1 |
< |
/* |
1 |
> |
/* |
2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
4 |
|
* The University of Notre Dame grants you ("Licensee") a |
6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
49 |
|
|
50 |
|
#include <algorithm> |
51 |
|
#include <set> |
52 |
+ |
#include <map> |
53 |
|
|
54 |
|
#include "brains/SimInfo.hpp" |
55 |
|
#include "math/Vector3.hpp" |
56 |
|
#include "primitives/Molecule.hpp" |
57 |
< |
#include "UseTheForce/doForces_interface.h" |
56 |
< |
#include "UseTheForce/notifyCutoffs_interface.h" |
57 |
> |
#include "primitives/StuntDouble.hpp" |
58 |
|
#include "utils/MemoryUtils.hpp" |
59 |
|
#include "utils/simError.h" |
60 |
|
#include "selection/SelectionManager.hpp" |
61 |
< |
|
61 |
> |
#include "io/ForceFieldOptions.hpp" |
62 |
> |
#include "brains/ForceField.hpp" |
63 |
> |
#include "nonbonded/SwitchingFunction.hpp" |
64 |
|
#ifdef IS_MPI |
65 |
< |
#include "UseTheForce/mpiComponentPlan.h" |
66 |
< |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
64 |
< |
#endif |
65 |
> |
#include <mpi.h> |
66 |
> |
#endif |
67 |
|
|
68 |
< |
namespace oopse { |
69 |
< |
|
70 |
< |
SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, |
71 |
< |
ForceField* ff, Globals* simParams) : |
72 |
< |
forceField_(ff), simParams_(simParams), |
73 |
< |
ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
74 |
< |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
75 |
< |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
76 |
< |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
77 |
< |
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
78 |
< |
sman_(NULL), fortranInitialized_(false) { |
79 |
< |
|
80 |
< |
|
79 |
< |
std::vector<std::pair<MoleculeStamp*, int> >::iterator i; |
68 |
> |
using namespace std; |
69 |
> |
namespace OpenMD { |
70 |
> |
|
71 |
> |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
72 |
> |
forceField_(ff), simParams_(simParams), |
73 |
> |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
74 |
> |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
75 |
> |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 |
> |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
77 |
> |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
78 |
> |
nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 |
> |
calcBoxDipole_(false), useAtomicVirial_(true) { |
80 |
> |
|
81 |
|
MoleculeStamp* molStamp; |
82 |
|
int nMolWithSameStamp; |
83 |
|
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
84 |
< |
int nGroups = 0; //total cutoff groups defined in meta-data file |
84 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
85 |
|
CutoffGroupStamp* cgStamp; |
86 |
|
RigidBodyStamp* rbStamp; |
87 |
|
int nRigidAtoms = 0; |
88 |
|
|
89 |
< |
for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { |
90 |
< |
molStamp = i->first; |
91 |
< |
nMolWithSameStamp = i->second; |
92 |
< |
|
93 |
< |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
94 |
< |
|
95 |
< |
//calculate atoms in molecules |
96 |
< |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
97 |
< |
|
98 |
< |
|
99 |
< |
//calculate atoms in cutoff groups |
100 |
< |
int nAtomsInGroups = 0; |
101 |
< |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
102 |
< |
|
103 |
< |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
104 |
< |
cgStamp = molStamp->getCutoffGroup(j); |
105 |
< |
nAtomsInGroups += cgStamp->getNMembers(); |
106 |
< |
} |
107 |
< |
|
108 |
< |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
109 |
< |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
110 |
< |
|
111 |
< |
//calculate atoms in rigid bodies |
112 |
< |
int nAtomsInRigidBodies = 0; |
113 |
< |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
114 |
< |
|
115 |
< |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
116 |
< |
rbStamp = molStamp->getRigidBody(j); |
117 |
< |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
118 |
< |
} |
119 |
< |
|
120 |
< |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
121 |
< |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
122 |
< |
|
89 |
> |
vector<Component*> components = simParams->getComponents(); |
90 |
> |
|
91 |
> |
for (vector<Component*>::iterator i = components.begin(); |
92 |
> |
i !=components.end(); ++i) { |
93 |
> |
molStamp = (*i)->getMoleculeStamp(); |
94 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
95 |
> |
|
96 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
97 |
> |
|
98 |
> |
//calculate atoms in molecules |
99 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
100 |
> |
|
101 |
> |
//calculate atoms in cutoff groups |
102 |
> |
int nAtomsInGroups = 0; |
103 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
104 |
> |
|
105 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
106 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
107 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
108 |
> |
} |
109 |
> |
|
110 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
111 |
> |
|
112 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
113 |
> |
|
114 |
> |
//calculate atoms in rigid bodies |
115 |
> |
int nAtomsInRigidBodies = 0; |
116 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
117 |
> |
|
118 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
119 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
120 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
121 |
> |
} |
122 |
> |
|
123 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
124 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
125 |
> |
|
126 |
|
} |
127 |
+ |
|
128 |
+ |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
129 |
+ |
//group therefore the total number of cutoff groups in the system is |
130 |
+ |
//equal to the total number of atoms minus number of atoms belong to |
131 |
+ |
//cutoff group defined in meta-data file plus the number of cutoff |
132 |
+ |
//groups defined in meta-data file |
133 |
|
|
124 |
– |
//every free atom (atom does not belong to cutoff groups) is a cutoff group |
125 |
– |
//therefore the total number of cutoff groups in the system is equal to |
126 |
– |
//the total number of atoms minus number of atoms belong to cutoff group defined in meta-data |
127 |
– |
//file plus the number of cutoff groups defined in meta-data file |
134 |
|
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
135 |
< |
|
136 |
< |
//every free atom (atom does not belong to rigid bodies) is an integrable object |
137 |
< |
//therefore the total number of integrable objects in the system is equal to |
138 |
< |
//the total number of atoms minus number of atoms belong to rigid body defined in meta-data |
139 |
< |
//file plus the number of rigid bodies defined in meta-data file |
140 |
< |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_; |
141 |
< |
|
135 |
> |
|
136 |
> |
//every free atom (atom does not belong to rigid bodies) is an |
137 |
> |
//integrable object therefore the total number of integrable objects |
138 |
> |
//in the system is equal to the total number of atoms minus number of |
139 |
> |
//atoms belong to rigid body defined in meta-data file plus the number |
140 |
> |
//of rigid bodies defined in meta-data file |
141 |
> |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
142 |
> |
+ nGlobalRigidBodies_; |
143 |
> |
|
144 |
|
nGlobalMols_ = molStampIds_.size(); |
137 |
– |
|
138 |
– |
#ifdef IS_MPI |
145 |
|
molToProcMap_.resize(nGlobalMols_); |
146 |
< |
#endif |
147 |
< |
|
148 |
< |
} |
149 |
< |
|
144 |
< |
SimInfo::~SimInfo() { |
145 |
< |
std::map<int, Molecule*>::iterator i; |
146 |
> |
} |
147 |
> |
|
148 |
> |
SimInfo::~SimInfo() { |
149 |
> |
map<int, Molecule*>::iterator i; |
150 |
|
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
151 |
< |
delete i->second; |
151 |
> |
delete i->second; |
152 |
|
} |
153 |
|
molecules_.clear(); |
154 |
< |
|
151 |
< |
MemoryUtils::deletePointers(moleculeStamps_); |
152 |
< |
|
154 |
> |
|
155 |
|
delete sman_; |
156 |
|
delete simParams_; |
157 |
|
delete forceField_; |
158 |
< |
} |
158 |
> |
} |
159 |
|
|
158 |
– |
int SimInfo::getNGlobalConstraints() { |
159 |
– |
int nGlobalConstraints; |
160 |
– |
#ifdef IS_MPI |
161 |
– |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
162 |
– |
MPI_COMM_WORLD); |
163 |
– |
#else |
164 |
– |
nGlobalConstraints = nConstraints_; |
165 |
– |
#endif |
166 |
– |
return nGlobalConstraints; |
167 |
– |
} |
160 |
|
|
161 |
< |
bool SimInfo::addMolecule(Molecule* mol) { |
161 |
> |
bool SimInfo::addMolecule(Molecule* mol) { |
162 |
|
MoleculeIterator i; |
163 |
< |
|
163 |
> |
|
164 |
|
i = molecules_.find(mol->getGlobalIndex()); |
165 |
|
if (i == molecules_.end() ) { |
166 |
< |
|
167 |
< |
molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
168 |
< |
|
169 |
< |
nAtoms_ += mol->getNAtoms(); |
170 |
< |
nBonds_ += mol->getNBonds(); |
171 |
< |
nBends_ += mol->getNBends(); |
172 |
< |
nTorsions_ += mol->getNTorsions(); |
173 |
< |
nRigidBodies_ += mol->getNRigidBodies(); |
174 |
< |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
175 |
< |
nCutoffGroups_ += mol->getNCutoffGroups(); |
176 |
< |
nConstraints_ += mol->getNConstraintPairs(); |
177 |
< |
|
178 |
< |
addExcludePairs(mol); |
179 |
< |
|
180 |
< |
return true; |
181 |
< |
} else { |
182 |
< |
return false; |
166 |
> |
|
167 |
> |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
168 |
> |
|
169 |
> |
nAtoms_ += mol->getNAtoms(); |
170 |
> |
nBonds_ += mol->getNBonds(); |
171 |
> |
nBends_ += mol->getNBends(); |
172 |
> |
nTorsions_ += mol->getNTorsions(); |
173 |
> |
nInversions_ += mol->getNInversions(); |
174 |
> |
nRigidBodies_ += mol->getNRigidBodies(); |
175 |
> |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
176 |
> |
nCutoffGroups_ += mol->getNCutoffGroups(); |
177 |
> |
nConstraints_ += mol->getNConstraintPairs(); |
178 |
> |
|
179 |
> |
addInteractionPairs(mol); |
180 |
> |
|
181 |
> |
return true; |
182 |
> |
} else { |
183 |
> |
return false; |
184 |
|
} |
185 |
< |
} |
186 |
< |
|
187 |
< |
bool SimInfo::removeMolecule(Molecule* mol) { |
185 |
> |
} |
186 |
> |
|
187 |
> |
bool SimInfo::removeMolecule(Molecule* mol) { |
188 |
|
MoleculeIterator i; |
189 |
|
i = molecules_.find(mol->getGlobalIndex()); |
190 |
|
|
191 |
|
if (i != molecules_.end() ) { |
192 |
|
|
193 |
< |
assert(mol == i->second); |
193 |
> |
assert(mol == i->second); |
194 |
|
|
195 |
< |
nAtoms_ -= mol->getNAtoms(); |
196 |
< |
nBonds_ -= mol->getNBonds(); |
197 |
< |
nBends_ -= mol->getNBends(); |
198 |
< |
nTorsions_ -= mol->getNTorsions(); |
199 |
< |
nRigidBodies_ -= mol->getNRigidBodies(); |
200 |
< |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
201 |
< |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
202 |
< |
nConstraints_ -= mol->getNConstraintPairs(); |
195 |
> |
nAtoms_ -= mol->getNAtoms(); |
196 |
> |
nBonds_ -= mol->getNBonds(); |
197 |
> |
nBends_ -= mol->getNBends(); |
198 |
> |
nTorsions_ -= mol->getNTorsions(); |
199 |
> |
nInversions_ -= mol->getNInversions(); |
200 |
> |
nRigidBodies_ -= mol->getNRigidBodies(); |
201 |
> |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
202 |
> |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
203 |
> |
nConstraints_ -= mol->getNConstraintPairs(); |
204 |
|
|
205 |
< |
removeExcludePairs(mol); |
206 |
< |
molecules_.erase(mol->getGlobalIndex()); |
205 |
> |
removeInteractionPairs(mol); |
206 |
> |
molecules_.erase(mol->getGlobalIndex()); |
207 |
|
|
208 |
< |
delete mol; |
208 |
> |
delete mol; |
209 |
|
|
210 |
< |
return true; |
210 |
> |
return true; |
211 |
|
} else { |
212 |
< |
return false; |
212 |
> |
return false; |
213 |
|
} |
214 |
+ |
} |
215 |
|
|
221 |
– |
|
222 |
– |
} |
223 |
– |
|
216 |
|
|
217 |
< |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
217 |
> |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
218 |
|
i = molecules_.begin(); |
219 |
|
return i == molecules_.end() ? NULL : i->second; |
220 |
< |
} |
220 |
> |
} |
221 |
|
|
222 |
< |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
222 |
> |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
223 |
|
++i; |
224 |
|
return i == molecules_.end() ? NULL : i->second; |
225 |
< |
} |
225 |
> |
} |
226 |
|
|
227 |
|
|
228 |
< |
void SimInfo::calcNdf() { |
229 |
< |
int ndf_local; |
228 |
> |
void SimInfo::calcNdf() { |
229 |
> |
int ndf_local, nfq_local; |
230 |
|
MoleculeIterator i; |
231 |
< |
std::vector<StuntDouble*>::iterator j; |
231 |
> |
vector<StuntDouble*>::iterator j; |
232 |
> |
vector<Atom*>::iterator k; |
233 |
> |
|
234 |
|
Molecule* mol; |
235 |
< |
StuntDouble* integrableObject; |
235 |
> |
StuntDouble* sd; |
236 |
> |
Atom* atom; |
237 |
|
|
238 |
|
ndf_local = 0; |
239 |
+ |
nfq_local = 0; |
240 |
|
|
241 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
246 |
– |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
247 |
– |
integrableObject = mol->nextIntegrableObject(j)) { |
242 |
|
|
243 |
< |
ndf_local += 3; |
243 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
244 |
> |
sd = mol->nextIntegrableObject(j)) { |
245 |
|
|
246 |
< |
if (integrableObject->isDirectional()) { |
247 |
< |
if (integrableObject->isLinear()) { |
248 |
< |
ndf_local += 2; |
249 |
< |
} else { |
250 |
< |
ndf_local += 3; |
251 |
< |
} |
252 |
< |
} |
253 |
< |
|
254 |
< |
}//end for (integrableObject) |
255 |
< |
}// end for (mol) |
246 |
> |
ndf_local += 3; |
247 |
> |
|
248 |
> |
if (sd->isDirectional()) { |
249 |
> |
if (sd->isLinear()) { |
250 |
> |
ndf_local += 2; |
251 |
> |
} else { |
252 |
> |
ndf_local += 3; |
253 |
> |
} |
254 |
> |
} |
255 |
> |
} |
256 |
> |
|
257 |
> |
for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
258 |
> |
atom = mol->nextFluctuatingCharge(k)) { |
259 |
> |
if (atom->isFluctuatingCharge()) { |
260 |
> |
nfq_local++; |
261 |
> |
} |
262 |
> |
} |
263 |
> |
} |
264 |
|
|
265 |
+ |
ndfLocal_ = ndf_local; |
266 |
+ |
|
267 |
|
// n_constraints is local, so subtract them on each processor |
268 |
|
ndf_local -= nConstraints_; |
269 |
|
|
270 |
|
#ifdef IS_MPI |
271 |
|
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
272 |
+ |
MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
273 |
|
#else |
274 |
|
ndf_ = ndf_local; |
275 |
+ |
nGlobalFluctuatingCharges_ = nfq_local; |
276 |
|
#endif |
277 |
|
|
278 |
|
// nZconstraints_ is global, as are the 3 COM translations for the |
279 |
|
// entire system: |
280 |
|
ndf_ = ndf_ - 3 - nZconstraint_; |
281 |
|
|
282 |
< |
} |
282 |
> |
} |
283 |
|
|
284 |
< |
void SimInfo::calcNdfRaw() { |
284 |
> |
int SimInfo::getFdf() { |
285 |
> |
#ifdef IS_MPI |
286 |
> |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
287 |
> |
#else |
288 |
> |
fdf_ = fdf_local; |
289 |
> |
#endif |
290 |
> |
return fdf_; |
291 |
> |
} |
292 |
> |
|
293 |
> |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
294 |
> |
int nLocalCutoffAtoms = 0; |
295 |
> |
Molecule* mol; |
296 |
> |
MoleculeIterator mi; |
297 |
> |
CutoffGroup* cg; |
298 |
> |
Molecule::CutoffGroupIterator ci; |
299 |
> |
|
300 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
301 |
> |
|
302 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
303 |
> |
cg = mol->nextCutoffGroup(ci)) { |
304 |
> |
nLocalCutoffAtoms += cg->getNumAtom(); |
305 |
> |
|
306 |
> |
} |
307 |
> |
} |
308 |
> |
|
309 |
> |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
310 |
> |
} |
311 |
> |
|
312 |
> |
void SimInfo::calcNdfRaw() { |
313 |
|
int ndfRaw_local; |
314 |
|
|
315 |
|
MoleculeIterator i; |
316 |
< |
std::vector<StuntDouble*>::iterator j; |
316 |
> |
vector<StuntDouble*>::iterator j; |
317 |
|
Molecule* mol; |
318 |
< |
StuntDouble* integrableObject; |
318 |
> |
StuntDouble* sd; |
319 |
|
|
320 |
|
// Raw degrees of freedom that we have to set |
321 |
|
ndfRaw_local = 0; |
322 |
|
|
323 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
289 |
– |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
290 |
– |
integrableObject = mol->nextIntegrableObject(j)) { |
324 |
|
|
325 |
< |
ndfRaw_local += 3; |
325 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
326 |
> |
sd = mol->nextIntegrableObject(j)) { |
327 |
|
|
328 |
< |
if (integrableObject->isDirectional()) { |
329 |
< |
if (integrableObject->isLinear()) { |
330 |
< |
ndfRaw_local += 2; |
331 |
< |
} else { |
332 |
< |
ndfRaw_local += 3; |
333 |
< |
} |
334 |
< |
} |
328 |
> |
ndfRaw_local += 3; |
329 |
> |
|
330 |
> |
if (sd->isDirectional()) { |
331 |
> |
if (sd->isLinear()) { |
332 |
> |
ndfRaw_local += 2; |
333 |
> |
} else { |
334 |
> |
ndfRaw_local += 3; |
335 |
> |
} |
336 |
> |
} |
337 |
|
|
338 |
< |
} |
338 |
> |
} |
339 |
|
} |
340 |
|
|
341 |
|
#ifdef IS_MPI |
343 |
|
#else |
344 |
|
ndfRaw_ = ndfRaw_local; |
345 |
|
#endif |
346 |
< |
} |
346 |
> |
} |
347 |
|
|
348 |
< |
void SimInfo::calcNdfTrans() { |
348 |
> |
void SimInfo::calcNdfTrans() { |
349 |
|
int ndfTrans_local; |
350 |
|
|
351 |
|
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
359 |
|
|
360 |
|
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
361 |
|
|
362 |
< |
} |
362 |
> |
} |
363 |
|
|
364 |
< |
void SimInfo::addExcludePairs(Molecule* mol) { |
365 |
< |
std::vector<Bond*>::iterator bondIter; |
366 |
< |
std::vector<Bend*>::iterator bendIter; |
367 |
< |
std::vector<Torsion*>::iterator torsionIter; |
364 |
> |
void SimInfo::addInteractionPairs(Molecule* mol) { |
365 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
366 |
> |
vector<Bond*>::iterator bondIter; |
367 |
> |
vector<Bend*>::iterator bendIter; |
368 |
> |
vector<Torsion*>::iterator torsionIter; |
369 |
> |
vector<Inversion*>::iterator inversionIter; |
370 |
|
Bond* bond; |
371 |
|
Bend* bend; |
372 |
|
Torsion* torsion; |
373 |
+ |
Inversion* inversion; |
374 |
|
int a; |
375 |
|
int b; |
376 |
|
int c; |
377 |
|
int d; |
378 |
+ |
|
379 |
+ |
// atomGroups can be used to add special interaction maps between |
380 |
+ |
// groups of atoms that are in two separate rigid bodies. |
381 |
+ |
// However, most site-site interactions between two rigid bodies |
382 |
+ |
// are probably not special, just the ones between the physically |
383 |
+ |
// bonded atoms. Interactions *within* a single rigid body should |
384 |
+ |
// always be excluded. These are done at the bottom of this |
385 |
+ |
// function. |
386 |
+ |
|
387 |
+ |
map<int, set<int> > atomGroups; |
388 |
+ |
Molecule::RigidBodyIterator rbIter; |
389 |
+ |
RigidBody* rb; |
390 |
+ |
Molecule::IntegrableObjectIterator ii; |
391 |
+ |
StuntDouble* sd; |
392 |
|
|
393 |
< |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
394 |
< |
a = bond->getAtomA()->getGlobalIndex(); |
395 |
< |
b = bond->getAtomB()->getGlobalIndex(); |
396 |
< |
exclude_.addPair(a, b); |
393 |
> |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
394 |
> |
sd = mol->nextIntegrableObject(ii)) { |
395 |
> |
|
396 |
> |
if (sd->isRigidBody()) { |
397 |
> |
rb = static_cast<RigidBody*>(sd); |
398 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
399 |
> |
set<int> rigidAtoms; |
400 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
401 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
402 |
> |
} |
403 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
404 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
405 |
> |
} |
406 |
> |
} else { |
407 |
> |
set<int> oneAtomSet; |
408 |
> |
oneAtomSet.insert(sd->getGlobalIndex()); |
409 |
> |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
410 |
> |
} |
411 |
> |
} |
412 |
> |
|
413 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
414 |
> |
bond = mol->nextBond(bondIter)) { |
415 |
> |
|
416 |
> |
a = bond->getAtomA()->getGlobalIndex(); |
417 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
418 |
> |
|
419 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
420 |
> |
oneTwoInteractions_.addPair(a, b); |
421 |
> |
} else { |
422 |
> |
excludedInteractions_.addPair(a, b); |
423 |
> |
} |
424 |
|
} |
425 |
|
|
426 |
< |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
427 |
< |
a = bend->getAtomA()->getGlobalIndex(); |
348 |
< |
b = bend->getAtomB()->getGlobalIndex(); |
349 |
< |
c = bend->getAtomC()->getGlobalIndex(); |
426 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
427 |
> |
bend = mol->nextBend(bendIter)) { |
428 |
|
|
429 |
< |
exclude_.addPair(a, b); |
430 |
< |
exclude_.addPair(a, c); |
431 |
< |
exclude_.addPair(b, c); |
429 |
> |
a = bend->getAtomA()->getGlobalIndex(); |
430 |
> |
b = bend->getAtomB()->getGlobalIndex(); |
431 |
> |
c = bend->getAtomC()->getGlobalIndex(); |
432 |
> |
|
433 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
434 |
> |
oneTwoInteractions_.addPair(a, b); |
435 |
> |
oneTwoInteractions_.addPair(b, c); |
436 |
> |
} else { |
437 |
> |
excludedInteractions_.addPair(a, b); |
438 |
> |
excludedInteractions_.addPair(b, c); |
439 |
> |
} |
440 |
> |
|
441 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
442 |
> |
oneThreeInteractions_.addPair(a, c); |
443 |
> |
} else { |
444 |
> |
excludedInteractions_.addPair(a, c); |
445 |
> |
} |
446 |
|
} |
447 |
|
|
448 |
< |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
449 |
< |
a = torsion->getAtomA()->getGlobalIndex(); |
358 |
< |
b = torsion->getAtomB()->getGlobalIndex(); |
359 |
< |
c = torsion->getAtomC()->getGlobalIndex(); |
360 |
< |
d = torsion->getAtomD()->getGlobalIndex(); |
448 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
449 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
450 |
|
|
451 |
< |
exclude_.addPair(a, b); |
452 |
< |
exclude_.addPair(a, c); |
453 |
< |
exclude_.addPair(a, d); |
454 |
< |
exclude_.addPair(b, c); |
455 |
< |
exclude_.addPair(b, d); |
456 |
< |
exclude_.addPair(c, d); |
451 |
> |
a = torsion->getAtomA()->getGlobalIndex(); |
452 |
> |
b = torsion->getAtomB()->getGlobalIndex(); |
453 |
> |
c = torsion->getAtomC()->getGlobalIndex(); |
454 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
455 |
> |
|
456 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
457 |
> |
oneTwoInteractions_.addPair(a, b); |
458 |
> |
oneTwoInteractions_.addPair(b, c); |
459 |
> |
oneTwoInteractions_.addPair(c, d); |
460 |
> |
} else { |
461 |
> |
excludedInteractions_.addPair(a, b); |
462 |
> |
excludedInteractions_.addPair(b, c); |
463 |
> |
excludedInteractions_.addPair(c, d); |
464 |
> |
} |
465 |
> |
|
466 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
467 |
> |
oneThreeInteractions_.addPair(a, c); |
468 |
> |
oneThreeInteractions_.addPair(b, d); |
469 |
> |
} else { |
470 |
> |
excludedInteractions_.addPair(a, c); |
471 |
> |
excludedInteractions_.addPair(b, d); |
472 |
> |
} |
473 |
> |
|
474 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
475 |
> |
oneFourInteractions_.addPair(a, d); |
476 |
> |
} else { |
477 |
> |
excludedInteractions_.addPair(a, d); |
478 |
> |
} |
479 |
|
} |
480 |
|
|
481 |
< |
|
482 |
< |
} |
481 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
482 |
> |
inversion = mol->nextInversion(inversionIter)) { |
483 |
|
|
484 |
< |
void SimInfo::removeExcludePairs(Molecule* mol) { |
485 |
< |
std::vector<Bond*>::iterator bondIter; |
486 |
< |
std::vector<Bend*>::iterator bendIter; |
487 |
< |
std::vector<Torsion*>::iterator torsionIter; |
484 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
485 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
486 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
487 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
488 |
> |
|
489 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
490 |
> |
oneTwoInteractions_.addPair(a, b); |
491 |
> |
oneTwoInteractions_.addPair(a, c); |
492 |
> |
oneTwoInteractions_.addPair(a, d); |
493 |
> |
} else { |
494 |
> |
excludedInteractions_.addPair(a, b); |
495 |
> |
excludedInteractions_.addPair(a, c); |
496 |
> |
excludedInteractions_.addPair(a, d); |
497 |
> |
} |
498 |
> |
|
499 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
500 |
> |
oneThreeInteractions_.addPair(b, c); |
501 |
> |
oneThreeInteractions_.addPair(b, d); |
502 |
> |
oneThreeInteractions_.addPair(c, d); |
503 |
> |
} else { |
504 |
> |
excludedInteractions_.addPair(b, c); |
505 |
> |
excludedInteractions_.addPair(b, d); |
506 |
> |
excludedInteractions_.addPair(c, d); |
507 |
> |
} |
508 |
> |
} |
509 |
> |
|
510 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
511 |
> |
rb = mol->nextRigidBody(rbIter)) { |
512 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
513 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
514 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
515 |
> |
a = atoms[i]->getGlobalIndex(); |
516 |
> |
b = atoms[j]->getGlobalIndex(); |
517 |
> |
excludedInteractions_.addPair(a, b); |
518 |
> |
} |
519 |
> |
} |
520 |
> |
} |
521 |
> |
|
522 |
> |
} |
523 |
> |
|
524 |
> |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
525 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
526 |
> |
vector<Bond*>::iterator bondIter; |
527 |
> |
vector<Bend*>::iterator bendIter; |
528 |
> |
vector<Torsion*>::iterator torsionIter; |
529 |
> |
vector<Inversion*>::iterator inversionIter; |
530 |
|
Bond* bond; |
531 |
|
Bend* bend; |
532 |
|
Torsion* torsion; |
533 |
+ |
Inversion* inversion; |
534 |
|
int a; |
535 |
|
int b; |
536 |
|
int c; |
537 |
|
int d; |
538 |
+ |
|
539 |
+ |
map<int, set<int> > atomGroups; |
540 |
+ |
Molecule::RigidBodyIterator rbIter; |
541 |
+ |
RigidBody* rb; |
542 |
+ |
Molecule::IntegrableObjectIterator ii; |
543 |
+ |
StuntDouble* sd; |
544 |
|
|
545 |
< |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
546 |
< |
a = bond->getAtomA()->getGlobalIndex(); |
547 |
< |
b = bond->getAtomB()->getGlobalIndex(); |
548 |
< |
exclude_.removePair(a, b); |
545 |
> |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
546 |
> |
sd = mol->nextIntegrableObject(ii)) { |
547 |
> |
|
548 |
> |
if (sd->isRigidBody()) { |
549 |
> |
rb = static_cast<RigidBody*>(sd); |
550 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
551 |
> |
set<int> rigidAtoms; |
552 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
553 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
554 |
> |
} |
555 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
556 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
557 |
> |
} |
558 |
> |
} else { |
559 |
> |
set<int> oneAtomSet; |
560 |
> |
oneAtomSet.insert(sd->getGlobalIndex()); |
561 |
> |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
562 |
> |
} |
563 |
> |
} |
564 |
> |
|
565 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
566 |
> |
bond = mol->nextBond(bondIter)) { |
567 |
> |
|
568 |
> |
a = bond->getAtomA()->getGlobalIndex(); |
569 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
570 |
> |
|
571 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
572 |
> |
oneTwoInteractions_.removePair(a, b); |
573 |
> |
} else { |
574 |
> |
excludedInteractions_.removePair(a, b); |
575 |
> |
} |
576 |
|
} |
577 |
|
|
578 |
< |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
579 |
< |
a = bend->getAtomA()->getGlobalIndex(); |
393 |
< |
b = bend->getAtomB()->getGlobalIndex(); |
394 |
< |
c = bend->getAtomC()->getGlobalIndex(); |
578 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
579 |
> |
bend = mol->nextBend(bendIter)) { |
580 |
|
|
581 |
< |
exclude_.removePair(a, b); |
582 |
< |
exclude_.removePair(a, c); |
583 |
< |
exclude_.removePair(b, c); |
581 |
> |
a = bend->getAtomA()->getGlobalIndex(); |
582 |
> |
b = bend->getAtomB()->getGlobalIndex(); |
583 |
> |
c = bend->getAtomC()->getGlobalIndex(); |
584 |
> |
|
585 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
586 |
> |
oneTwoInteractions_.removePair(a, b); |
587 |
> |
oneTwoInteractions_.removePair(b, c); |
588 |
> |
} else { |
589 |
> |
excludedInteractions_.removePair(a, b); |
590 |
> |
excludedInteractions_.removePair(b, c); |
591 |
> |
} |
592 |
> |
|
593 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
594 |
> |
oneThreeInteractions_.removePair(a, c); |
595 |
> |
} else { |
596 |
> |
excludedInteractions_.removePair(a, c); |
597 |
> |
} |
598 |
|
} |
599 |
|
|
600 |
< |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
601 |
< |
a = torsion->getAtomA()->getGlobalIndex(); |
403 |
< |
b = torsion->getAtomB()->getGlobalIndex(); |
404 |
< |
c = torsion->getAtomC()->getGlobalIndex(); |
405 |
< |
d = torsion->getAtomD()->getGlobalIndex(); |
600 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
601 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
602 |
|
|
603 |
< |
exclude_.removePair(a, b); |
604 |
< |
exclude_.removePair(a, c); |
605 |
< |
exclude_.removePair(a, d); |
606 |
< |
exclude_.removePair(b, c); |
607 |
< |
exclude_.removePair(b, d); |
608 |
< |
exclude_.removePair(c, d); |
603 |
> |
a = torsion->getAtomA()->getGlobalIndex(); |
604 |
> |
b = torsion->getAtomB()->getGlobalIndex(); |
605 |
> |
c = torsion->getAtomC()->getGlobalIndex(); |
606 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
607 |
> |
|
608 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
609 |
> |
oneTwoInteractions_.removePair(a, b); |
610 |
> |
oneTwoInteractions_.removePair(b, c); |
611 |
> |
oneTwoInteractions_.removePair(c, d); |
612 |
> |
} else { |
613 |
> |
excludedInteractions_.removePair(a, b); |
614 |
> |
excludedInteractions_.removePair(b, c); |
615 |
> |
excludedInteractions_.removePair(c, d); |
616 |
> |
} |
617 |
> |
|
618 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
619 |
> |
oneThreeInteractions_.removePair(a, c); |
620 |
> |
oneThreeInteractions_.removePair(b, d); |
621 |
> |
} else { |
622 |
> |
excludedInteractions_.removePair(a, c); |
623 |
> |
excludedInteractions_.removePair(b, d); |
624 |
> |
} |
625 |
> |
|
626 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
627 |
> |
oneFourInteractions_.removePair(a, d); |
628 |
> |
} else { |
629 |
> |
excludedInteractions_.removePair(a, d); |
630 |
> |
} |
631 |
|
} |
632 |
|
|
633 |
< |
} |
633 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
634 |
> |
inversion = mol->nextInversion(inversionIter)) { |
635 |
|
|
636 |
+ |
a = inversion->getAtomA()->getGlobalIndex(); |
637 |
+ |
b = inversion->getAtomB()->getGlobalIndex(); |
638 |
+ |
c = inversion->getAtomC()->getGlobalIndex(); |
639 |
+ |
d = inversion->getAtomD()->getGlobalIndex(); |
640 |
|
|
641 |
< |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
642 |
< |
int curStampId; |
641 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
642 |
> |
oneTwoInteractions_.removePair(a, b); |
643 |
> |
oneTwoInteractions_.removePair(a, c); |
644 |
> |
oneTwoInteractions_.removePair(a, d); |
645 |
> |
} else { |
646 |
> |
excludedInteractions_.removePair(a, b); |
647 |
> |
excludedInteractions_.removePair(a, c); |
648 |
> |
excludedInteractions_.removePair(a, d); |
649 |
> |
} |
650 |
|
|
651 |
+ |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
652 |
+ |
oneThreeInteractions_.removePair(b, c); |
653 |
+ |
oneThreeInteractions_.removePair(b, d); |
654 |
+ |
oneThreeInteractions_.removePair(c, d); |
655 |
+ |
} else { |
656 |
+ |
excludedInteractions_.removePair(b, c); |
657 |
+ |
excludedInteractions_.removePair(b, d); |
658 |
+ |
excludedInteractions_.removePair(c, d); |
659 |
+ |
} |
660 |
+ |
} |
661 |
+ |
|
662 |
+ |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
663 |
+ |
rb = mol->nextRigidBody(rbIter)) { |
664 |
+ |
vector<Atom*> atoms = rb->getAtoms(); |
665 |
+ |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
666 |
+ |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
667 |
+ |
a = atoms[i]->getGlobalIndex(); |
668 |
+ |
b = atoms[j]->getGlobalIndex(); |
669 |
+ |
excludedInteractions_.removePair(a, b); |
670 |
+ |
} |
671 |
+ |
} |
672 |
+ |
} |
673 |
+ |
|
674 |
+ |
} |
675 |
+ |
|
676 |
+ |
|
677 |
+ |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
678 |
+ |
int curStampId; |
679 |
+ |
|
680 |
|
//index from 0 |
681 |
|
curStampId = moleculeStamps_.size(); |
682 |
|
|
683 |
|
moleculeStamps_.push_back(molStamp); |
684 |
|
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
685 |
< |
} |
685 |
> |
} |
686 |
|
|
428 |
– |
void SimInfo::update() { |
687 |
|
|
688 |
< |
setupSimType(); |
689 |
< |
|
690 |
< |
#ifdef IS_MPI |
691 |
< |
setupFortranParallel(); |
692 |
< |
#endif |
693 |
< |
|
694 |
< |
setupFortranSim(); |
695 |
< |
|
696 |
< |
//setup fortran force field |
439 |
< |
/** @deprecate */ |
440 |
< |
int isError = 0; |
441 |
< |
initFortranFF( &fInfo_.SIM_uses_RF , &isError ); |
442 |
< |
if(isError){ |
443 |
< |
sprintf( painCave.errMsg, |
444 |
< |
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
445 |
< |
painCave.isFatal = 1; |
446 |
< |
simError(); |
447 |
< |
} |
448 |
< |
|
449 |
< |
|
450 |
< |
setupCutoff(); |
451 |
< |
|
688 |
> |
/** |
689 |
> |
* update |
690 |
> |
* |
691 |
> |
* Performs the global checks and variable settings after the |
692 |
> |
* objects have been created. |
693 |
> |
* |
694 |
> |
*/ |
695 |
> |
void SimInfo::update() { |
696 |
> |
setupSimVariables(); |
697 |
|
calcNdf(); |
698 |
|
calcNdfRaw(); |
699 |
|
calcNdfTrans(); |
700 |
< |
|
701 |
< |
fortranInitialized_ = true; |
702 |
< |
} |
703 |
< |
|
704 |
< |
std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
700 |
> |
} |
701 |
> |
|
702 |
> |
/** |
703 |
> |
* getSimulatedAtomTypes |
704 |
> |
* |
705 |
> |
* Returns an STL set of AtomType* that are actually present in this |
706 |
> |
* simulation. Must query all processors to assemble this information. |
707 |
> |
* |
708 |
> |
*/ |
709 |
> |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
710 |
|
SimInfo::MoleculeIterator mi; |
711 |
|
Molecule* mol; |
712 |
|
Molecule::AtomIterator ai; |
713 |
|
Atom* atom; |
714 |
< |
std::set<AtomType*> atomTypes; |
715 |
< |
|
714 |
> |
set<AtomType*> atomTypes; |
715 |
> |
|
716 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
717 |
+ |
for(atom = mol->beginAtom(ai); atom != NULL; |
718 |
+ |
atom = mol->nextAtom(ai)) { |
719 |
+ |
atomTypes.insert(atom->getAtomType()); |
720 |
+ |
} |
721 |
+ |
} |
722 |
+ |
|
723 |
+ |
#ifdef IS_MPI |
724 |
|
|
725 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
726 |
< |
atomTypes.insert(atom->getAtomType()); |
727 |
< |
} |
728 |
< |
|
729 |
< |
} |
725 |
> |
// loop over the found atom types on this processor, and add their |
726 |
> |
// numerical idents to a vector: |
727 |
> |
|
728 |
> |
vector<int> foundTypes; |
729 |
> |
set<AtomType*>::iterator i; |
730 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
731 |
> |
foundTypes.push_back( (*i)->getIdent() ); |
732 |
|
|
733 |
< |
return atomTypes; |
734 |
< |
} |
733 |
> |
// count_local holds the number of found types on this processor |
734 |
> |
int count_local = foundTypes.size(); |
735 |
|
|
736 |
< |
void SimInfo::setupSimType() { |
478 |
< |
std::set<AtomType*>::iterator i; |
479 |
< |
std::set<AtomType*> atomTypes; |
480 |
< |
atomTypes = getUniqueAtomTypes(); |
481 |
< |
|
482 |
< |
int useLennardJones = 0; |
483 |
< |
int useElectrostatic = 0; |
484 |
< |
int useEAM = 0; |
485 |
< |
int useCharge = 0; |
486 |
< |
int useDirectional = 0; |
487 |
< |
int useDipole = 0; |
488 |
< |
int useGayBerne = 0; |
489 |
< |
int useSticky = 0; |
490 |
< |
int useShape = 0; |
491 |
< |
int useFLARB = 0; //it is not in AtomType yet |
492 |
< |
int useDirectionalAtom = 0; |
493 |
< |
int useElectrostatics = 0; |
494 |
< |
//usePBC and useRF are from simParams |
495 |
< |
int usePBC = simParams_->getPBC(); |
496 |
< |
int useRF = simParams_->getUseRF(); |
736 |
> |
int nproc = MPI::COMM_WORLD.Get_size(); |
737 |
|
|
738 |
< |
//loop over all of the atom types |
739 |
< |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
740 |
< |
useLennardJones |= (*i)->isLennardJones(); |
741 |
< |
useElectrostatic |= (*i)->isElectrostatic(); |
502 |
< |
useEAM |= (*i)->isEAM(); |
503 |
< |
useCharge |= (*i)->isCharge(); |
504 |
< |
useDirectional |= (*i)->isDirectional(); |
505 |
< |
useDipole |= (*i)->isDipole(); |
506 |
< |
useGayBerne |= (*i)->isGayBerne(); |
507 |
< |
useSticky |= (*i)->isSticky(); |
508 |
< |
useShape |= (*i)->isShape(); |
509 |
< |
} |
738 |
> |
// we need arrays to hold the counts and displacement vectors for |
739 |
> |
// all processors |
740 |
> |
vector<int> counts(nproc, 0); |
741 |
> |
vector<int> disps(nproc, 0); |
742 |
|
|
743 |
< |
if (useSticky || useDipole || useGayBerne || useShape) { |
744 |
< |
useDirectionalAtom = 1; |
743 |
> |
// fill the counts array |
744 |
> |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
745 |
> |
1, MPI::INT); |
746 |
> |
|
747 |
> |
// use the processor counts to compute the displacement array |
748 |
> |
disps[0] = 0; |
749 |
> |
int totalCount = counts[0]; |
750 |
> |
for (int iproc = 1; iproc < nproc; iproc++) { |
751 |
> |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
752 |
> |
totalCount += counts[iproc]; |
753 |
|
} |
754 |
|
|
755 |
< |
if (useCharge || useDipole) { |
756 |
< |
useElectrostatics = 1; |
757 |
< |
} |
755 |
> |
// we need a (possibly redundant) set of all found types: |
756 |
> |
vector<int> ftGlobal(totalCount); |
757 |
> |
|
758 |
> |
// now spray out the foundTypes to all the other processors: |
759 |
> |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
760 |
> |
&ftGlobal[0], &counts[0], &disps[0], |
761 |
> |
MPI::INT); |
762 |
|
|
763 |
< |
#ifdef IS_MPI |
520 |
< |
int temp; |
763 |
> |
vector<int>::iterator j; |
764 |
|
|
765 |
< |
temp = usePBC; |
766 |
< |
MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
765 |
> |
// foundIdents is a stl set, so inserting an already found ident |
766 |
> |
// will have no effect. |
767 |
> |
set<int> foundIdents; |
768 |
|
|
769 |
< |
temp = useDirectionalAtom; |
770 |
< |
MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
769 |
> |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
770 |
> |
foundIdents.insert((*j)); |
771 |
> |
|
772 |
> |
// now iterate over the foundIdents and get the actual atom types |
773 |
> |
// that correspond to these: |
774 |
> |
set<int>::iterator it; |
775 |
> |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
776 |
> |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
777 |
> |
|
778 |
> |
#endif |
779 |
|
|
780 |
< |
temp = useLennardJones; |
781 |
< |
MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
780 |
> |
return atomTypes; |
781 |
> |
} |
782 |
|
|
783 |
< |
temp = useElectrostatics; |
784 |
< |
MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
783 |
> |
void SimInfo::setupSimVariables() { |
784 |
> |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
785 |
> |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole |
786 |
> |
// parameter is true |
787 |
> |
calcBoxDipole_ = false; |
788 |
> |
if ( simParams_->haveAccumulateBoxDipole() ) |
789 |
> |
if ( simParams_->getAccumulateBoxDipole() ) { |
790 |
> |
calcBoxDipole_ = true; |
791 |
> |
} |
792 |
> |
|
793 |
> |
set<AtomType*>::iterator i; |
794 |
> |
set<AtomType*> atomTypes; |
795 |
> |
atomTypes = getSimulatedAtomTypes(); |
796 |
> |
bool usesElectrostatic = false; |
797 |
> |
bool usesMetallic = false; |
798 |
> |
bool usesDirectional = false; |
799 |
> |
bool usesFluctuatingCharges = false; |
800 |
> |
//loop over all of the atom types |
801 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
802 |
> |
usesElectrostatic |= (*i)->isElectrostatic(); |
803 |
> |
usesMetallic |= (*i)->isMetal(); |
804 |
> |
usesDirectional |= (*i)->isDirectional(); |
805 |
> |
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
806 |
> |
} |
807 |
|
|
808 |
< |
temp = useCharge; |
809 |
< |
MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
808 |
> |
#ifdef IS_MPI |
809 |
> |
bool temp; |
810 |
> |
temp = usesDirectional; |
811 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, |
812 |
> |
MPI::LOR); |
813 |
> |
|
814 |
> |
temp = usesMetallic; |
815 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, |
816 |
> |
MPI::LOR); |
817 |
> |
|
818 |
> |
temp = usesElectrostatic; |
819 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, |
820 |
> |
MPI::LOR); |
821 |
|
|
822 |
< |
temp = useDipole; |
823 |
< |
MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
822 |
> |
temp = usesFluctuatingCharges; |
823 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, |
824 |
> |
MPI::LOR); |
825 |
> |
#else |
826 |
|
|
827 |
< |
temp = useSticky; |
828 |
< |
MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
827 |
> |
usesDirectionalAtoms_ = usesDirectional; |
828 |
> |
usesMetallicAtoms_ = usesMetallic; |
829 |
> |
usesElectrostaticAtoms_ = usesElectrostatic; |
830 |
> |
usesFluctuatingCharges_ = usesFluctuatingCharges; |
831 |
|
|
832 |
< |
temp = useGayBerne; |
833 |
< |
MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
832 |
> |
#endif |
833 |
> |
|
834 |
> |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
835 |
> |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
836 |
> |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
837 |
> |
} |
838 |
|
|
546 |
– |
temp = useEAM; |
547 |
– |
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
839 |
|
|
840 |
< |
temp = useShape; |
841 |
< |
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
840 |
> |
vector<int> SimInfo::getGlobalAtomIndices() { |
841 |
> |
SimInfo::MoleculeIterator mi; |
842 |
> |
Molecule* mol; |
843 |
> |
Molecule::AtomIterator ai; |
844 |
> |
Atom* atom; |
845 |
|
|
846 |
< |
temp = useFLARB; |
553 |
< |
MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
554 |
< |
|
555 |
< |
temp = useRF; |
556 |
< |
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
846 |
> |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
847 |
|
|
848 |
< |
#endif |
848 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
849 |
> |
|
850 |
> |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
851 |
> |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
852 |
> |
} |
853 |
> |
} |
854 |
> |
return GlobalAtomIndices; |
855 |
> |
} |
856 |
|
|
560 |
– |
fInfo_.SIM_uses_PBC = usePBC; |
561 |
– |
fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
562 |
– |
fInfo_.SIM_uses_LennardJones = useLennardJones; |
563 |
– |
fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
564 |
– |
fInfo_.SIM_uses_Charges = useCharge; |
565 |
– |
fInfo_.SIM_uses_Dipoles = useDipole; |
566 |
– |
fInfo_.SIM_uses_Sticky = useSticky; |
567 |
– |
fInfo_.SIM_uses_GayBerne = useGayBerne; |
568 |
– |
fInfo_.SIM_uses_EAM = useEAM; |
569 |
– |
fInfo_.SIM_uses_Shapes = useShape; |
570 |
– |
fInfo_.SIM_uses_FLARB = useFLARB; |
571 |
– |
fInfo_.SIM_uses_RF = useRF; |
857 |
|
|
858 |
< |
if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) { |
858 |
> |
vector<int> SimInfo::getGlobalGroupIndices() { |
859 |
> |
SimInfo::MoleculeIterator mi; |
860 |
> |
Molecule* mol; |
861 |
> |
Molecule::CutoffGroupIterator ci; |
862 |
> |
CutoffGroup* cg; |
863 |
|
|
864 |
< |
if (simParams_->haveDielectric()) { |
865 |
< |
fInfo_.dielect = simParams_->getDielectric(); |
866 |
< |
} else { |
867 |
< |
sprintf(painCave.errMsg, |
868 |
< |
"SimSetup Error: No Dielectric constant was set.\n" |
869 |
< |
"\tYou are trying to use Reaction Field without" |
870 |
< |
"\tsetting a dielectric constant!\n"); |
871 |
< |
painCave.isFatal = 1; |
872 |
< |
simError(); |
873 |
< |
} |
585 |
< |
|
586 |
< |
} else { |
587 |
< |
fInfo_.dielect = 0.0; |
864 |
> |
vector<int> GlobalGroupIndices; |
865 |
> |
|
866 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
867 |
> |
|
868 |
> |
//local index of cutoff group is trivial, it only depends on the |
869 |
> |
//order of travesing |
870 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
871 |
> |
cg = mol->nextCutoffGroup(ci)) { |
872 |
> |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
873 |
> |
} |
874 |
|
} |
875 |
+ |
return GlobalGroupIndices; |
876 |
+ |
} |
877 |
|
|
590 |
– |
} |
878 |
|
|
879 |
< |
void SimInfo::setupFortranSim() { |
880 |
< |
int isError; |
594 |
< |
int nExclude; |
595 |
< |
std::vector<int> fortranGlobalGroupMembership; |
596 |
< |
|
597 |
< |
nExclude = exclude_.getSize(); |
598 |
< |
isError = 0; |
879 |
> |
void SimInfo::prepareTopology() { |
880 |
> |
int nExclude, nOneTwo, nOneThree, nOneFour; |
881 |
|
|
600 |
– |
//globalGroupMembership_ is filled by SimCreator |
601 |
– |
for (int i = 0; i < nGlobalAtoms_; i++) { |
602 |
– |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
603 |
– |
} |
604 |
– |
|
882 |
|
//calculate mass ratio of cutoff group |
606 |
– |
std::vector<double> mfact; |
883 |
|
SimInfo::MoleculeIterator mi; |
884 |
|
Molecule* mol; |
885 |
|
Molecule::CutoffGroupIterator ci; |
886 |
|
CutoffGroup* cg; |
887 |
|
Molecule::AtomIterator ai; |
888 |
|
Atom* atom; |
889 |
< |
double totalMass; |
889 |
> |
RealType totalMass; |
890 |
|
|
891 |
< |
//to avoid memory reallocation, reserve enough space for mfact |
892 |
< |
mfact.reserve(getNCutoffGroups()); |
891 |
> |
/** |
892 |
> |
* The mass factor is the relative mass of an atom to the total |
893 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
894 |
> |
* are their own cutoff groups, and therefore have mass factors of |
895 |
> |
* 1. We need some special handling for massless atoms, which |
896 |
> |
* will be treated as carrying the entire mass of the cutoff |
897 |
> |
* group. |
898 |
> |
*/ |
899 |
> |
massFactors_.clear(); |
900 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
901 |
|
|
902 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
903 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
903 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
904 |
> |
cg = mol->nextCutoffGroup(ci)) { |
905 |
|
|
906 |
< |
totalMass = cg->getMass(); |
907 |
< |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
908 |
< |
mfact.push_back(atom->getMass()/totalMass); |
909 |
< |
} |
910 |
< |
|
911 |
< |
} |
906 |
> |
totalMass = cg->getMass(); |
907 |
> |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
908 |
> |
// Check for massless groups - set mfact to 1 if true |
909 |
> |
if (totalMass != 0) |
910 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
911 |
> |
else |
912 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
913 |
> |
} |
914 |
> |
} |
915 |
|
} |
916 |
|
|
917 |
< |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
630 |
< |
std::vector<int> identArray; |
917 |
> |
// Build the identArray_ |
918 |
|
|
919 |
< |
//to avoid memory reallocation, reserve enough space identArray |
920 |
< |
identArray.reserve(getNAtoms()); |
634 |
< |
|
919 |
> |
identArray_.clear(); |
920 |
> |
identArray_.reserve(getNAtoms()); |
921 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
922 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
923 |
< |
identArray.push_back(atom->getIdent()); |
924 |
< |
} |
922 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
923 |
> |
identArray_.push_back(atom->getIdent()); |
924 |
> |
} |
925 |
|
} |
640 |
– |
|
641 |
– |
//fill molMembershipArray |
642 |
– |
//molMembershipArray is filled by SimCreator |
643 |
– |
std::vector<int> molMembershipArray(nGlobalAtoms_); |
644 |
– |
for (int i = 0; i < nGlobalAtoms_; i++) { |
645 |
– |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
646 |
– |
} |
926 |
|
|
927 |
< |
//setup fortran simulation |
649 |
< |
//gloalExcludes and molMembershipArray should go away (They are never used) |
650 |
< |
//why the hell fortran need to know molecule? |
651 |
< |
//OOPSE = Object-Obfuscated Parallel Simulation Engine |
652 |
< |
int nGlobalExcludes = 0; |
653 |
< |
int* globalExcludes = NULL; |
654 |
< |
int* excludeList = exclude_.getExcludeList(); |
655 |
< |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , |
656 |
< |
&nGlobalExcludes, globalExcludes, &molMembershipArray[0], |
657 |
< |
&mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); |
927 |
> |
//scan topology |
928 |
|
|
929 |
< |
if( isError ){ |
929 |
> |
nExclude = excludedInteractions_.getSize(); |
930 |
> |
nOneTwo = oneTwoInteractions_.getSize(); |
931 |
> |
nOneThree = oneThreeInteractions_.getSize(); |
932 |
> |
nOneFour = oneFourInteractions_.getSize(); |
933 |
|
|
934 |
< |
sprintf( painCave.errMsg, |
935 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
936 |
< |
painCave.isFatal = 1; |
937 |
< |
painCave.severity = OOPSE_ERROR; |
665 |
< |
simError(); |
666 |
< |
} |
934 |
> |
int* excludeList = excludedInteractions_.getPairList(); |
935 |
> |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
936 |
> |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
937 |
> |
int* oneFourList = oneFourInteractions_.getPairList(); |
938 |
|
|
939 |
< |
#ifdef IS_MPI |
940 |
< |
sprintf( checkPointMsg, |
670 |
< |
"succesfully sent the simulation information to fortran.\n"); |
671 |
< |
MPIcheckPoint(); |
672 |
< |
#endif // is_mpi |
673 |
< |
} |
939 |
> |
topologyDone_ = true; |
940 |
> |
} |
941 |
|
|
942 |
< |
|
676 |
< |
#ifdef IS_MPI |
677 |
< |
void SimInfo::setupFortranParallel() { |
678 |
< |
|
679 |
< |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
680 |
< |
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
681 |
< |
std::vector<int> localToGlobalCutoffGroupIndex; |
682 |
< |
SimInfo::MoleculeIterator mi; |
683 |
< |
Molecule::AtomIterator ai; |
684 |
< |
Molecule::CutoffGroupIterator ci; |
685 |
< |
Molecule* mol; |
686 |
< |
Atom* atom; |
687 |
< |
CutoffGroup* cg; |
688 |
< |
mpiSimData parallelData; |
689 |
< |
int isError; |
690 |
< |
|
691 |
< |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
692 |
< |
|
693 |
< |
//local index(index in DataStorge) of atom is important |
694 |
< |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
695 |
< |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
696 |
< |
} |
697 |
< |
|
698 |
< |
//local index of cutoff group is trivial, it only depends on the order of travesing |
699 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
700 |
< |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
701 |
< |
} |
702 |
< |
|
703 |
< |
} |
704 |
< |
|
705 |
< |
//fill up mpiSimData struct |
706 |
< |
parallelData.nMolGlobal = getNGlobalMolecules(); |
707 |
< |
parallelData.nMolLocal = getNMolecules(); |
708 |
< |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
709 |
< |
parallelData.nAtomsLocal = getNAtoms(); |
710 |
< |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
711 |
< |
parallelData.nGroupsLocal = getNCutoffGroups(); |
712 |
< |
parallelData.myNode = worldRank; |
713 |
< |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
714 |
< |
|
715 |
< |
//pass mpiSimData struct and index arrays to fortran |
716 |
< |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
717 |
< |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
718 |
< |
&localToGlobalCutoffGroupIndex[0], &isError); |
719 |
< |
|
720 |
< |
if (isError) { |
721 |
< |
sprintf(painCave.errMsg, |
722 |
< |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
723 |
< |
painCave.isFatal = 1; |
724 |
< |
simError(); |
725 |
< |
} |
726 |
< |
|
727 |
< |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
728 |
< |
MPIcheckPoint(); |
729 |
< |
|
730 |
< |
|
731 |
< |
} |
732 |
< |
|
733 |
< |
#endif |
734 |
< |
|
735 |
< |
double SimInfo::calcMaxCutoffRadius() { |
736 |
< |
|
737 |
< |
|
738 |
< |
std::set<AtomType*> atomTypes; |
739 |
< |
std::set<AtomType*>::iterator i; |
740 |
< |
std::vector<double> cutoffRadius; |
741 |
< |
|
742 |
< |
//get the unique atom types |
743 |
< |
atomTypes = getUniqueAtomTypes(); |
744 |
< |
|
745 |
< |
//query the max cutoff radius among these atom types |
746 |
< |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
747 |
< |
cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i)); |
748 |
< |
} |
749 |
< |
|
750 |
< |
double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end())); |
751 |
< |
#ifdef IS_MPI |
752 |
< |
//pick the max cutoff radius among the processors |
753 |
< |
#endif |
754 |
< |
|
755 |
< |
return maxCutoffRadius; |
756 |
< |
} |
757 |
< |
|
758 |
< |
void SimInfo::getCutoff(double& rcut, double& rsw) { |
759 |
< |
|
760 |
< |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
761 |
< |
|
762 |
< |
if (!simParams_->haveRcut()){ |
763 |
< |
sprintf(painCave.errMsg, |
764 |
< |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
765 |
< |
"\tOOPSE will use a default value of 15.0 angstroms" |
766 |
< |
"\tfor the cutoffRadius.\n"); |
767 |
< |
painCave.isFatal = 0; |
768 |
< |
simError(); |
769 |
< |
rcut = 15.0; |
770 |
< |
} else{ |
771 |
< |
rcut = simParams_->getRcut(); |
772 |
< |
} |
773 |
< |
|
774 |
< |
if (!simParams_->haveRsw()){ |
775 |
< |
sprintf(painCave.errMsg, |
776 |
< |
"SimCreator Warning: No value was set for switchingRadius.\n" |
777 |
< |
"\tOOPSE will use a default value of\n" |
778 |
< |
"\t0.95 * cutoffRadius for the switchingRadius\n"); |
779 |
< |
painCave.isFatal = 0; |
780 |
< |
simError(); |
781 |
< |
rsw = 0.95 * rcut; |
782 |
< |
} else{ |
783 |
< |
rsw = simParams_->getRsw(); |
784 |
< |
} |
785 |
< |
|
786 |
< |
} else { |
787 |
< |
// if charge, dipole or reaction field is not used and the cutofff radius is not specified in |
788 |
< |
//meta-data file, the maximum cutoff radius calculated from forcefiled will be used |
789 |
< |
|
790 |
< |
if (simParams_->haveRcut()) { |
791 |
< |
rcut = simParams_->getRcut(); |
792 |
< |
} else { |
793 |
< |
//set cutoff radius to the maximum cutoff radius based on atom types in the whole system |
794 |
< |
rcut = calcMaxCutoffRadius(); |
795 |
< |
} |
796 |
< |
|
797 |
< |
if (simParams_->haveRsw()) { |
798 |
< |
rsw = simParams_->getRsw(); |
799 |
< |
} else { |
800 |
< |
rsw = rcut; |
801 |
< |
} |
802 |
< |
|
803 |
< |
} |
804 |
< |
} |
805 |
< |
|
806 |
< |
void SimInfo::setupCutoff() { |
807 |
< |
getCutoff(rcut_, rsw_); |
808 |
< |
double rnblist = rcut_ + 1; // skin of neighbor list |
809 |
< |
|
810 |
< |
//Pass these cutoff radius etc. to fortran. This function should be called once and only once |
811 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &rnblist); |
812 |
< |
} |
813 |
< |
|
814 |
< |
void SimInfo::addProperty(GenericData* genData) { |
942 |
> |
void SimInfo::addProperty(GenericData* genData) { |
943 |
|
properties_.addProperty(genData); |
944 |
< |
} |
944 |
> |
} |
945 |
|
|
946 |
< |
void SimInfo::removeProperty(const std::string& propName) { |
946 |
> |
void SimInfo::removeProperty(const string& propName) { |
947 |
|
properties_.removeProperty(propName); |
948 |
< |
} |
948 |
> |
} |
949 |
|
|
950 |
< |
void SimInfo::clearProperties() { |
950 |
> |
void SimInfo::clearProperties() { |
951 |
|
properties_.clearProperties(); |
952 |
< |
} |
952 |
> |
} |
953 |
|
|
954 |
< |
std::vector<std::string> SimInfo::getPropertyNames() { |
954 |
> |
vector<string> SimInfo::getPropertyNames() { |
955 |
|
return properties_.getPropertyNames(); |
956 |
< |
} |
956 |
> |
} |
957 |
|
|
958 |
< |
std::vector<GenericData*> SimInfo::getProperties() { |
958 |
> |
vector<GenericData*> SimInfo::getProperties() { |
959 |
|
return properties_.getProperties(); |
960 |
< |
} |
960 |
> |
} |
961 |
|
|
962 |
< |
GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
962 |
> |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
963 |
|
return properties_.getPropertyByName(propName); |
964 |
< |
} |
964 |
> |
} |
965 |
|
|
966 |
< |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
967 |
< |
//if (sman_ == sman_) { |
968 |
< |
// return; |
969 |
< |
//} |
970 |
< |
|
843 |
< |
//delete sman_; |
966 |
> |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
967 |
> |
if (sman_ == sman) { |
968 |
> |
return; |
969 |
> |
} |
970 |
> |
delete sman_; |
971 |
|
sman_ = sman; |
972 |
|
|
973 |
|
Molecule* mol; |
974 |
|
RigidBody* rb; |
975 |
|
Atom* atom; |
976 |
+ |
CutoffGroup* cg; |
977 |
|
SimInfo::MoleculeIterator mi; |
978 |
|
Molecule::RigidBodyIterator rbIter; |
979 |
< |
Molecule::AtomIterator atomIter;; |
979 |
> |
Molecule::AtomIterator atomIter; |
980 |
> |
Molecule::CutoffGroupIterator cgIter; |
981 |
|
|
982 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
983 |
|
|
984 |
< |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
985 |
< |
atom->setSnapshotManager(sman_); |
986 |
< |
} |
984 |
> |
for (atom = mol->beginAtom(atomIter); atom != NULL; |
985 |
> |
atom = mol->nextAtom(atomIter)) { |
986 |
> |
atom->setSnapshotManager(sman_); |
987 |
> |
} |
988 |
|
|
989 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
990 |
< |
rb->setSnapshotManager(sman_); |
991 |
< |
} |
989 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
990 |
> |
rb = mol->nextRigidBody(rbIter)) { |
991 |
> |
rb->setSnapshotManager(sman_); |
992 |
> |
} |
993 |
> |
|
994 |
> |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; |
995 |
> |
cg = mol->nextCutoffGroup(cgIter)) { |
996 |
> |
cg->setSnapshotManager(sman_); |
997 |
> |
} |
998 |
|
} |
999 |
|
|
1000 |
< |
} |
1000 |
> |
} |
1001 |
|
|
866 |
– |
Vector3d SimInfo::getComVel(){ |
867 |
– |
SimInfo::MoleculeIterator i; |
868 |
– |
Molecule* mol; |
1002 |
|
|
1003 |
< |
Vector3d comVel(0.0); |
871 |
< |
double totalMass = 0.0; |
872 |
< |
|
873 |
< |
|
874 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
875 |
< |
double mass = mol->getMass(); |
876 |
< |
totalMass += mass; |
877 |
< |
comVel += mass * mol->getComVel(); |
878 |
< |
} |
1003 |
> |
ostream& operator <<(ostream& o, SimInfo& info) { |
1004 |
|
|
1005 |
< |
#ifdef IS_MPI |
1006 |
< |
double tmpMass = totalMass; |
1007 |
< |
Vector3d tmpComVel(comVel); |
1008 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1009 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1010 |
< |
#endif |
1005 |
> |
return o; |
1006 |
> |
} |
1007 |
> |
|
1008 |
> |
|
1009 |
> |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1010 |
> |
if (index >= IOIndexToIntegrableObject.size()) { |
1011 |
> |
sprintf(painCave.errMsg, |
1012 |
> |
"SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n" |
1013 |
> |
"\tindex exceeds number of known objects!\n"); |
1014 |
> |
painCave.isFatal = 1; |
1015 |
> |
simError(); |
1016 |
> |
return NULL; |
1017 |
> |
} else |
1018 |
> |
return IOIndexToIntegrableObject.at(index); |
1019 |
> |
} |
1020 |
> |
|
1021 |
> |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1022 |
> |
IOIndexToIntegrableObject= v; |
1023 |
> |
} |
1024 |
|
|
1025 |
< |
comVel /= totalMass; |
1026 |
< |
|
889 |
< |
return comVel; |
890 |
< |
} |
891 |
< |
|
892 |
< |
Vector3d SimInfo::getCom(){ |
893 |
< |
SimInfo::MoleculeIterator i; |
894 |
< |
Molecule* mol; |
895 |
< |
|
896 |
< |
Vector3d com(0.0); |
897 |
< |
double totalMass = 0.0; |
898 |
< |
|
899 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
900 |
< |
double mass = mol->getMass(); |
901 |
< |
totalMass += mass; |
902 |
< |
com += mass * mol->getCom(); |
903 |
< |
} |
904 |
< |
|
1025 |
> |
int SimInfo::getNGlobalConstraints() { |
1026 |
> |
int nGlobalConstraints; |
1027 |
|
#ifdef IS_MPI |
1028 |
< |
double tmpMass = totalMass; |
1029 |
< |
Vector3d tmpCom(com); |
1030 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1031 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1028 |
> |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1029 |
> |
MPI_COMM_WORLD); |
1030 |
> |
#else |
1031 |
> |
nGlobalConstraints = nConstraints_; |
1032 |
|
#endif |
1033 |
+ |
return nGlobalConstraints; |
1034 |
+ |
} |
1035 |
|
|
1036 |
< |
com /= totalMass; |
1036 |
> |
}//end namespace OpenMD |
1037 |
|
|
914 |
– |
return com; |
915 |
– |
|
916 |
– |
} |
917 |
– |
|
918 |
– |
std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
919 |
– |
|
920 |
– |
return o; |
921 |
– |
} |
922 |
– |
|
923 |
– |
}//end namespace oopse |
924 |
– |
|