ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1779 by gezelter, Mon Aug 20 17:51:39 2012 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 48 | Line 49
49  
50   #include <algorithm>
51   #include <set>
52 + #include <map>
53  
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/doForces_interface.h"
56 < #include "UseTheForce/notifyCutoffs_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61 <
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
64 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <
70 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 <                                ForceField* ff, Globals* simParams) :
72 <                                forceField_(ff), simParams_(simParams),
73 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <                                sman_(NULL), fortranInitialized_(false) {
79 <
80 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81      MoleculeStamp* molStamp;
82      int nMolWithSameStamp;
83      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85      CutoffGroupStamp* cgStamp;    
86      RigidBodyStamp* rbStamp;
87      int nRigidAtoms = 0;
88      
89 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
90 <        molStamp = i->first;
91 <        nMolWithSameStamp = i->second;
92 <        
93 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
94 <
95 <        //calculate atoms in molecules
96 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
97 <
98 <
99 <        //calculate atoms in cutoff groups
100 <        int nAtomsInGroups = 0;
101 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
102 <        
103 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
104 <            cgStamp = molStamp->getCutoffGroup(j);
105 <            nAtomsInGroups += cgStamp->getNMembers();
106 <        }
107 <
108 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
109 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
110 <
111 <        //calculate atoms in rigid bodies
112 <        int nAtomsInRigidBodies = 0;
113 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
114 <        
115 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
116 <            rbStamp = molStamp->getRigidBody(j);
117 <            nAtomsInRigidBodies += rbStamp->getNMembers();
118 <        }
119 <
120 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
121 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
122 <        
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      nMolWithSameStamp = (*i)->getNMol();
95 >      
96 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
97 >      
98 >      //calculate atoms in molecules
99 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
100 >      
101 >      //calculate atoms in cutoff groups
102 >      int nAtomsInGroups = 0;
103 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104 >      
105 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 >        cgStamp = molStamp->getCutoffGroupStamp(j);
107 >        nAtomsInGroups += cgStamp->getNMembers();
108 >      }
109 >      
110 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 >      
112 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113 >      
114 >      //calculate atoms in rigid bodies
115 >      int nAtomsInRigidBodies = 0;
116 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 >      
118 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
119 >        rbStamp = molStamp->getRigidBodyStamp(j);
120 >        nAtomsInRigidBodies += rbStamp->getNMembers();
121 >      }
122 >      
123 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 >      
126      }
127 +    
128 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
129 +    //group therefore the total number of cutoff groups in the system is
130 +    //equal to the total number of atoms minus number of atoms belong to
131 +    //cutoff group defined in meta-data file plus the number of cutoff
132 +    //groups defined in meta-data file
133  
124    //every free atom (atom does not belong to cutoff groups) is a cutoff group
125    //therefore the total number of cutoff groups in the system is equal to
126    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127    //file plus the number of cutoff groups defined in meta-data file
134      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135 <
136 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
137 <    //therefore the total number of  integrable objects in the system is equal to
138 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
139 <    //file plus the number of  rigid bodies defined in meta-data file
140 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
141 <
135 >    
136 >    //every free atom (atom does not belong to rigid bodies) is an
137 >    //integrable object therefore the total number of integrable objects
138 >    //in the system is equal to the total number of atoms minus number of
139 >    //atoms belong to rigid body defined in meta-data file plus the number
140 >    //of rigid bodies defined in meta-data file
141 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 >      + nGlobalRigidBodies_;
143 >    
144      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
145      molToProcMap_.resize(nGlobalMols_);
146 < #endif
147 <
148 < }
149 <
144 < SimInfo::~SimInfo() {
145 <    std::map<int, Molecule*>::iterator i;
146 >  }
147 >  
148 >  SimInfo::~SimInfo() {
149 >    map<int, Molecule*>::iterator i;
150      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151 <        delete i->second;
151 >      delete i->second;
152      }
153      molecules_.clear();
154 <    
151 <    MemoryUtils::deletePointers(moleculeStamps_);
152 <    
154 >      
155      delete sman_;
156      delete simParams_;
157      delete forceField_;
158 < }
158 >  }
159  
158 int SimInfo::getNGlobalConstraints() {
159    int nGlobalConstraints;
160 #ifdef IS_MPI
161    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
162                  MPI_COMM_WORLD);    
163 #else
164    nGlobalConstraints =  nConstraints_;
165 #endif
166    return nGlobalConstraints;
167 }
160  
161 < bool SimInfo::addMolecule(Molecule* mol) {
161 >  bool SimInfo::addMolecule(Molecule* mol) {
162      MoleculeIterator i;
163 <
163 >    
164      i = molecules_.find(mol->getGlobalIndex());
165      if (i == molecules_.end() ) {
166 <
167 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
168 <        
169 <        nAtoms_ += mol->getNAtoms();
170 <        nBonds_ += mol->getNBonds();
171 <        nBends_ += mol->getNBends();
172 <        nTorsions_ += mol->getNTorsions();
173 <        nRigidBodies_ += mol->getNRigidBodies();
174 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
175 <        nCutoffGroups_ += mol->getNCutoffGroups();
176 <        nConstraints_ += mol->getNConstraintPairs();
177 <
178 <        addExcludePairs(mol);
179 <        
180 <        return true;
181 <    } else {
182 <        return false;
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169 >      nAtoms_ += mol->getNAtoms();
170 >      nBonds_ += mol->getNBonds();
171 >      nBends_ += mol->getNBends();
172 >      nTorsions_ += mol->getNTorsions();
173 >      nInversions_ += mol->getNInversions();
174 >      nRigidBodies_ += mol->getNRigidBodies();
175 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
176 >      nCutoffGroups_ += mol->getNCutoffGroups();
177 >      nConstraints_ += mol->getNConstraintPairs();
178 >      
179 >      addInteractionPairs(mol);
180 >      
181 >      return true;
182 >    } else {
183 >      return false;
184      }
185 < }
186 <
187 < bool SimInfo::removeMolecule(Molecule* mol) {
185 >  }
186 >  
187 >  bool SimInfo::removeMolecule(Molecule* mol) {
188      MoleculeIterator i;
189      i = molecules_.find(mol->getGlobalIndex());
190  
191      if (i != molecules_.end() ) {
192  
193 <        assert(mol == i->second);
193 >      assert(mol == i->second);
194          
195 <        nAtoms_ -= mol->getNAtoms();
196 <        nBonds_ -= mol->getNBonds();
197 <        nBends_ -= mol->getNBends();
198 <        nTorsions_ -= mol->getNTorsions();
199 <        nRigidBodies_ -= mol->getNRigidBodies();
200 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
201 <        nCutoffGroups_ -= mol->getNCutoffGroups();
202 <        nConstraints_ -= mol->getNConstraintPairs();
195 >      nAtoms_ -= mol->getNAtoms();
196 >      nBonds_ -= mol->getNBonds();
197 >      nBends_ -= mol->getNBends();
198 >      nTorsions_ -= mol->getNTorsions();
199 >      nInversions_ -= mol->getNInversions();
200 >      nRigidBodies_ -= mol->getNRigidBodies();
201 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
202 >      nCutoffGroups_ -= mol->getNCutoffGroups();
203 >      nConstraints_ -= mol->getNConstraintPairs();
204  
205 <        removeExcludePairs(mol);
206 <        molecules_.erase(mol->getGlobalIndex());
205 >      removeInteractionPairs(mol);
206 >      molecules_.erase(mol->getGlobalIndex());
207  
208 <        delete mol;
208 >      delete mol;
209          
210 <        return true;
210 >      return true;
211      } else {
212 <        return false;
212 >      return false;
213      }
214 +  }    
215  
221
222 }    
223
216          
217 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
217 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
218      i = molecules_.begin();
219      return i == molecules_.end() ? NULL : i->second;
220 < }    
220 >  }    
221  
222 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
222 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
223      ++i;
224      return i == molecules_.end() ? NULL : i->second;    
225 < }
225 >  }
226  
227  
228 < void SimInfo::calcNdf() {
229 <    int ndf_local;
228 >  void SimInfo::calcNdf() {
229 >    int ndf_local, nfq_local;
230      MoleculeIterator i;
231 <    std::vector<StuntDouble*>::iterator j;
231 >    vector<StuntDouble*>::iterator j;
232 >    vector<Atom*>::iterator k;
233 >
234      Molecule* mol;
235 <    StuntDouble* integrableObject;
235 >    StuntDouble* sd;
236 >    Atom* atom;
237  
238      ndf_local = 0;
239 +    nfq_local = 0;
240      
241      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
246        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
247               integrableObject = mol->nextIntegrableObject(j)) {
242  
243 <            ndf_local += 3;
243 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
244 >           sd = mol->nextIntegrableObject(j)) {
245  
246 <            if (integrableObject->isDirectional()) {
247 <                if (integrableObject->isLinear()) {
248 <                    ndf_local += 2;
249 <                } else {
250 <                    ndf_local += 3;
251 <                }
252 <            }
253 <            
254 <        }//end for (integrableObject)
255 <    }// end for (mol)
246 >        ndf_local += 3;
247 >
248 >        if (sd->isDirectional()) {
249 >          if (sd->isLinear()) {
250 >            ndf_local += 2;
251 >          } else {
252 >            ndf_local += 3;
253 >          }
254 >        }
255 >      }
256 >
257 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
258 >           atom = mol->nextFluctuatingCharge(k)) {
259 >        if (atom->isFluctuatingCharge()) {
260 >          nfq_local++;
261 >        }
262 >      }
263 >    }
264      
265 +    ndfLocal_ = ndf_local;
266 +
267      // n_constraints is local, so subtract them on each processor
268      ndf_local -= nConstraints_;
269  
270   #ifdef IS_MPI
271      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
272 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
273   #else
274      ndf_ = ndf_local;
275 +    nGlobalFluctuatingCharges_ = nfq_local;
276   #endif
277  
278      // nZconstraints_ is global, as are the 3 COM translations for the
279      // entire system:
280      ndf_ = ndf_ - 3 - nZconstraint_;
281  
282 < }
282 >  }
283  
284 < void SimInfo::calcNdfRaw() {
284 >  int SimInfo::getFdf() {
285 > #ifdef IS_MPI
286 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287 > #else
288 >    fdf_ = fdf_local;
289 > #endif
290 >    return fdf_;
291 >  }
292 >  
293 >  unsigned int SimInfo::getNLocalCutoffGroups(){
294 >    int nLocalCutoffAtoms = 0;
295 >    Molecule* mol;
296 >    MoleculeIterator mi;
297 >    CutoffGroup* cg;
298 >    Molecule::CutoffGroupIterator ci;
299 >    
300 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
301 >      
302 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
303 >           cg = mol->nextCutoffGroup(ci)) {
304 >        nLocalCutoffAtoms += cg->getNumAtom();
305 >        
306 >      }        
307 >    }
308 >    
309 >    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
310 >  }
311 >    
312 >  void SimInfo::calcNdfRaw() {
313      int ndfRaw_local;
314  
315      MoleculeIterator i;
316 <    std::vector<StuntDouble*>::iterator j;
316 >    vector<StuntDouble*>::iterator j;
317      Molecule* mol;
318 <    StuntDouble* integrableObject;
318 >    StuntDouble* sd;
319  
320      // Raw degrees of freedom that we have to set
321      ndfRaw_local = 0;
322      
323      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
289        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
290               integrableObject = mol->nextIntegrableObject(j)) {
324  
325 <            ndfRaw_local += 3;
325 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
326 >           sd = mol->nextIntegrableObject(j)) {
327  
328 <            if (integrableObject->isDirectional()) {
329 <                if (integrableObject->isLinear()) {
330 <                    ndfRaw_local += 2;
331 <                } else {
332 <                    ndfRaw_local += 3;
333 <                }
334 <            }
328 >        ndfRaw_local += 3;
329 >
330 >        if (sd->isDirectional()) {
331 >          if (sd->isLinear()) {
332 >            ndfRaw_local += 2;
333 >          } else {
334 >            ndfRaw_local += 3;
335 >          }
336 >        }
337              
338 <        }
338 >      }
339      }
340      
341   #ifdef IS_MPI
# Line 307 | Line 343 | void SimInfo::calcNdfRaw() {
343   #else
344      ndfRaw_ = ndfRaw_local;
345   #endif
346 < }
346 >  }
347  
348 < void SimInfo::calcNdfTrans() {
348 >  void SimInfo::calcNdfTrans() {
349      int ndfTrans_local;
350  
351      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 323 | Line 359 | void SimInfo::calcNdfTrans() {
359  
360      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
361  
362 < }
362 >  }
363  
364 < void SimInfo::addExcludePairs(Molecule* mol) {
365 <    std::vector<Bond*>::iterator bondIter;
366 <    std::vector<Bend*>::iterator bendIter;
367 <    std::vector<Torsion*>::iterator torsionIter;
364 >  void SimInfo::addInteractionPairs(Molecule* mol) {
365 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
366 >    vector<Bond*>::iterator bondIter;
367 >    vector<Bend*>::iterator bendIter;
368 >    vector<Torsion*>::iterator torsionIter;
369 >    vector<Inversion*>::iterator inversionIter;
370      Bond* bond;
371      Bend* bend;
372      Torsion* torsion;
373 +    Inversion* inversion;
374      int a;
375      int b;
376      int c;
377      int d;
378 +
379 +    // atomGroups can be used to add special interaction maps between
380 +    // groups of atoms that are in two separate rigid bodies.
381 +    // However, most site-site interactions between two rigid bodies
382 +    // are probably not special, just the ones between the physically
383 +    // bonded atoms.  Interactions *within* a single rigid body should
384 +    // always be excluded.  These are done at the bottom of this
385 +    // function.
386 +
387 +    map<int, set<int> > atomGroups;
388 +    Molecule::RigidBodyIterator rbIter;
389 +    RigidBody* rb;
390 +    Molecule::IntegrableObjectIterator ii;
391 +    StuntDouble* sd;
392      
393 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
394 <        a = bond->getAtomA()->getGlobalIndex();
395 <        b = bond->getAtomB()->getGlobalIndex();        
396 <        exclude_.addPair(a, b);
393 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
394 >         sd = mol->nextIntegrableObject(ii)) {
395 >      
396 >      if (sd->isRigidBody()) {
397 >        rb = static_cast<RigidBody*>(sd);
398 >        vector<Atom*> atoms = rb->getAtoms();
399 >        set<int> rigidAtoms;
400 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
401 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
402 >        }
403 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
404 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
405 >        }      
406 >      } else {
407 >        set<int> oneAtomSet;
408 >        oneAtomSet.insert(sd->getGlobalIndex());
409 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
410 >      }
411 >    }  
412 >          
413 >    for (bond= mol->beginBond(bondIter); bond != NULL;
414 >         bond = mol->nextBond(bondIter)) {
415 >
416 >      a = bond->getAtomA()->getGlobalIndex();
417 >      b = bond->getAtomB()->getGlobalIndex();  
418 >    
419 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
420 >        oneTwoInteractions_.addPair(a, b);
421 >      } else {
422 >        excludedInteractions_.addPair(a, b);
423 >      }
424      }
425  
426 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
427 <        a = bend->getAtomA()->getGlobalIndex();
348 <        b = bend->getAtomB()->getGlobalIndex();        
349 <        c = bend->getAtomC()->getGlobalIndex();
426 >    for (bend= mol->beginBend(bendIter); bend != NULL;
427 >         bend = mol->nextBend(bendIter)) {
428  
429 <        exclude_.addPair(a, b);
430 <        exclude_.addPair(a, c);
431 <        exclude_.addPair(b, c);        
429 >      a = bend->getAtomA()->getGlobalIndex();
430 >      b = bend->getAtomB()->getGlobalIndex();        
431 >      c = bend->getAtomC()->getGlobalIndex();
432 >      
433 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
434 >        oneTwoInteractions_.addPair(a, b);      
435 >        oneTwoInteractions_.addPair(b, c);
436 >      } else {
437 >        excludedInteractions_.addPair(a, b);
438 >        excludedInteractions_.addPair(b, c);
439 >      }
440 >
441 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
442 >        oneThreeInteractions_.addPair(a, c);      
443 >      } else {
444 >        excludedInteractions_.addPair(a, c);
445 >      }
446      }
447  
448 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
449 <        a = torsion->getAtomA()->getGlobalIndex();
358 <        b = torsion->getAtomB()->getGlobalIndex();        
359 <        c = torsion->getAtomC()->getGlobalIndex();        
360 <        d = torsion->getAtomD()->getGlobalIndex();        
448 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
449 >         torsion = mol->nextTorsion(torsionIter)) {
450  
451 <        exclude_.addPair(a, b);
452 <        exclude_.addPair(a, c);
453 <        exclude_.addPair(a, d);
454 <        exclude_.addPair(b, c);
455 <        exclude_.addPair(b, d);
456 <        exclude_.addPair(c, d);        
451 >      a = torsion->getAtomA()->getGlobalIndex();
452 >      b = torsion->getAtomB()->getGlobalIndex();        
453 >      c = torsion->getAtomC()->getGlobalIndex();        
454 >      d = torsion->getAtomD()->getGlobalIndex();      
455 >
456 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
457 >        oneTwoInteractions_.addPair(a, b);      
458 >        oneTwoInteractions_.addPair(b, c);
459 >        oneTwoInteractions_.addPair(c, d);
460 >      } else {
461 >        excludedInteractions_.addPair(a, b);
462 >        excludedInteractions_.addPair(b, c);
463 >        excludedInteractions_.addPair(c, d);
464 >      }
465 >
466 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
467 >        oneThreeInteractions_.addPair(a, c);      
468 >        oneThreeInteractions_.addPair(b, d);      
469 >      } else {
470 >        excludedInteractions_.addPair(a, c);
471 >        excludedInteractions_.addPair(b, d);
472 >      }
473 >
474 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
475 >        oneFourInteractions_.addPair(a, d);      
476 >      } else {
477 >        excludedInteractions_.addPair(a, d);
478 >      }
479      }
480  
481 <    
482 < }
481 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
482 >         inversion = mol->nextInversion(inversionIter)) {
483  
484 < void SimInfo::removeExcludePairs(Molecule* mol) {
485 <    std::vector<Bond*>::iterator bondIter;
486 <    std::vector<Bend*>::iterator bendIter;
487 <    std::vector<Torsion*>::iterator torsionIter;
484 >      a = inversion->getAtomA()->getGlobalIndex();
485 >      b = inversion->getAtomB()->getGlobalIndex();        
486 >      c = inversion->getAtomC()->getGlobalIndex();        
487 >      d = inversion->getAtomD()->getGlobalIndex();        
488 >
489 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
490 >        oneTwoInteractions_.addPair(a, b);      
491 >        oneTwoInteractions_.addPair(a, c);
492 >        oneTwoInteractions_.addPair(a, d);
493 >      } else {
494 >        excludedInteractions_.addPair(a, b);
495 >        excludedInteractions_.addPair(a, c);
496 >        excludedInteractions_.addPair(a, d);
497 >      }
498 >
499 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
500 >        oneThreeInteractions_.addPair(b, c);    
501 >        oneThreeInteractions_.addPair(b, d);    
502 >        oneThreeInteractions_.addPair(c, d);      
503 >      } else {
504 >        excludedInteractions_.addPair(b, c);
505 >        excludedInteractions_.addPair(b, d);
506 >        excludedInteractions_.addPair(c, d);
507 >      }
508 >    }
509 >
510 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
511 >         rb = mol->nextRigidBody(rbIter)) {
512 >      vector<Atom*> atoms = rb->getAtoms();
513 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
514 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
515 >          a = atoms[i]->getGlobalIndex();
516 >          b = atoms[j]->getGlobalIndex();
517 >          excludedInteractions_.addPair(a, b);
518 >        }
519 >      }
520 >    }        
521 >
522 >  }
523 >
524 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
525 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
526 >    vector<Bond*>::iterator bondIter;
527 >    vector<Bend*>::iterator bendIter;
528 >    vector<Torsion*>::iterator torsionIter;
529 >    vector<Inversion*>::iterator inversionIter;
530      Bond* bond;
531      Bend* bend;
532      Torsion* torsion;
533 +    Inversion* inversion;
534      int a;
535      int b;
536      int c;
537      int d;
538 +
539 +    map<int, set<int> > atomGroups;
540 +    Molecule::RigidBodyIterator rbIter;
541 +    RigidBody* rb;
542 +    Molecule::IntegrableObjectIterator ii;
543 +    StuntDouble* sd;
544      
545 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
546 <        a = bond->getAtomA()->getGlobalIndex();
547 <        b = bond->getAtomB()->getGlobalIndex();        
548 <        exclude_.removePair(a, b);
545 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
546 >         sd = mol->nextIntegrableObject(ii)) {
547 >      
548 >      if (sd->isRigidBody()) {
549 >        rb = static_cast<RigidBody*>(sd);
550 >        vector<Atom*> atoms = rb->getAtoms();
551 >        set<int> rigidAtoms;
552 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
553 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
554 >        }
555 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
556 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
557 >        }      
558 >      } else {
559 >        set<int> oneAtomSet;
560 >        oneAtomSet.insert(sd->getGlobalIndex());
561 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
562 >      }
563 >    }  
564 >
565 >    for (bond= mol->beginBond(bondIter); bond != NULL;
566 >         bond = mol->nextBond(bondIter)) {
567 >      
568 >      a = bond->getAtomA()->getGlobalIndex();
569 >      b = bond->getAtomB()->getGlobalIndex();  
570 >    
571 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
572 >        oneTwoInteractions_.removePair(a, b);
573 >      } else {
574 >        excludedInteractions_.removePair(a, b);
575 >      }
576      }
577  
578 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
579 <        a = bend->getAtomA()->getGlobalIndex();
393 <        b = bend->getAtomB()->getGlobalIndex();        
394 <        c = bend->getAtomC()->getGlobalIndex();
578 >    for (bend= mol->beginBend(bendIter); bend != NULL;
579 >         bend = mol->nextBend(bendIter)) {
580  
581 <        exclude_.removePair(a, b);
582 <        exclude_.removePair(a, c);
583 <        exclude_.removePair(b, c);        
581 >      a = bend->getAtomA()->getGlobalIndex();
582 >      b = bend->getAtomB()->getGlobalIndex();        
583 >      c = bend->getAtomC()->getGlobalIndex();
584 >      
585 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
586 >        oneTwoInteractions_.removePair(a, b);      
587 >        oneTwoInteractions_.removePair(b, c);
588 >      } else {
589 >        excludedInteractions_.removePair(a, b);
590 >        excludedInteractions_.removePair(b, c);
591 >      }
592 >
593 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
594 >        oneThreeInteractions_.removePair(a, c);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, c);
597 >      }
598      }
599  
600 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
601 <        a = torsion->getAtomA()->getGlobalIndex();
403 <        b = torsion->getAtomB()->getGlobalIndex();        
404 <        c = torsion->getAtomC()->getGlobalIndex();        
405 <        d = torsion->getAtomD()->getGlobalIndex();        
600 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
601 >         torsion = mol->nextTorsion(torsionIter)) {
602  
603 <        exclude_.removePair(a, b);
604 <        exclude_.removePair(a, c);
605 <        exclude_.removePair(a, d);
606 <        exclude_.removePair(b, c);
607 <        exclude_.removePair(b, d);
608 <        exclude_.removePair(c, d);        
603 >      a = torsion->getAtomA()->getGlobalIndex();
604 >      b = torsion->getAtomB()->getGlobalIndex();        
605 >      c = torsion->getAtomC()->getGlobalIndex();        
606 >      d = torsion->getAtomD()->getGlobalIndex();      
607 >  
608 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
609 >        oneTwoInteractions_.removePair(a, b);      
610 >        oneTwoInteractions_.removePair(b, c);
611 >        oneTwoInteractions_.removePair(c, d);
612 >      } else {
613 >        excludedInteractions_.removePair(a, b);
614 >        excludedInteractions_.removePair(b, c);
615 >        excludedInteractions_.removePair(c, d);
616 >      }
617 >
618 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
619 >        oneThreeInteractions_.removePair(a, c);      
620 >        oneThreeInteractions_.removePair(b, d);      
621 >      } else {
622 >        excludedInteractions_.removePair(a, c);
623 >        excludedInteractions_.removePair(b, d);
624 >      }
625 >
626 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
627 >        oneFourInteractions_.removePair(a, d);      
628 >      } else {
629 >        excludedInteractions_.removePair(a, d);
630 >      }
631      }
632  
633 < }
633 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
634 >         inversion = mol->nextInversion(inversionIter)) {
635  
636 +      a = inversion->getAtomA()->getGlobalIndex();
637 +      b = inversion->getAtomB()->getGlobalIndex();        
638 +      c = inversion->getAtomC()->getGlobalIndex();        
639 +      d = inversion->getAtomD()->getGlobalIndex();        
640  
641 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
642 <    int curStampId;
641 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
642 >        oneTwoInteractions_.removePair(a, b);      
643 >        oneTwoInteractions_.removePair(a, c);
644 >        oneTwoInteractions_.removePair(a, d);
645 >      } else {
646 >        excludedInteractions_.removePair(a, b);
647 >        excludedInteractions_.removePair(a, c);
648 >        excludedInteractions_.removePair(a, d);
649 >      }
650  
651 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
652 +        oneThreeInteractions_.removePair(b, c);    
653 +        oneThreeInteractions_.removePair(b, d);    
654 +        oneThreeInteractions_.removePair(c, d);      
655 +      } else {
656 +        excludedInteractions_.removePair(b, c);
657 +        excludedInteractions_.removePair(b, d);
658 +        excludedInteractions_.removePair(c, d);
659 +      }
660 +    }
661 +
662 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
663 +         rb = mol->nextRigidBody(rbIter)) {
664 +      vector<Atom*> atoms = rb->getAtoms();
665 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
666 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
667 +          a = atoms[i]->getGlobalIndex();
668 +          b = atoms[j]->getGlobalIndex();
669 +          excludedInteractions_.removePair(a, b);
670 +        }
671 +      }
672 +    }        
673 +    
674 +  }
675 +  
676 +  
677 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
678 +    int curStampId;
679 +    
680      //index from 0
681      curStampId = moleculeStamps_.size();
682  
683      moleculeStamps_.push_back(molStamp);
684      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
685 < }
685 >  }
686  
428 void SimInfo::update() {
687  
688 <    setupSimType();
689 <
690 < #ifdef IS_MPI
691 <    setupFortranParallel();
692 < #endif
693 <
694 <    setupFortranSim();
695 <
696 <    //setup fortran force field
439 <    /** @deprecate */    
440 <    int isError = 0;
441 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
442 <    if(isError){
443 <        sprintf( painCave.errMsg,
444 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
445 <        painCave.isFatal = 1;
446 <        simError();
447 <    }
448 <  
449 <    
450 <    setupCutoff();
451 <
688 >  /**
689 >   * update
690 >   *
691 >   *  Performs the global checks and variable settings after the
692 >   *  objects have been created.
693 >   *
694 >   */
695 >  void SimInfo::update() {  
696 >    setupSimVariables();
697      calcNdf();
698      calcNdfRaw();
699      calcNdfTrans();
700 <
701 <    fortranInitialized_ = true;
702 < }
703 <
704 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
700 >  }
701 >  
702 >  /**
703 >   * getSimulatedAtomTypes
704 >   *
705 >   * Returns an STL set of AtomType* that are actually present in this
706 >   * simulation.  Must query all processors to assemble this information.
707 >   *
708 >   */
709 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
710      SimInfo::MoleculeIterator mi;
711      Molecule* mol;
712      Molecule::AtomIterator ai;
713      Atom* atom;
714 <    std::set<AtomType*> atomTypes;
715 <
714 >    set<AtomType*> atomTypes;
715 >    
716      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
717 +      for(atom = mol->beginAtom(ai); atom != NULL;
718 +          atom = mol->nextAtom(ai)) {
719 +        atomTypes.insert(atom->getAtomType());
720 +      }      
721 +    }    
722 +    
723 + #ifdef IS_MPI
724  
725 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
726 <            atomTypes.insert(atom->getAtomType());
727 <        }
728 <        
729 <    }
725 >    // loop over the found atom types on this processor, and add their
726 >    // numerical idents to a vector:
727 >    
728 >    vector<int> foundTypes;
729 >    set<AtomType*>::iterator i;
730 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
731 >      foundTypes.push_back( (*i)->getIdent() );
732  
733 <    return atomTypes;        
734 < }
733 >    // count_local holds the number of found types on this processor
734 >    int count_local = foundTypes.size();
735  
736 < void SimInfo::setupSimType() {
478 <    std::set<AtomType*>::iterator i;
479 <    std::set<AtomType*> atomTypes;
480 <    atomTypes = getUniqueAtomTypes();
481 <    
482 <    int useLennardJones = 0;
483 <    int useElectrostatic = 0;
484 <    int useEAM = 0;
485 <    int useCharge = 0;
486 <    int useDirectional = 0;
487 <    int useDipole = 0;
488 <    int useGayBerne = 0;
489 <    int useSticky = 0;
490 <    int useShape = 0;
491 <    int useFLARB = 0; //it is not in AtomType yet
492 <    int useDirectionalAtom = 0;    
493 <    int useElectrostatics = 0;
494 <    //usePBC and useRF are from simParams
495 <    int usePBC = simParams_->getPBC();
496 <    int useRF = simParams_->getUseRF();
736 >    int nproc = MPI::COMM_WORLD.Get_size();
737  
738 <    //loop over all of the atom types
739 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
740 <        useLennardJones |= (*i)->isLennardJones();
741 <        useElectrostatic |= (*i)->isElectrostatic();
502 <        useEAM |= (*i)->isEAM();
503 <        useCharge |= (*i)->isCharge();
504 <        useDirectional |= (*i)->isDirectional();
505 <        useDipole |= (*i)->isDipole();
506 <        useGayBerne |= (*i)->isGayBerne();
507 <        useSticky |= (*i)->isSticky();
508 <        useShape |= (*i)->isShape();
509 <    }
738 >    // we need arrays to hold the counts and displacement vectors for
739 >    // all processors
740 >    vector<int> counts(nproc, 0);
741 >    vector<int> disps(nproc, 0);
742  
743 <    if (useSticky || useDipole || useGayBerne || useShape) {
744 <        useDirectionalAtom = 1;
743 >    // fill the counts array
744 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
745 >                              1, MPI::INT);
746 >  
747 >    // use the processor counts to compute the displacement array
748 >    disps[0] = 0;    
749 >    int totalCount = counts[0];
750 >    for (int iproc = 1; iproc < nproc; iproc++) {
751 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
752 >      totalCount += counts[iproc];
753      }
754  
755 <    if (useCharge || useDipole) {
756 <        useElectrostatics = 1;
757 <    }
755 >    // we need a (possibly redundant) set of all found types:
756 >    vector<int> ftGlobal(totalCount);
757 >    
758 >    // now spray out the foundTypes to all the other processors:    
759 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
760 >                               &ftGlobal[0], &counts[0], &disps[0],
761 >                               MPI::INT);
762  
763 < #ifdef IS_MPI    
520 <    int temp;
763 >    vector<int>::iterator j;
764  
765 <    temp = usePBC;
766 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
765 >    // foundIdents is a stl set, so inserting an already found ident
766 >    // will have no effect.
767 >    set<int> foundIdents;
768  
769 <    temp = useDirectionalAtom;
770 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
769 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
770 >      foundIdents.insert((*j));
771 >    
772 >    // now iterate over the foundIdents and get the actual atom types
773 >    // that correspond to these:
774 >    set<int>::iterator it;
775 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
776 >      atomTypes.insert( forceField_->getAtomType((*it)) );
777 >
778 > #endif
779  
780 <    temp = useLennardJones;
781 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
780 >    return atomTypes;        
781 >  }
782  
783 <    temp = useElectrostatics;
784 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
783 >  void SimInfo::setupSimVariables() {
784 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
785 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
786 >    // parameter is true
787 >    calcBoxDipole_ = false;
788 >    if ( simParams_->haveAccumulateBoxDipole() )
789 >      if ( simParams_->getAccumulateBoxDipole() ) {
790 >        calcBoxDipole_ = true;      
791 >      }
792 >    
793 >    set<AtomType*>::iterator i;
794 >    set<AtomType*> atomTypes;
795 >    atomTypes = getSimulatedAtomTypes();    
796 >    bool usesElectrostatic = false;
797 >    bool usesMetallic = false;
798 >    bool usesDirectional = false;
799 >    bool usesFluctuatingCharges =  false;
800 >    //loop over all of the atom types
801 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
802 >      usesElectrostatic |= (*i)->isElectrostatic();
803 >      usesMetallic |= (*i)->isMetal();
804 >      usesDirectional |= (*i)->isDirectional();
805 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
806 >    }
807  
808 <    temp = useCharge;
809 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
808 > #ifdef IS_MPI
809 >    bool temp;
810 >    temp = usesDirectional;
811 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
812 >                              MPI::LOR);
813 >        
814 >    temp = usesMetallic;
815 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
816 >                              MPI::LOR);
817 >    
818 >    temp = usesElectrostatic;
819 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
820 >                              MPI::LOR);
821  
822 <    temp = useDipole;
823 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
822 >    temp = usesFluctuatingCharges;
823 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
824 >                              MPI::LOR);
825 > #else
826  
827 <    temp = useSticky;
828 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
827 >    usesDirectionalAtoms_ = usesDirectional;
828 >    usesMetallicAtoms_ = usesMetallic;
829 >    usesElectrostaticAtoms_ = usesElectrostatic;
830 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
831  
832 <    temp = useGayBerne;
833 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
832 > #endif
833 >    
834 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
835 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
836 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
837 >  }
838  
546    temp = useEAM;
547    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
839  
840 <    temp = useShape;
841 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
840 >  vector<int> SimInfo::getGlobalAtomIndices() {
841 >    SimInfo::MoleculeIterator mi;
842 >    Molecule* mol;
843 >    Molecule::AtomIterator ai;
844 >    Atom* atom;
845  
846 <    temp = useFLARB;
553 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
554 <
555 <    temp = useRF;
556 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
846 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
847      
848 < #endif
848 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
849 >      
850 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
851 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
852 >      }
853 >    }
854 >    return GlobalAtomIndices;
855 >  }
856  
560    fInfo_.SIM_uses_PBC = usePBC;    
561    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
562    fInfo_.SIM_uses_LennardJones = useLennardJones;
563    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
564    fInfo_.SIM_uses_Charges = useCharge;
565    fInfo_.SIM_uses_Dipoles = useDipole;
566    fInfo_.SIM_uses_Sticky = useSticky;
567    fInfo_.SIM_uses_GayBerne = useGayBerne;
568    fInfo_.SIM_uses_EAM = useEAM;
569    fInfo_.SIM_uses_Shapes = useShape;
570    fInfo_.SIM_uses_FLARB = useFLARB;
571    fInfo_.SIM_uses_RF = useRF;
857  
858 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
858 >  vector<int> SimInfo::getGlobalGroupIndices() {
859 >    SimInfo::MoleculeIterator mi;
860 >    Molecule* mol;
861 >    Molecule::CutoffGroupIterator ci;
862 >    CutoffGroup* cg;
863  
864 <        if (simParams_->haveDielectric()) {
865 <            fInfo_.dielect = simParams_->getDielectric();
866 <        } else {
867 <            sprintf(painCave.errMsg,
868 <                    "SimSetup Error: No Dielectric constant was set.\n"
869 <                    "\tYou are trying to use Reaction Field without"
870 <                    "\tsetting a dielectric constant!\n");
871 <            painCave.isFatal = 1;
872 <            simError();
873 <        }
585 <        
586 <    } else {
587 <        fInfo_.dielect = 0.0;
864 >    vector<int> GlobalGroupIndices;
865 >    
866 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
867 >      
868 >      //local index of cutoff group is trivial, it only depends on the
869 >      //order of travesing
870 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
871 >           cg = mol->nextCutoffGroup(ci)) {
872 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
873 >      }        
874      }
875 +    return GlobalGroupIndices;
876 +  }
877  
590 }
878  
879 < void SimInfo::setupFortranSim() {
880 <    int isError;
594 <    int nExclude;
595 <    std::vector<int> fortranGlobalGroupMembership;
596 <    
597 <    nExclude = exclude_.getSize();
598 <    isError = 0;
879 >  void SimInfo::prepareTopology() {
880 >    int nExclude, nOneTwo, nOneThree, nOneFour;
881  
600    //globalGroupMembership_ is filled by SimCreator    
601    for (int i = 0; i < nGlobalAtoms_; i++) {
602        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
603    }
604
882      //calculate mass ratio of cutoff group
606    std::vector<double> mfact;
883      SimInfo::MoleculeIterator mi;
884      Molecule* mol;
885      Molecule::CutoffGroupIterator ci;
886      CutoffGroup* cg;
887      Molecule::AtomIterator ai;
888      Atom* atom;
889 <    double totalMass;
889 >    RealType totalMass;
890  
891 <    //to avoid memory reallocation, reserve enough space for mfact
892 <    mfact.reserve(getNCutoffGroups());
891 >    /**
892 >     * The mass factor is the relative mass of an atom to the total
893 >     * mass of the cutoff group it belongs to.  By default, all atoms
894 >     * are their own cutoff groups, and therefore have mass factors of
895 >     * 1.  We need some special handling for massless atoms, which
896 >     * will be treated as carrying the entire mass of the cutoff
897 >     * group.
898 >     */
899 >    massFactors_.clear();
900 >    massFactors_.resize(getNAtoms(), 1.0);
901      
902      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
903 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
903 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
904 >           cg = mol->nextCutoffGroup(ci)) {
905  
906 <            totalMass = cg->getMass();
907 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
908 <                        mfact.push_back(atom->getMass()/totalMass);
909 <            }
910 <
911 <        }      
906 >        totalMass = cg->getMass();
907 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
908 >          // Check for massless groups - set mfact to 1 if true
909 >          if (totalMass != 0)
910 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
911 >          else
912 >            massFactors_[atom->getLocalIndex()] = 1.0;
913 >        }
914 >      }      
915      }
916  
917 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
630 <    std::vector<int> identArray;
917 >    // Build the identArray_
918  
919 <    //to avoid memory reallocation, reserve enough space identArray
920 <    identArray.reserve(getNAtoms());
634 <    
919 >    identArray_.clear();
920 >    identArray_.reserve(getNAtoms());    
921      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
922 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
923 <            identArray.push_back(atom->getIdent());
924 <        }
922 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
923 >        identArray_.push_back(atom->getIdent());
924 >      }
925      }    
640
641    //fill molMembershipArray
642    //molMembershipArray is filled by SimCreator    
643    std::vector<int> molMembershipArray(nGlobalAtoms_);
644    for (int i = 0; i < nGlobalAtoms_; i++) {
645        molMembershipArray[i] = globalMolMembership_[i] + 1;
646    }
926      
927 <    //setup fortran simulation
649 <    //gloalExcludes and molMembershipArray should go away (They are never used)
650 <    //why the hell fortran need to know molecule?
651 <    //OOPSE = Object-Obfuscated Parallel Simulation Engine
652 <    int nGlobalExcludes = 0;
653 <    int* globalExcludes = NULL;
654 <    int* excludeList = exclude_.getExcludeList();
655 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
656 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
657 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
927 >    //scan topology
928  
929 <    if( isError ){
929 >    nExclude = excludedInteractions_.getSize();
930 >    nOneTwo = oneTwoInteractions_.getSize();
931 >    nOneThree = oneThreeInteractions_.getSize();
932 >    nOneFour = oneFourInteractions_.getSize();
933  
934 <        sprintf( painCave.errMsg,
935 <                 "There was an error setting the simulation information in fortran.\n" );
936 <        painCave.isFatal = 1;
937 <        painCave.severity = OOPSE_ERROR;
665 <        simError();
666 <    }
934 >    int* excludeList = excludedInteractions_.getPairList();
935 >    int* oneTwoList = oneTwoInteractions_.getPairList();
936 >    int* oneThreeList = oneThreeInteractions_.getPairList();
937 >    int* oneFourList = oneFourInteractions_.getPairList();
938  
939 < #ifdef IS_MPI
940 <    sprintf( checkPointMsg,
670 <       "succesfully sent the simulation information to fortran.\n");
671 <    MPIcheckPoint();
672 < #endif // is_mpi
673 < }
939 >    topologyDone_ = true;
940 >  }
941  
942 <
676 < #ifdef IS_MPI
677 < void SimInfo::setupFortranParallel() {
678 <    
679 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
680 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
681 <    std::vector<int> localToGlobalCutoffGroupIndex;
682 <    SimInfo::MoleculeIterator mi;
683 <    Molecule::AtomIterator ai;
684 <    Molecule::CutoffGroupIterator ci;
685 <    Molecule* mol;
686 <    Atom* atom;
687 <    CutoffGroup* cg;
688 <    mpiSimData parallelData;
689 <    int isError;
690 <
691 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
692 <
693 <        //local index(index in DataStorge) of atom is important
694 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
695 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
696 <        }
697 <
698 <        //local index of cutoff group is trivial, it only depends on the order of travesing
699 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
700 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
701 <        }        
702 <        
703 <    }
704 <
705 <    //fill up mpiSimData struct
706 <    parallelData.nMolGlobal = getNGlobalMolecules();
707 <    parallelData.nMolLocal = getNMolecules();
708 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
709 <    parallelData.nAtomsLocal = getNAtoms();
710 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
711 <    parallelData.nGroupsLocal = getNCutoffGroups();
712 <    parallelData.myNode = worldRank;
713 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
714 <
715 <    //pass mpiSimData struct and index arrays to fortran
716 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
717 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
718 <                    &localToGlobalCutoffGroupIndex[0], &isError);
719 <
720 <    if (isError) {
721 <        sprintf(painCave.errMsg,
722 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
723 <        painCave.isFatal = 1;
724 <        simError();
725 <    }
726 <
727 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
728 <    MPIcheckPoint();
729 <
730 <
731 < }
732 <
733 < #endif
734 <
735 < double SimInfo::calcMaxCutoffRadius() {
736 <
737 <
738 <    std::set<AtomType*> atomTypes;
739 <    std::set<AtomType*>::iterator i;
740 <    std::vector<double> cutoffRadius;
741 <
742 <    //get the unique atom types
743 <    atomTypes = getUniqueAtomTypes();
744 <
745 <    //query the max cutoff radius among these atom types
746 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
747 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
748 <    }
749 <
750 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
751 < #ifdef IS_MPI
752 <    //pick the max cutoff radius among the processors
753 < #endif
754 <
755 <    return maxCutoffRadius;
756 < }
757 <
758 < void SimInfo::getCutoff(double& rcut, double& rsw) {
759 <    
760 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
761 <        
762 <        if (!simParams_->haveRcut()){
763 <            sprintf(painCave.errMsg,
764 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
765 <                "\tOOPSE will use a default value of 15.0 angstroms"
766 <                "\tfor the cutoffRadius.\n");
767 <            painCave.isFatal = 0;
768 <            simError();
769 <            rcut = 15.0;
770 <        } else{
771 <            rcut = simParams_->getRcut();
772 <        }
773 <
774 <        if (!simParams_->haveRsw()){
775 <            sprintf(painCave.errMsg,
776 <                "SimCreator Warning: No value was set for switchingRadius.\n"
777 <                "\tOOPSE will use a default value of\n"
778 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
779 <            painCave.isFatal = 0;
780 <            simError();
781 <            rsw = 0.95 * rcut;
782 <        } else{
783 <            rsw = simParams_->getRsw();
784 <        }
785 <
786 <    } else {
787 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
788 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
789 <        
790 <        if (simParams_->haveRcut()) {
791 <            rcut = simParams_->getRcut();
792 <        } else {
793 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
794 <            rcut = calcMaxCutoffRadius();
795 <        }
796 <
797 <        if (simParams_->haveRsw()) {
798 <            rsw  = simParams_->getRsw();
799 <        } else {
800 <            rsw = rcut;
801 <        }
802 <    
803 <    }
804 < }
805 <
806 < void SimInfo::setupCutoff() {
807 <    getCutoff(rcut_, rsw_);    
808 <    double rnblist = rcut_ + 1; // skin of neighbor list
809 <
810 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
811 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
812 < }
813 <
814 < void SimInfo::addProperty(GenericData* genData) {
942 >  void SimInfo::addProperty(GenericData* genData) {
943      properties_.addProperty(genData);  
944 < }
944 >  }
945  
946 < void SimInfo::removeProperty(const std::string& propName) {
946 >  void SimInfo::removeProperty(const string& propName) {
947      properties_.removeProperty(propName);  
948 < }
948 >  }
949  
950 < void SimInfo::clearProperties() {
950 >  void SimInfo::clearProperties() {
951      properties_.clearProperties();
952 < }
952 >  }
953  
954 < std::vector<std::string> SimInfo::getPropertyNames() {
954 >  vector<string> SimInfo::getPropertyNames() {
955      return properties_.getPropertyNames();  
956 < }
956 >  }
957        
958 < std::vector<GenericData*> SimInfo::getProperties() {
958 >  vector<GenericData*> SimInfo::getProperties() {
959      return properties_.getProperties();
960 < }
960 >  }
961  
962 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
962 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
963      return properties_.getPropertyByName(propName);
964 < }
964 >  }
965  
966 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
967 <    //if (sman_ == sman_) {
968 <    //    return;
969 <    //}
970 <    
843 <    //delete sman_;
966 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
967 >    if (sman_ == sman) {
968 >      return;
969 >    }    
970 >    delete sman_;
971      sman_ = sman;
972  
973      Molecule* mol;
974      RigidBody* rb;
975      Atom* atom;
976 +    CutoffGroup* cg;
977      SimInfo::MoleculeIterator mi;
978      Molecule::RigidBodyIterator rbIter;
979 <    Molecule::AtomIterator atomIter;;
979 >    Molecule::AtomIterator atomIter;
980 >    Molecule::CutoffGroupIterator cgIter;
981  
982      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
983          
984 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
985 <            atom->setSnapshotManager(sman_);
986 <        }
984 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
985 >           atom = mol->nextAtom(atomIter)) {
986 >        atom->setSnapshotManager(sman_);
987 >      }
988          
989 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
990 <            rb->setSnapshotManager(sman_);
991 <        }
989 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
990 >           rb = mol->nextRigidBody(rbIter)) {
991 >        rb->setSnapshotManager(sman_);
992 >      }
993 >
994 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
995 >           cg = mol->nextCutoffGroup(cgIter)) {
996 >        cg->setSnapshotManager(sman_);
997 >      }
998      }    
999      
1000 < }
1000 >  }
1001  
866 Vector3d SimInfo::getComVel(){
867    SimInfo::MoleculeIterator i;
868    Molecule* mol;
1002  
1003 <    Vector3d comVel(0.0);
871 <    double totalMass = 0.0;
872 <    
873 <
874 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
875 <        double mass = mol->getMass();
876 <        totalMass += mass;
877 <        comVel += mass * mol->getComVel();
878 <    }  
1003 >  ostream& operator <<(ostream& o, SimInfo& info) {
1004  
1005 < #ifdef IS_MPI
1006 <    double tmpMass = totalMass;
1007 <    Vector3d tmpComVel(comVel);    
1008 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1009 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1010 < #endif
1005 >    return o;
1006 >  }
1007 >  
1008 >  
1009 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1010 >    if (index >= IOIndexToIntegrableObject.size()) {
1011 >      sprintf(painCave.errMsg,
1012 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1013 >              "\tindex exceeds number of known objects!\n");
1014 >      painCave.isFatal = 1;
1015 >      simError();
1016 >      return NULL;
1017 >    } else
1018 >      return IOIndexToIntegrableObject.at(index);
1019 >  }
1020 >  
1021 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1022 >    IOIndexToIntegrableObject= v;
1023 >  }
1024  
1025 <    comVel /= totalMass;
1026 <
889 <    return comVel;
890 < }
891 <
892 < Vector3d SimInfo::getCom(){
893 <    SimInfo::MoleculeIterator i;
894 <    Molecule* mol;
895 <
896 <    Vector3d com(0.0);
897 <    double totalMass = 0.0;
898 <    
899 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
900 <        double mass = mol->getMass();
901 <        totalMass += mass;
902 <        com += mass * mol->getCom();
903 <    }  
904 <
1025 >  int SimInfo::getNGlobalConstraints() {
1026 >    int nGlobalConstraints;
1027   #ifdef IS_MPI
1028 <    double tmpMass = totalMass;
1029 <    Vector3d tmpCom(com);    
1030 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1031 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1028 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1029 >                  MPI_COMM_WORLD);    
1030 > #else
1031 >    nGlobalConstraints =  nConstraints_;
1032   #endif
1033 +    return nGlobalConstraints;
1034 +  }
1035  
1036 <    com /= totalMass;
1036 > }//end namespace OpenMD
1037  
914    return com;
915
916 }        
917
918 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
919
920    return o;
921 }
922
923 }//end namespace oopse
924

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1779 by gezelter, Mon Aug 20 17:51:39 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines