ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1549 by gezelter, Wed Apr 27 18:38:15 2011 UTC vs.
Revision 1779 by gezelter, Mon Aug 20 17:51:39 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/DarkSide/neighborLists_interface.h"
58 #include "UseTheForce/doForces_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
62 > #include "brains/ForceField.hpp"
63   #include "nonbonded/SwitchingFunction.hpp"
65
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
69 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68   using namespace std;
69   namespace OpenMD {
# Line 75 | Line 72 | namespace OpenMD {
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79      calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81      MoleculeStamp* molStamp;
# Line 91 | Line 88 | namespace OpenMD {
88      
89      vector<Component*> components = simParams->getComponents();
90      
91 <    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93        molStamp = (*i)->getMoleculeStamp();
94        nMolWithSameStamp = (*i)->getNMol();
95        
# Line 132 | Line 130 | namespace OpenMD {
130      //equal to the total number of atoms minus number of atoms belong to
131      //cutoff group defined in meta-data file plus the number of cutoff
132      //groups defined in meta-data file
135    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
136    std::cerr << "nCA = " << nCutoffAtoms << "\n";
137    std::cerr << "nG = " << nGroups << "\n";
133  
134      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140
141    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
135      
136      //every free atom (atom does not belong to rigid bodies) is an
137      //integrable object therefore the total number of integrable objects
# Line 233 | Line 226 | namespace OpenMD {
226  
227  
228    void SimInfo::calcNdf() {
229 <    int ndf_local;
229 >    int ndf_local, nfq_local;
230      MoleculeIterator i;
231      vector<StuntDouble*>::iterator j;
232 +    vector<Atom*>::iterator k;
233 +
234      Molecule* mol;
235 <    StuntDouble* integrableObject;
235 >    StuntDouble* sd;
236 >    Atom* atom;
237  
238      ndf_local = 0;
239 +    nfq_local = 0;
240      
241      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
245      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246           integrableObject = mol->nextIntegrableObject(j)) {
242  
243 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
244 +           sd = mol->nextIntegrableObject(j)) {
245 +
246          ndf_local += 3;
247  
248 <        if (integrableObject->isDirectional()) {
249 <          if (integrableObject->isLinear()) {
248 >        if (sd->isDirectional()) {
249 >          if (sd->isLinear()) {
250              ndf_local += 2;
251            } else {
252              ndf_local += 3;
253            }
254          }
257            
255        }
256 +
257 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
258 +           atom = mol->nextFluctuatingCharge(k)) {
259 +        if (atom->isFluctuatingCharge()) {
260 +          nfq_local++;
261 +        }
262 +      }
263      }
264      
265 +    ndfLocal_ = ndf_local;
266 +
267      // n_constraints is local, so subtract them on each processor
268      ndf_local -= nConstraints_;
269  
270   #ifdef IS_MPI
271      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
272 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
273   #else
274      ndf_ = ndf_local;
275 +    nGlobalFluctuatingCharges_ = nfq_local;
276   #endif
277  
278      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 281 | Line 289 | namespace OpenMD {
289   #endif
290      return fdf_;
291    }
292 +  
293 +  unsigned int SimInfo::getNLocalCutoffGroups(){
294 +    int nLocalCutoffAtoms = 0;
295 +    Molecule* mol;
296 +    MoleculeIterator mi;
297 +    CutoffGroup* cg;
298 +    Molecule::CutoffGroupIterator ci;
299      
300 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
301 +      
302 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
303 +           cg = mol->nextCutoffGroup(ci)) {
304 +        nLocalCutoffAtoms += cg->getNumAtom();
305 +        
306 +      }        
307 +    }
308 +    
309 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
310 +  }
311 +    
312    void SimInfo::calcNdfRaw() {
313      int ndfRaw_local;
314  
315      MoleculeIterator i;
316      vector<StuntDouble*>::iterator j;
317      Molecule* mol;
318 <    StuntDouble* integrableObject;
318 >    StuntDouble* sd;
319  
320      // Raw degrees of freedom that we have to set
321      ndfRaw_local = 0;
322      
323      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
297      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
298           integrableObject = mol->nextIntegrableObject(j)) {
324  
325 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
326 +           sd = mol->nextIntegrableObject(j)) {
327 +
328          ndfRaw_local += 3;
329  
330 <        if (integrableObject->isDirectional()) {
331 <          if (integrableObject->isLinear()) {
330 >        if (sd->isDirectional()) {
331 >          if (sd->isLinear()) {
332              ndfRaw_local += 2;
333            } else {
334              ndfRaw_local += 3;
# Line 360 | Line 388 | namespace OpenMD {
388      Molecule::RigidBodyIterator rbIter;
389      RigidBody* rb;
390      Molecule::IntegrableObjectIterator ii;
391 <    StuntDouble* integrableObject;
391 >    StuntDouble* sd;
392      
393 <    for (integrableObject = mol->beginIntegrableObject(ii);
394 <         integrableObject != NULL;
367 <         integrableObject = mol->nextIntegrableObject(ii)) {
393 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
394 >         sd = mol->nextIntegrableObject(ii)) {
395        
396 <      if (integrableObject->isRigidBody()) {
397 <        rb = static_cast<RigidBody*>(integrableObject);
396 >      if (sd->isRigidBody()) {
397 >        rb = static_cast<RigidBody*>(sd);
398          vector<Atom*> atoms = rb->getAtoms();
399          set<int> rigidAtoms;
400          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 378 | Line 405 | namespace OpenMD {
405          }      
406        } else {
407          set<int> oneAtomSet;
408 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
409 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
408 >        oneAtomSet.insert(sd->getGlobalIndex());
409 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
410        }
411      }  
412            
# Line 513 | Line 540 | namespace OpenMD {
540      Molecule::RigidBodyIterator rbIter;
541      RigidBody* rb;
542      Molecule::IntegrableObjectIterator ii;
543 <    StuntDouble* integrableObject;
543 >    StuntDouble* sd;
544      
545 <    for (integrableObject = mol->beginIntegrableObject(ii);
546 <         integrableObject != NULL;
520 <         integrableObject = mol->nextIntegrableObject(ii)) {
545 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
546 >         sd = mol->nextIntegrableObject(ii)) {
547        
548 <      if (integrableObject->isRigidBody()) {
549 <        rb = static_cast<RigidBody*>(integrableObject);
548 >      if (sd->isRigidBody()) {
549 >        rb = static_cast<RigidBody*>(sd);
550          vector<Atom*> atoms = rb->getAtoms();
551          set<int> rigidAtoms;
552          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 531 | Line 557 | namespace OpenMD {
557          }      
558        } else {
559          set<int> oneAtomSet;
560 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
561 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
560 >        oneAtomSet.insert(sd->getGlobalIndex());
561 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
562        }
563      }  
564  
# Line 687 | Line 713 | namespace OpenMD {
713      Atom* atom;
714      set<AtomType*> atomTypes;
715      
716 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
717 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
716 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
717 >      for(atom = mol->beginAtom(ai); atom != NULL;
718 >          atom = mol->nextAtom(ai)) {
719          atomTypes.insert(atom->getAtomType());
720        }      
721      }    
722 <
722 >    
723   #ifdef IS_MPI
724  
725      // loop over the found atom types on this processor, and add their
726      // numerical idents to a vector:
727 <
727 >    
728      vector<int> foundTypes;
729      set<AtomType*>::iterator i;
730      for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
# Line 706 | Line 733 | namespace OpenMD {
733      // count_local holds the number of found types on this processor
734      int count_local = foundTypes.size();
735  
736 <    // count holds the total number of found types on all processors
710 <    // (some will be redundant with the ones found locally):
711 <    int count;
712 <    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
736 >    int nproc = MPI::COMM_WORLD.Get_size();
737  
738 <    // create a vector to hold the globally found types, and resize it:
739 <    vector<int> ftGlobal;
740 <    ftGlobal.resize(count);
741 <    vector<int> counts;
738 >    // we need arrays to hold the counts and displacement vectors for
739 >    // all processors
740 >    vector<int> counts(nproc, 0);
741 >    vector<int> disps(nproc, 0);
742  
743 <    int nproc = MPI::COMM_WORLD.Get_size();
744 <    counts.resize(nproc);
745 <    vector<int> disps;
746 <    disps.resize(nproc);
743 >    // fill the counts array
744 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
745 >                              1, MPI::INT);
746 >  
747 >    // use the processor counts to compute the displacement array
748 >    disps[0] = 0;    
749 >    int totalCount = counts[0];
750 >    for (int iproc = 1; iproc < nproc; iproc++) {
751 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
752 >      totalCount += counts[iproc];
753 >    }
754  
755 <    // now spray out the foundTypes to all the other processors:
755 >    // we need a (possibly redundant) set of all found types:
756 >    vector<int> ftGlobal(totalCount);
757      
758 +    // now spray out the foundTypes to all the other processors:    
759      MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
760 <                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
760 >                               &ftGlobal[0], &counts[0], &disps[0],
761 >                               MPI::INT);
762  
763 +    vector<int>::iterator j;
764 +
765      // foundIdents is a stl set, so inserting an already found ident
766      // will have no effect.
767      set<int> foundIdents;
768 <    vector<int>::iterator j;
768 >
769      for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
770        foundIdents.insert((*j));
771      
772      // now iterate over the foundIdents and get the actual atom types
773      // that correspond to these:
774      set<int>::iterator it;
775 <    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
775 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
776        atomTypes.insert( forceField_->getAtomType((*it)) );
777  
778   #endif
779 <    
779 >
780      return atomTypes;        
781    }
782  
783    void SimInfo::setupSimVariables() {
784      useAtomicVirial_ = simParams_->getUseAtomicVirial();
785 <    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
785 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
786 >    // parameter is true
787      calcBoxDipole_ = false;
788      if ( simParams_->haveAccumulateBoxDipole() )
789        if ( simParams_->getAccumulateBoxDipole() ) {
790          calcBoxDipole_ = true;      
791        }
792 <
792 >    
793      set<AtomType*>::iterator i;
794      set<AtomType*> atomTypes;
795      atomTypes = getSimulatedAtomTypes();    
796 <    int usesElectrostatic = 0;
797 <    int usesMetallic = 0;
798 <    int usesDirectional = 0;
796 >    bool usesElectrostatic = false;
797 >    bool usesMetallic = false;
798 >    bool usesDirectional = false;
799 >    bool usesFluctuatingCharges =  false;
800      //loop over all of the atom types
801      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
802        usesElectrostatic |= (*i)->isElectrostatic();
803        usesMetallic |= (*i)->isMetal();
804        usesDirectional |= (*i)->isDirectional();
805 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
806      }
807  
808 < #ifdef IS_MPI    
809 <    int temp;
808 > #ifdef IS_MPI
809 >    bool temp;
810      temp = usesDirectional;
811 <    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
812 <
811 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
812 >                              MPI::LOR);
813 >        
814      temp = usesMetallic;
815 <    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816 <
815 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
816 >                              MPI::LOR);
817 >    
818      temp = usesElectrostatic;
819 <    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
819 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
820 >                              MPI::LOR);
821 >
822 >    temp = usesFluctuatingCharges;
823 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
824 >                              MPI::LOR);
825 > #else
826 >
827 >    usesDirectionalAtoms_ = usesDirectional;
828 >    usesMetallicAtoms_ = usesMetallic;
829 >    usesElectrostaticAtoms_ = usesElectrostatic;
830 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
831 >
832   #endif
833 <    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
834 <    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
835 <    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
836 <    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
784 <    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
785 <    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
833 >    
834 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
835 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
836 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
837    }
838  
839  
# Line 825 | Line 876 | namespace OpenMD {
876    }
877  
878  
879 <  void SimInfo::setupFortran() {
829 <    int isError;
879 >  void SimInfo::prepareTopology() {
880      int nExclude, nOneTwo, nOneThree, nOneFour;
831    vector<int> fortranGlobalGroupMembership;
832    
833    isError = 0;
881  
835    //globalGroupMembership_ is filled by SimCreator    
836    for (int i = 0; i < nGlobalAtoms_; i++) {
837      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
838    }
839
882      //calculate mass ratio of cutoff group
841    vector<RealType> mfact;
883      SimInfo::MoleculeIterator mi;
884      Molecule* mol;
885      Molecule::CutoffGroupIterator ci;
# Line 847 | Line 888 | namespace OpenMD {
888      Atom* atom;
889      RealType totalMass;
890  
891 <    //to avoid memory reallocation, reserve enough space for mfact
892 <    mfact.reserve(getNCutoffGroups());
891 >    /**
892 >     * The mass factor is the relative mass of an atom to the total
893 >     * mass of the cutoff group it belongs to.  By default, all atoms
894 >     * are their own cutoff groups, and therefore have mass factors of
895 >     * 1.  We need some special handling for massless atoms, which
896 >     * will be treated as carrying the entire mass of the cutoff
897 >     * group.
898 >     */
899 >    massFactors_.clear();
900 >    massFactors_.resize(getNAtoms(), 1.0);
901      
902      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
903 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
903 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
904 >           cg = mol->nextCutoffGroup(ci)) {
905  
906          totalMass = cg->getMass();
907          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
908            // Check for massless groups - set mfact to 1 if true
909 <          if (totalMass != 0)
910 <            mfact.push_back(atom->getMass()/totalMass);
909 >          if (totalMass != 0)
910 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
911            else
912 <            mfact.push_back( 1.0 );
912 >            massFactors_[atom->getLocalIndex()] = 1.0;
913          }
914        }      
915      }
# Line 873 | Line 923 | namespace OpenMD {
923          identArray_.push_back(atom->getIdent());
924        }
925      }    
876
877    //fill molMembershipArray
878    //molMembershipArray is filled by SimCreator    
879    vector<int> molMembershipArray(nGlobalAtoms_);
880    for (int i = 0; i < nGlobalAtoms_; i++) {
881      molMembershipArray[i] = globalMolMembership_[i] + 1;
882    }
926      
927 <    //setup fortran simulation
927 >    //scan topology
928  
929      nExclude = excludedInteractions_.getSize();
930      nOneTwo = oneTwoInteractions_.getSize();
# Line 893 | Line 936 | namespace OpenMD {
936      int* oneThreeList = oneThreeInteractions_.getPairList();
937      int* oneFourList = oneFourInteractions_.getPairList();
938  
939 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
897 <                   &nExclude, excludeList,
898 <                   &nOneTwo, oneTwoList,
899 <                   &nOneThree, oneThreeList,
900 <                   &nOneFour, oneFourList,
901 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
902 <                   &fortranGlobalGroupMembership[0], &isError);
903 <    
904 <    if( isError ){
905 <      
906 <      sprintf( painCave.errMsg,
907 <               "There was an error setting the simulation information in fortran.\n" );
908 <      painCave.isFatal = 1;
909 <      painCave.severity = OPENMD_ERROR;
910 <      simError();
911 <    }
912 <    
913 <    
914 <    sprintf( checkPointMsg,
915 <             "succesfully sent the simulation information to fortran.\n");
916 <    
917 <    errorCheckPoint();
918 <    
919 <    // Setup number of neighbors in neighbor list if present
920 <    if (simParams_->haveNeighborListNeighbors()) {
921 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
922 <      setNeighbors(&nlistNeighbors);
923 <    }
924 <  
925 < #ifdef IS_MPI    
926 <    mpiSimData parallelData;
927 <
928 <    //fill up mpiSimData struct
929 <    parallelData.nMolGlobal = getNGlobalMolecules();
930 <    parallelData.nMolLocal = getNMolecules();
931 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
932 <    parallelData.nAtomsLocal = getNAtoms();
933 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
934 <    parallelData.nGroupsLocal = getNCutoffGroups();
935 <    parallelData.myNode = worldRank;
936 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
937 <
938 <    //pass mpiSimData struct and index arrays to fortran
939 <    //setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
940 <    //                &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
941 <    //                &localToGlobalCutoffGroupIndex[0], &isError);
942 <
943 <    if (isError) {
944 <      sprintf(painCave.errMsg,
945 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
946 <      painCave.isFatal = 1;
947 <      simError();
948 <    }
949 <
950 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
951 <    errorCheckPoint();
952 < #endif
953 <
954 <    initFortranFF(&isError);
955 <    if (isError) {
956 <      sprintf(painCave.errMsg,
957 <              "initFortranFF errror: fortran didn't like something we gave it.\n");
958 <      painCave.isFatal = 1;
959 <      simError();
960 <    }
961 <    fortranInitialized_ = true;
939 >    topologyDone_ = true;
940    }
941  
942    void SimInfo::addProperty(GenericData* genData) {
# Line 1003 | Line 981 | namespace OpenMD {
981  
982      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
983          
984 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
984 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
985 >           atom = mol->nextAtom(atomIter)) {
986          atom->setSnapshotManager(sman_);
987        }
988          
989 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
989 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
990 >           rb = mol->nextRigidBody(rbIter)) {
991          rb->setSnapshotManager(sman_);
992        }
993  
994 <      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
994 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
995 >           cg = mol->nextCutoffGroup(cgIter)) {
996          cg->setSnapshotManager(sman_);
997        }
998      }    
999      
1000    }
1001  
1021  Vector3d SimInfo::getComVel(){
1022    SimInfo::MoleculeIterator i;
1023    Molecule* mol;
1002  
1025    Vector3d comVel(0.0);
1026    RealType totalMass = 0.0;
1027    
1028
1029    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1030      RealType mass = mol->getMass();
1031      totalMass += mass;
1032      comVel += mass * mol->getComVel();
1033    }  
1034
1035 #ifdef IS_MPI
1036    RealType tmpMass = totalMass;
1037    Vector3d tmpComVel(comVel);    
1038    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1039    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1040 #endif
1041
1042    comVel /= totalMass;
1043
1044    return comVel;
1045  }
1046
1047  Vector3d SimInfo::getCom(){
1048    SimInfo::MoleculeIterator i;
1049    Molecule* mol;
1050
1051    Vector3d com(0.0);
1052    RealType totalMass = 0.0;
1053    
1054    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1055      RealType mass = mol->getMass();
1056      totalMass += mass;
1057      com += mass * mol->getCom();
1058    }  
1059
1060 #ifdef IS_MPI
1061    RealType tmpMass = totalMass;
1062    Vector3d tmpCom(com);    
1063    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1064    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1065 #endif
1066
1067    com /= totalMass;
1068
1069    return com;
1070
1071  }        
1072
1003    ostream& operator <<(ostream& o, SimInfo& info) {
1004  
1005      return o;
1006    }
1007    
1008 <  
1079 <   /*
1080 <   Returns center of mass and center of mass velocity in one function call.
1081 <   */
1082 <  
1083 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1084 <      SimInfo::MoleculeIterator i;
1085 <      Molecule* mol;
1086 <      
1087 <    
1088 <      RealType totalMass = 0.0;
1089 <    
1090 <
1091 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1092 <         RealType mass = mol->getMass();
1093 <         totalMass += mass;
1094 <         com += mass * mol->getCom();
1095 <         comVel += mass * mol->getComVel();          
1096 <      }  
1097 <      
1098 < #ifdef IS_MPI
1099 <      RealType tmpMass = totalMass;
1100 <      Vector3d tmpCom(com);  
1101 <      Vector3d tmpComVel(comVel);
1102 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1103 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1104 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1105 < #endif
1106 <      
1107 <      com /= totalMass;
1108 <      comVel /= totalMass;
1109 <   }        
1110 <  
1111 <   /*
1112 <   Return intertia tensor for entire system and angular momentum Vector.
1113 <
1114 <
1115 <       [  Ixx -Ixy  -Ixz ]
1116 <    J =| -Iyx  Iyy  -Iyz |
1117 <       [ -Izx -Iyz   Izz ]
1118 <    */
1119 <
1120 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1121 <      
1122 <
1123 <      RealType xx = 0.0;
1124 <      RealType yy = 0.0;
1125 <      RealType zz = 0.0;
1126 <      RealType xy = 0.0;
1127 <      RealType xz = 0.0;
1128 <      RealType yz = 0.0;
1129 <      Vector3d com(0.0);
1130 <      Vector3d comVel(0.0);
1131 <      
1132 <      getComAll(com, comVel);
1133 <      
1134 <      SimInfo::MoleculeIterator i;
1135 <      Molecule* mol;
1136 <      
1137 <      Vector3d thisq(0.0);
1138 <      Vector3d thisv(0.0);
1139 <
1140 <      RealType thisMass = 0.0;
1141 <    
1142 <      
1143 <      
1144 <  
1145 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1146 <        
1147 <         thisq = mol->getCom()-com;
1148 <         thisv = mol->getComVel()-comVel;
1149 <         thisMass = mol->getMass();
1150 <         // Compute moment of intertia coefficients.
1151 <         xx += thisq[0]*thisq[0]*thisMass;
1152 <         yy += thisq[1]*thisq[1]*thisMass;
1153 <         zz += thisq[2]*thisq[2]*thisMass;
1154 <        
1155 <         // compute products of intertia
1156 <         xy += thisq[0]*thisq[1]*thisMass;
1157 <         xz += thisq[0]*thisq[2]*thisMass;
1158 <         yz += thisq[1]*thisq[2]*thisMass;
1159 <            
1160 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1161 <            
1162 <      }  
1163 <      
1164 <      
1165 <      inertiaTensor(0,0) = yy + zz;
1166 <      inertiaTensor(0,1) = -xy;
1167 <      inertiaTensor(0,2) = -xz;
1168 <      inertiaTensor(1,0) = -xy;
1169 <      inertiaTensor(1,1) = xx + zz;
1170 <      inertiaTensor(1,2) = -yz;
1171 <      inertiaTensor(2,0) = -xz;
1172 <      inertiaTensor(2,1) = -yz;
1173 <      inertiaTensor(2,2) = xx + yy;
1174 <      
1175 < #ifdef IS_MPI
1176 <      Mat3x3d tmpI(inertiaTensor);
1177 <      Vector3d tmpAngMom;
1178 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1179 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1180 < #endif
1181 <              
1182 <      return;
1183 <   }
1184 <
1185 <   //Returns the angular momentum of the system
1186 <   Vector3d SimInfo::getAngularMomentum(){
1187 <      
1188 <      Vector3d com(0.0);
1189 <      Vector3d comVel(0.0);
1190 <      Vector3d angularMomentum(0.0);
1191 <      
1192 <      getComAll(com,comVel);
1193 <      
1194 <      SimInfo::MoleculeIterator i;
1195 <      Molecule* mol;
1196 <      
1197 <      Vector3d thisr(0.0);
1198 <      Vector3d thisp(0.0);
1199 <      
1200 <      RealType thisMass;
1201 <      
1202 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1203 <        thisMass = mol->getMass();
1204 <        thisr = mol->getCom()-com;
1205 <        thisp = (mol->getComVel()-comVel)*thisMass;
1206 <        
1207 <        angularMomentum += cross( thisr, thisp );
1208 <        
1209 <      }  
1210 <      
1211 < #ifdef IS_MPI
1212 <      Vector3d tmpAngMom;
1213 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1214 < #endif
1215 <      
1216 <      return angularMomentum;
1217 <   }
1218 <  
1008 >  
1009    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1010 <    return IOIndexToIntegrableObject.at(index);
1010 >    if (index >= IOIndexToIntegrableObject.size()) {
1011 >      sprintf(painCave.errMsg,
1012 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1013 >              "\tindex exceeds number of known objects!\n");
1014 >      painCave.isFatal = 1;
1015 >      simError();
1016 >      return NULL;
1017 >    } else
1018 >      return IOIndexToIntegrableObject.at(index);
1019    }
1020    
1021    void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1022      IOIndexToIntegrableObject= v;
1023    }
1024  
1227  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1228     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1229     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1230     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1231  */
1232  void SimInfo::getGyrationalVolume(RealType &volume){
1233    Mat3x3d intTensor;
1234    RealType det;
1235    Vector3d dummyAngMom;
1236    RealType sysconstants;
1237    RealType geomCnst;
1238
1239    geomCnst = 3.0/2.0;
1240    /* Get the inertial tensor and angular momentum for free*/
1241    getInertiaTensor(intTensor,dummyAngMom);
1242    
1243    det = intTensor.determinant();
1244    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1245    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1246    return;
1247  }
1248
1249  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1250    Mat3x3d intTensor;
1251    Vector3d dummyAngMom;
1252    RealType sysconstants;
1253    RealType geomCnst;
1254
1255    geomCnst = 3.0/2.0;
1256    /* Get the inertial tensor and angular momentum for free*/
1257    getInertiaTensor(intTensor,dummyAngMom);
1258    
1259    detI = intTensor.determinant();
1260    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1261    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1262    return;
1263  }
1264 /*
1265   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1266      assert( v.size() == nAtoms_ + nRigidBodies_);
1267      sdByGlobalIndex_ = v;
1268    }
1269
1270    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1271      //assert(index < nAtoms_ + nRigidBodies_);
1272      return sdByGlobalIndex_.at(index);
1273    }  
1274 */  
1025    int SimInfo::getNGlobalConstraints() {
1026      int nGlobalConstraints;
1027   #ifdef IS_MPI

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines