            if (simParams_->haveSwitchingRadius()){
1038 <              sprintf(painCave.errMsg,
1039 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1040 <                      "\teven though the electrostaticSummationMethod was\n"
1041 <                      "\tset to %s\n", myMethod.c_str());
1042 <              painCave.isFatal = 1;
1043 <              simError();            
1044 <            }
1045 <          }
1046 <        }
1047 <      
1048 <        if (simParams_->haveSwitchingRadius()){
1049 <          rsw_ = simParams_->getSwitchingRadius();
1050 <        } else {        
1051 <          sprintf(painCave.errMsg,
1052 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1053 <                  "\tOOPSE will use a default value of\n"
1054 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1055 <          painCave.isFatal = 0;
1056 <          simError();
1057 <          rsw_ = 0.85 * rcut_;
1058 <        }
1059 <        notifyFortranCutoffs(&rcut_, &rsw_);
1060 <      } else {
1061 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1062 <        // We'll punt and let fortran figure out the cutoffs later.
1063 <        
1064 <        notifyFortranYouAreOnYourOwn();
1065 <
1066 <      }
1067 <    }
935 >    topologyDone_ = true;
936    }
937  
1070  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1071    
1072    int errorOut;
1073    int esm =  NONE;
1074    int sm = UNDAMPED;
1075    RealType alphaVal;
1076    RealType dielectric;
1077
1078    errorOut = isError;
1079    alphaVal = simParams_->getDampingAlpha();
1080    dielectric = simParams_->getDielectric();
1081
1082    if (simParams_->haveElectrostaticSummationMethod()) {
1083      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1084      toUpper(myMethod);
1085      if (myMethod == "NONE") {
1086        esm = NONE;
1087      } else {
1088        if (myMethod == "SWITCHING_FUNCTION") {
1089          esm = SWITCHING_FUNCTION;
1090        } else {
1091          if (myMethod == "SHIFTED_POTENTIAL") {
1092            esm = SHIFTED_POTENTIAL;
1093          } else {
1094            if (myMethod == "SHIFTED_FORCE") {            
1095              esm = SHIFTED_FORCE;
1096            } else {
1097              if (myMethod == "REACTION_FIELD") {            
1098                esm = REACTION_FIELD;
1099              } else {
1100                // throw error        
1101                sprintf( painCave.errMsg,
1102                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1103                         "\t(Input file specified %s .)\n"
1104                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1105                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1106                         "\t\"reaction_field\".\n", myMethod.c_str() );
1107                painCave.isFatal = 1;
1108                simError();
1109              }    
1110            }          
1111          }
1112        }
1113      }
1114    }
1115    
1116    if (simParams_->haveElectrostaticScreeningMethod()) {
1117      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1118      toUpper(myScreen);
1119      if (myScreen == "UNDAMPED") {
1120        sm = UNDAMPED;
1121      } else {
1122        if (myScreen == "DAMPED") {
1123          sm = DAMPED;
1124          if (!simParams_->haveDampingAlpha()) {
1125            //throw error
1126            sprintf( painCave.errMsg,
1127                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1128                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1129            painCave.isFatal = 0;
1130            simError();
1131          }
1132        } else {
1133          // throw error        
1134          sprintf( painCave.errMsg,
1135                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1136                   "\t(Input file specified %s .)\n"
1137                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1138                   "or \"damped\".\n", myScreen.c_str() );
1139          painCave.isFatal = 1;
1140          simError();
1141        }
1142      }
1143    }
1144    
1145    // let's pass some summation method variables to fortran
1146    setElectrostaticSummationMethod( &esm );
1147    setFortranElectrostaticMethod( &esm );
1148    setScreeningMethod( &sm );
1149    setDampingAlpha( &alphaVal );
1150    setReactionFieldDielectric( &dielectric );
1151    initFortranFF( &errorOut );
1152  }
1153
1154  void SimInfo::setupSwitchingFunction() {    
1155    int ft = CUBIC;
1156
1157    if (simParams_->haveSwitchingFunctionType()) {
1158      std::string funcType = simParams_->getSwitchingFunctionType();
1159      toUpper(funcType);
1160      if (funcType == "CUBIC") {
1161        ft = CUBIC;
1162      } else {
1163        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1164          ft = FIFTH_ORDER_POLY;
1165        } else {
1166          // throw error        
1167          sprintf( painCave.errMsg,
1168                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1169          painCave.isFatal = 1;
1170          simError();
1171        }          
1172      }
1173    }
1174
1175    // send switching function notification to switcheroo
1176    setFunctionType(&ft);
1177
1178  }
1179
1180  void SimInfo::setupAccumulateBoxDipole() {    
1181
1182    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1183    if ( simParams_->haveAccumulateBoxDipole() )
1184      if ( simParams_->getAccumulateBoxDipole() ) {
1185        setAccumulateBoxDipole();
1186        calcBoxDipole_ = true;
1187      }
1188
1189  }
1190
938    void SimInfo::addProperty(GenericData* genData) {
939      properties_.addProperty(genData);  
940    }
941  
942 <  void SimInfo::removeProperty(const std::string& propName) {
942 >  void SimInfo::removeProperty(const string& propName) {
943      properties_.removeProperty(propName);  
944    }
945  
# Line 1200 | Line 947 | namespace oopse {
947      properties_.clearProperties();
948    }
949  
950 <  std::vector<std::string> SimInfo::getPropertyNames() {
950 >  vector<string> SimInfo::getPropertyNames() {
951      return properties_.getPropertyNames();  
952    }
953        
954 <  std::vector<GenericData*> SimInfo::getProperties() {
954 >  vector<GenericData*> SimInfo::getProperties() {
955      return properties_.getProperties();
956    }
957  
958 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
958 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
959      return properties_.getPropertyByName(propName);
960    }
961  
# Line 1222 | Line 969 | namespace oopse {
969      Molecule* mol;
970      RigidBody* rb;
971      Atom* atom;
972 +    CutoffGroup* cg;
973      SimInfo::MoleculeIterator mi;
974      Molecule::RigidBodyIterator rbIter;
975 <    Molecule::AtomIterator atomIter;;
975 >    Molecule::AtomIterator atomIter;
976 >    Molecule::CutoffGroupIterator cgIter;
977  
978      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
979          
980 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
980 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
981 >           atom = mol->nextAtom(atomIter)) {
982          atom->setSnapshotManager(sman_);
983        }
984          
985 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
985 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
986 >           rb = mol->nextRigidBody(rbIter)) {
987          rb->setSnapshotManager(sman_);
988        }
989 +
990 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
991 +           cg = mol->nextCutoffGroup(cgIter)) {
992 +        cg->setSnapshotManager(sman_);
993 +      }
994      }    
995      
996    }
997  
1242  Vector3d SimInfo::getComVel(){
1243    SimInfo::MoleculeIterator i;
1244    Molecule* mol;
998  
999 <    Vector3d comVel(0.0);
1247 <    RealType totalMass = 0.0;
1248 <    
1249 <
1250 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1251 <      RealType mass = mol->getMass();
1252 <      totalMass += mass;
1253 <      comVel += mass * mol->getComVel();
1254 <    }  
999 >  ostream& operator <<(ostream& o, SimInfo& info) {
1000  
1256 #ifdef IS_MPI
1257    RealType tmpMass = totalMass;
1258    Vector3d tmpComVel(comVel);    
1259    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1260    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1261 #endif
1262
1263    comVel /= totalMass;
1264
1265    return comVel;
1266  }
1267
1268  Vector3d SimInfo::getCom(){
1269    SimInfo::MoleculeIterator i;
1270    Molecule* mol;
1271
1272    Vector3d com(0.0);
1273    RealType totalMass = 0.0;
1274    
1275    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1276      RealType mass = mol->getMass();
1277      totalMass += mass;
1278      com += mass * mol->getCom();
1279    }  
1280
1281 #ifdef IS_MPI
1282    RealType tmpMass = totalMass;
1283    Vector3d tmpCom(com);    
1284    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1285    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1286 #endif
1287
1288    com /= totalMass;
1289
1290    return com;
1291
1292  }        
1293
1294  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1295
1001      return o;
1002    }
1003    
1004 <  
1300 <   /*
1301 <   Returns center of mass and center of mass velocity in one function call.
1302 <   */
1303 <  
1304 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1305 <      SimInfo::MoleculeIterator i;
1306 <      Molecule* mol;
1307 <      
1308 <    
1309 <      RealType totalMass = 0.0;
1310 <    
1311 <
1312 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1313 <         RealType mass = mol->getMass();
1314 <         totalMass += mass;
1315 <         com += mass * mol->getCom();
1316 <         comVel += mass * mol->getComVel();          
1317 <      }  
1318 <      
1319 < #ifdef IS_MPI
1320 <      RealType tmpMass = totalMass;
1321 <      Vector3d tmpCom(com);  
1322 <      Vector3d tmpComVel(comVel);
1323 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1324 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1325 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1326 < #endif
1327 <      
1328 <      com /= totalMass;
1329 <      comVel /= totalMass;
1330 <   }        
1331 <  
1332 <   /*
1333 <   Return intertia tensor for entire system and angular momentum Vector.
1334 <
1335 <
1336 <       [  Ixx -Ixy  -Ixz ]
1337 <  J =| -Iyx  Iyy  -Iyz |
1338 <       [ -Izx -Iyz   Izz ]
1339 <    */
1340 <
1341 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1342 <      
1343 <
1344 <      RealType xx = 0.0;
1345 <      RealType yy = 0.0;
1346 <      RealType zz = 0.0;
1347 <      RealType xy = 0.0;
1348 <      RealType xz = 0.0;
1349 <      RealType yz = 0.0;
1350 <      Vector3d com(0.0);
1351 <      Vector3d comVel(0.0);
1352 <      
1353 <      getComAll(com, comVel);
1354 <      
1355 <      SimInfo::MoleculeIterator i;
1356 <      Molecule* mol;
1357 <      
1358 <      Vector3d thisq(0.0);
1359 <      Vector3d thisv(0.0);
1360 <
1361 <      RealType thisMass = 0.0;
1362 <    
1363 <      
1364 <      
1365 <  
1366 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1367 <        
1368 <         thisq = mol->getCom()-com;
1369 <         thisv = mol->getComVel()-comVel;
1370 <         thisMass = mol->getMass();
1371 <         // Compute moment of intertia coefficients.
1372 <         xx += thisq[0]*thisq[0]*thisMass;
1373 <         yy += thisq[1]*thisq[1]*thisMass;
1374 <         zz += thisq[2]*thisq[2]*thisMass;
1375 <        
1376 <         // compute products of intertia
1377 <         xy += thisq[0]*thisq[1]*thisMass;
1378 <         xz += thisq[0]*thisq[2]*thisMass;
1379 <         yz += thisq[1]*thisq[2]*thisMass;
1380 <            
1381 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1382 <            
1383 <      }  
1384 <      
1385 <      
1386 <      inertiaTensor(0,0) = yy + zz;
1387 <      inertiaTensor(0,1) = -xy;
1388 <      inertiaTensor(0,2) = -xz;
1389 <      inertiaTensor(1,0) = -xy;
1390 <      inertiaTensor(1,1) = xx + zz;
1391 <      inertiaTensor(1,2) = -yz;
1392 <      inertiaTensor(2,0) = -xz;
1393 <      inertiaTensor(2,1) = -yz;
1394 <      inertiaTensor(2,2) = xx + yy;
1395 <      
1396 < #ifdef IS_MPI
1397 <      Mat3x3d tmpI(inertiaTensor);
1398 <      Vector3d tmpAngMom;
1399 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1400 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1401 < #endif
1402 <              
1403 <      return;
1404 <   }
1405 <
1406 <   //Returns the angular momentum of the system
1407 <   Vector3d SimInfo::getAngularMomentum(){
1408 <      
1409 <      Vector3d com(0.0);
1410 <      Vector3d comVel(0.0);
1411 <      Vector3d angularMomentum(0.0);
1412 <      
1413 <      getComAll(com,comVel);
1414 <      
1415 <      SimInfo::MoleculeIterator i;
1416 <      Molecule* mol;
1417 <      
1418 <      Vector3d thisr(0.0);
1419 <      Vector3d thisp(0.0);
1420 <      
1421 <      RealType thisMass;
1422 <      
1423 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1424 <        thisMass = mol->getMass();
1425 <        thisr = mol->getCom()-com;
1426 <        thisp = (mol->getComVel()-comVel)*thisMass;
1427 <        
1428 <        angularMomentum += cross( thisr, thisp );
1429 <        
1430 <      }  
1431 <      
1432 < #ifdef IS_MPI
1433 <      Vector3d tmpAngMom;
1434 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1435 < #endif
1436 <      
1437 <      return angularMomentum;
1438 <   }
1439 <  
1004 >  
1005    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1006 <    return IOIndexToIntegrableObject.at(index);
1006 >    if (index >= IOIndexToIntegrableObject.size()) {
1007 >      sprintf(painCave.errMsg,
1008 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1009 >              "\tindex exceeds number of known objects!\n");
1010 >      painCave.isFatal = 1;
1011 >      simError();
1012 >      return NULL;
1013 >    } else
1014 >      return IOIndexToIntegrableObject.at(index);
1015    }
1016    
1017 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1017 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1018      IOIndexToIntegrableObject= v;
1019    }
1020  
1021 < /*
1022 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1023 <      assert( v.size() == nAtoms_ + nRigidBodies_);
1024 <      sdByGlobalIndex_ = v;
1025 <    }
1021 >  int SimInfo::getNGlobalConstraints() {
1022 >    int nGlobalConstraints;
1023 > #ifdef IS_MPI
1024 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1025 >                              MPI::INT, MPI::SUM);
1026 > #else
1027 >    nGlobalConstraints =  nConstraints_;
1028 > #endif
1029 >    return nGlobalConstraints;
1030 >  }
1031  
1032 <    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1455 <      //assert(index < nAtoms_ + nRigidBodies_);
1456 <      return sdByGlobalIndex_.at(index);
1457 <    }  
1458 < */  
1459 < }//end namespace oopse
1032 > }//end namespace OpenMD
1033  

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 1024 by tim, Wed Aug 30 18:42:29 2006 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1825 by gezelter, Wed Jan 9 19:27:52 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines