6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
49 |
|
|
50 |
|
#include <algorithm> |
51 |
|
#include <set> |
52 |
+ |
#include <map> |
53 |
|
|
54 |
|
#include "brains/SimInfo.hpp" |
55 |
|
#include "math/Vector3.hpp" |
56 |
|
#include "primitives/Molecule.hpp" |
57 |
< |
#include "UseTheForce/fCutoffPolicy.h" |
56 |
< |
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
57 |
< |
#include "UseTheForce/doForces_interface.h" |
58 |
< |
#include "UseTheForce/DarkSide/electrostatic_interface.h" |
59 |
< |
#include "UseTheForce/notifyCutoffs_interface.h" |
57 |
> |
#include "primitives/StuntDouble.hpp" |
58 |
|
#include "utils/MemoryUtils.hpp" |
59 |
|
#include "utils/simError.h" |
60 |
|
#include "selection/SelectionManager.hpp" |
61 |
< |
|
61 |
> |
#include "io/ForceFieldOptions.hpp" |
62 |
> |
#include "brains/ForceField.hpp" |
63 |
> |
#include "nonbonded/SwitchingFunction.hpp" |
64 |
|
#ifdef IS_MPI |
65 |
< |
#include "UseTheForce/mpiComponentPlan.h" |
66 |
< |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
67 |
< |
#endif |
65 |
> |
#include <mpi.h> |
66 |
> |
#endif |
67 |
|
|
68 |
< |
namespace oopse { |
69 |
< |
|
70 |
< |
SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, |
71 |
< |
ForceField* ff, Globals* simParams) : |
72 |
< |
stamps_(stamps), forceField_(ff), simParams_(simParams), |
73 |
< |
ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
68 |
> |
using namespace std; |
69 |
> |
namespace OpenMD { |
70 |
> |
|
71 |
> |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
72 |
> |
forceField_(ff), simParams_(simParams), |
73 |
> |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
74 |
|
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
75 |
< |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
76 |
< |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
77 |
< |
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
78 |
< |
sman_(NULL), fortranInitialized_(false) { |
79 |
< |
|
81 |
< |
|
82 |
< |
std::vector<std::pair<MoleculeStamp*, int> >::iterator i; |
83 |
< |
MoleculeStamp* molStamp; |
84 |
< |
int nMolWithSameStamp; |
85 |
< |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
86 |
< |
int nGroups = 0; //total cutoff groups defined in meta-data file |
87 |
< |
CutoffGroupStamp* cgStamp; |
88 |
< |
RigidBodyStamp* rbStamp; |
89 |
< |
int nRigidAtoms = 0; |
75 |
> |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 |
> |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
77 |
> |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
78 |
> |
nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 |
> |
calcBoxDipole_(false), useAtomicVirial_(true) { |
80 |
|
|
81 |
< |
for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { |
82 |
< |
molStamp = i->first; |
83 |
< |
nMolWithSameStamp = i->second; |
84 |
< |
|
85 |
< |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
86 |
< |
|
87 |
< |
//calculate atoms in molecules |
88 |
< |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
89 |
< |
|
90 |
< |
|
91 |
< |
//calculate atoms in cutoff groups |
92 |
< |
int nAtomsInGroups = 0; |
93 |
< |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
94 |
< |
|
95 |
< |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
96 |
< |
cgStamp = molStamp->getCutoffGroup(j); |
97 |
< |
nAtomsInGroups += cgStamp->getNMembers(); |
98 |
< |
} |
99 |
< |
|
100 |
< |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
101 |
< |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
102 |
< |
|
103 |
< |
//calculate atoms in rigid bodies |
104 |
< |
int nAtomsInRigidBodies = 0; |
105 |
< |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
106 |
< |
|
117 |
< |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
118 |
< |
rbStamp = molStamp->getRigidBody(j); |
119 |
< |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
120 |
< |
} |
121 |
< |
|
122 |
< |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
123 |
< |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
124 |
< |
|
81 |
> |
MoleculeStamp* molStamp; |
82 |
> |
int nMolWithSameStamp; |
83 |
> |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
84 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
85 |
> |
CutoffGroupStamp* cgStamp; |
86 |
> |
RigidBodyStamp* rbStamp; |
87 |
> |
int nRigidAtoms = 0; |
88 |
> |
|
89 |
> |
vector<Component*> components = simParams->getComponents(); |
90 |
> |
|
91 |
> |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
92 |
> |
molStamp = (*i)->getMoleculeStamp(); |
93 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
94 |
> |
|
95 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
96 |
> |
|
97 |
> |
//calculate atoms in molecules |
98 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
99 |
> |
|
100 |
> |
//calculate atoms in cutoff groups |
101 |
> |
int nAtomsInGroups = 0; |
102 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
103 |
> |
|
104 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
105 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
106 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
107 |
|
} |
108 |
< |
|
109 |
< |
//every free atom (atom does not belong to cutoff groups) is a cutoff group |
110 |
< |
//therefore the total number of cutoff groups in the system is equal to |
111 |
< |
//the total number of atoms minus number of atoms belong to cutoff group defined in meta-data |
112 |
< |
//file plus the number of cutoff groups defined in meta-data file |
113 |
< |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
114 |
< |
|
115 |
< |
//every free atom (atom does not belong to rigid bodies) is an integrable object |
116 |
< |
//therefore the total number of integrable objects in the system is equal to |
117 |
< |
//the total number of atoms minus number of atoms belong to rigid body defined in meta-data |
118 |
< |
//file plus the number of rigid bodies defined in meta-data file |
119 |
< |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_; |
120 |
< |
|
121 |
< |
nGlobalMols_ = molStampIds_.size(); |
122 |
< |
|
123 |
< |
#ifdef IS_MPI |
124 |
< |
molToProcMap_.resize(nGlobalMols_); |
143 |
< |
#endif |
144 |
< |
|
108 |
> |
|
109 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
110 |
> |
|
111 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
112 |
> |
|
113 |
> |
//calculate atoms in rigid bodies |
114 |
> |
int nAtomsInRigidBodies = 0; |
115 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
116 |
> |
|
117 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
118 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
119 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
120 |
> |
} |
121 |
> |
|
122 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
123 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
124 |
> |
|
125 |
|
} |
126 |
+ |
|
127 |
+ |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
128 |
+ |
//group therefore the total number of cutoff groups in the system is |
129 |
+ |
//equal to the total number of atoms minus number of atoms belong to |
130 |
+ |
//cutoff group defined in meta-data file plus the number of cutoff |
131 |
+ |
//groups defined in meta-data file |
132 |
|
|
133 |
+ |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
134 |
+ |
|
135 |
+ |
//every free atom (atom does not belong to rigid bodies) is an |
136 |
+ |
//integrable object therefore the total number of integrable objects |
137 |
+ |
//in the system is equal to the total number of atoms minus number of |
138 |
+ |
//atoms belong to rigid body defined in meta-data file plus the number |
139 |
+ |
//of rigid bodies defined in meta-data file |
140 |
+ |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
141 |
+ |
+ nGlobalRigidBodies_; |
142 |
+ |
|
143 |
+ |
nGlobalMols_ = molStampIds_.size(); |
144 |
+ |
molToProcMap_.resize(nGlobalMols_); |
145 |
+ |
} |
146 |
+ |
|
147 |
|
SimInfo::~SimInfo() { |
148 |
< |
std::map<int, Molecule*>::iterator i; |
148 |
> |
map<int, Molecule*>::iterator i; |
149 |
|
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
150 |
|
delete i->second; |
151 |
|
} |
152 |
|
molecules_.clear(); |
153 |
|
|
154 |
– |
delete stamps_; |
154 |
|
delete sman_; |
155 |
|
delete simParams_; |
156 |
|
delete forceField_; |
157 |
|
} |
158 |
|
|
160 |
– |
int SimInfo::getNGlobalConstraints() { |
161 |
– |
int nGlobalConstraints; |
162 |
– |
#ifdef IS_MPI |
163 |
– |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
164 |
– |
MPI_COMM_WORLD); |
165 |
– |
#else |
166 |
– |
nGlobalConstraints = nConstraints_; |
167 |
– |
#endif |
168 |
– |
return nGlobalConstraints; |
169 |
– |
} |
159 |
|
|
160 |
|
bool SimInfo::addMolecule(Molecule* mol) { |
161 |
|
MoleculeIterator i; |
162 |
< |
|
162 |
> |
|
163 |
|
i = molecules_.find(mol->getGlobalIndex()); |
164 |
|
if (i == molecules_.end() ) { |
165 |
< |
|
166 |
< |
molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
167 |
< |
|
165 |
> |
|
166 |
> |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
167 |
> |
|
168 |
|
nAtoms_ += mol->getNAtoms(); |
169 |
|
nBonds_ += mol->getNBonds(); |
170 |
|
nBends_ += mol->getNBends(); |
171 |
|
nTorsions_ += mol->getNTorsions(); |
172 |
+ |
nInversions_ += mol->getNInversions(); |
173 |
|
nRigidBodies_ += mol->getNRigidBodies(); |
174 |
|
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
175 |
|
nCutoffGroups_ += mol->getNCutoffGroups(); |
176 |
|
nConstraints_ += mol->getNConstraintPairs(); |
177 |
< |
|
178 |
< |
addExcludePairs(mol); |
179 |
< |
|
177 |
> |
|
178 |
> |
addInteractionPairs(mol); |
179 |
> |
|
180 |
|
return true; |
181 |
|
} else { |
182 |
|
return false; |
183 |
|
} |
184 |
|
} |
185 |
< |
|
185 |
> |
|
186 |
|
bool SimInfo::removeMolecule(Molecule* mol) { |
187 |
|
MoleculeIterator i; |
188 |
|
i = molecules_.find(mol->getGlobalIndex()); |
195 |
|
nBonds_ -= mol->getNBonds(); |
196 |
|
nBends_ -= mol->getNBends(); |
197 |
|
nTorsions_ -= mol->getNTorsions(); |
198 |
+ |
nInversions_ -= mol->getNInversions(); |
199 |
|
nRigidBodies_ -= mol->getNRigidBodies(); |
200 |
|
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
201 |
|
nCutoffGroups_ -= mol->getNCutoffGroups(); |
202 |
|
nConstraints_ -= mol->getNConstraintPairs(); |
203 |
|
|
204 |
< |
removeExcludePairs(mol); |
204 |
> |
removeInteractionPairs(mol); |
205 |
|
molecules_.erase(mol->getGlobalIndex()); |
206 |
|
|
207 |
|
delete mol; |
210 |
|
} else { |
211 |
|
return false; |
212 |
|
} |
222 |
– |
|
223 |
– |
|
213 |
|
} |
214 |
|
|
215 |
|
|
225 |
|
|
226 |
|
|
227 |
|
void SimInfo::calcNdf() { |
228 |
< |
int ndf_local; |
228 |
> |
int ndf_local, nfq_local; |
229 |
|
MoleculeIterator i; |
230 |
< |
std::vector<StuntDouble*>::iterator j; |
230 |
> |
vector<StuntDouble*>::iterator j; |
231 |
> |
vector<Atom*>::iterator k; |
232 |
> |
|
233 |
|
Molecule* mol; |
234 |
< |
StuntDouble* integrableObject; |
234 |
> |
StuntDouble* sd; |
235 |
> |
Atom* atom; |
236 |
|
|
237 |
|
ndf_local = 0; |
238 |
+ |
nfq_local = 0; |
239 |
|
|
240 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
248 |
– |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
249 |
– |
integrableObject = mol->nextIntegrableObject(j)) { |
241 |
|
|
242 |
+ |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
243 |
+ |
sd = mol->nextIntegrableObject(j)) { |
244 |
+ |
|
245 |
|
ndf_local += 3; |
246 |
|
|
247 |
< |
if (integrableObject->isDirectional()) { |
248 |
< |
if (integrableObject->isLinear()) { |
247 |
> |
if (sd->isDirectional()) { |
248 |
> |
if (sd->isLinear()) { |
249 |
|
ndf_local += 2; |
250 |
|
} else { |
251 |
|
ndf_local += 3; |
252 |
|
} |
253 |
|
} |
254 |
< |
|
255 |
< |
}//end for (integrableObject) |
256 |
< |
}// end for (mol) |
254 |
> |
} |
255 |
> |
|
256 |
> |
for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
257 |
> |
atom = mol->nextFluctuatingCharge(k)) { |
258 |
> |
if (atom->isFluctuatingCharge()) { |
259 |
> |
nfq_local++; |
260 |
> |
} |
261 |
> |
} |
262 |
> |
} |
263 |
|
|
264 |
+ |
ndfLocal_ = ndf_local; |
265 |
+ |
|
266 |
|
// n_constraints is local, so subtract them on each processor |
267 |
|
ndf_local -= nConstraints_; |
268 |
|
|
269 |
|
#ifdef IS_MPI |
270 |
|
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
271 |
+ |
MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
272 |
|
#else |
273 |
|
ndf_ = ndf_local; |
274 |
+ |
nGlobalFluctuatingCharges_ = nfq_local; |
275 |
|
#endif |
276 |
|
|
277 |
|
// nZconstraints_ is global, as are the 3 COM translations for the |
280 |
|
|
281 |
|
} |
282 |
|
|
283 |
+ |
int SimInfo::getFdf() { |
284 |
+ |
#ifdef IS_MPI |
285 |
+ |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
286 |
+ |
#else |
287 |
+ |
fdf_ = fdf_local; |
288 |
+ |
#endif |
289 |
+ |
return fdf_; |
290 |
+ |
} |
291 |
+ |
|
292 |
+ |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
293 |
+ |
int nLocalCutoffAtoms = 0; |
294 |
+ |
Molecule* mol; |
295 |
+ |
MoleculeIterator mi; |
296 |
+ |
CutoffGroup* cg; |
297 |
+ |
Molecule::CutoffGroupIterator ci; |
298 |
+ |
|
299 |
+ |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
300 |
+ |
|
301 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
302 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
303 |
+ |
nLocalCutoffAtoms += cg->getNumAtom(); |
304 |
+ |
|
305 |
+ |
} |
306 |
+ |
} |
307 |
+ |
|
308 |
+ |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
309 |
+ |
} |
310 |
+ |
|
311 |
|
void SimInfo::calcNdfRaw() { |
312 |
|
int ndfRaw_local; |
313 |
|
|
314 |
|
MoleculeIterator i; |
315 |
< |
std::vector<StuntDouble*>::iterator j; |
315 |
> |
vector<StuntDouble*>::iterator j; |
316 |
|
Molecule* mol; |
317 |
< |
StuntDouble* integrableObject; |
317 |
> |
StuntDouble* sd; |
318 |
|
|
319 |
|
// Raw degrees of freedom that we have to set |
320 |
|
ndfRaw_local = 0; |
321 |
|
|
322 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
291 |
– |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
292 |
– |
integrableObject = mol->nextIntegrableObject(j)) { |
323 |
|
|
324 |
+ |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
325 |
+ |
sd = mol->nextIntegrableObject(j)) { |
326 |
+ |
|
327 |
|
ndfRaw_local += 3; |
328 |
|
|
329 |
< |
if (integrableObject->isDirectional()) { |
330 |
< |
if (integrableObject->isLinear()) { |
329 |
> |
if (sd->isDirectional()) { |
330 |
> |
if (sd->isLinear()) { |
331 |
|
ndfRaw_local += 2; |
332 |
|
} else { |
333 |
|
ndfRaw_local += 3; |
360 |
|
|
361 |
|
} |
362 |
|
|
363 |
< |
void SimInfo::addExcludePairs(Molecule* mol) { |
364 |
< |
std::vector<Bond*>::iterator bondIter; |
365 |
< |
std::vector<Bend*>::iterator bendIter; |
366 |
< |
std::vector<Torsion*>::iterator torsionIter; |
363 |
> |
void SimInfo::addInteractionPairs(Molecule* mol) { |
364 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
365 |
> |
vector<Bond*>::iterator bondIter; |
366 |
> |
vector<Bend*>::iterator bendIter; |
367 |
> |
vector<Torsion*>::iterator torsionIter; |
368 |
> |
vector<Inversion*>::iterator inversionIter; |
369 |
|
Bond* bond; |
370 |
|
Bend* bend; |
371 |
|
Torsion* torsion; |
372 |
+ |
Inversion* inversion; |
373 |
|
int a; |
374 |
|
int b; |
375 |
|
int c; |
376 |
|
int d; |
377 |
+ |
|
378 |
+ |
// atomGroups can be used to add special interaction maps between |
379 |
+ |
// groups of atoms that are in two separate rigid bodies. |
380 |
+ |
// However, most site-site interactions between two rigid bodies |
381 |
+ |
// are probably not special, just the ones between the physically |
382 |
+ |
// bonded atoms. Interactions *within* a single rigid body should |
383 |
+ |
// always be excluded. These are done at the bottom of this |
384 |
+ |
// function. |
385 |
+ |
|
386 |
+ |
map<int, set<int> > atomGroups; |
387 |
+ |
Molecule::RigidBodyIterator rbIter; |
388 |
+ |
RigidBody* rb; |
389 |
+ |
Molecule::IntegrableObjectIterator ii; |
390 |
+ |
StuntDouble* sd; |
391 |
|
|
392 |
< |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
392 |
> |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
393 |
> |
sd = mol->nextIntegrableObject(ii)) { |
394 |
> |
|
395 |
> |
if (sd->isRigidBody()) { |
396 |
> |
rb = static_cast<RigidBody*>(sd); |
397 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
398 |
> |
set<int> rigidAtoms; |
399 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
400 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
401 |
> |
} |
402 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
403 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
404 |
> |
} |
405 |
> |
} else { |
406 |
> |
set<int> oneAtomSet; |
407 |
> |
oneAtomSet.insert(sd->getGlobalIndex()); |
408 |
> |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
409 |
> |
} |
410 |
> |
} |
411 |
> |
|
412 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
413 |
> |
bond = mol->nextBond(bondIter)) { |
414 |
> |
|
415 |
|
a = bond->getAtomA()->getGlobalIndex(); |
416 |
< |
b = bond->getAtomB()->getGlobalIndex(); |
417 |
< |
exclude_.addPair(a, b); |
416 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
417 |
> |
|
418 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
419 |
> |
oneTwoInteractions_.addPair(a, b); |
420 |
> |
} else { |
421 |
> |
excludedInteractions_.addPair(a, b); |
422 |
> |
} |
423 |
|
} |
424 |
|
|
425 |
< |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
425 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
426 |
> |
bend = mol->nextBend(bendIter)) { |
427 |
> |
|
428 |
|
a = bend->getAtomA()->getGlobalIndex(); |
429 |
|
b = bend->getAtomB()->getGlobalIndex(); |
430 |
|
c = bend->getAtomC()->getGlobalIndex(); |
431 |
+ |
|
432 |
+ |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
433 |
+ |
oneTwoInteractions_.addPair(a, b); |
434 |
+ |
oneTwoInteractions_.addPair(b, c); |
435 |
+ |
} else { |
436 |
+ |
excludedInteractions_.addPair(a, b); |
437 |
+ |
excludedInteractions_.addPair(b, c); |
438 |
+ |
} |
439 |
|
|
440 |
< |
exclude_.addPair(a, b); |
441 |
< |
exclude_.addPair(a, c); |
442 |
< |
exclude_.addPair(b, c); |
440 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
441 |
> |
oneThreeInteractions_.addPair(a, c); |
442 |
> |
} else { |
443 |
> |
excludedInteractions_.addPair(a, c); |
444 |
> |
} |
445 |
|
} |
446 |
|
|
447 |
< |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
447 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
448 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
449 |
> |
|
450 |
|
a = torsion->getAtomA()->getGlobalIndex(); |
451 |
|
b = torsion->getAtomB()->getGlobalIndex(); |
452 |
|
c = torsion->getAtomC()->getGlobalIndex(); |
453 |
< |
d = torsion->getAtomD()->getGlobalIndex(); |
453 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
454 |
|
|
455 |
< |
exclude_.addPair(a, b); |
456 |
< |
exclude_.addPair(a, c); |
457 |
< |
exclude_.addPair(a, d); |
458 |
< |
exclude_.addPair(b, c); |
459 |
< |
exclude_.addPair(b, d); |
460 |
< |
exclude_.addPair(c, d); |
455 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
456 |
> |
oneTwoInteractions_.addPair(a, b); |
457 |
> |
oneTwoInteractions_.addPair(b, c); |
458 |
> |
oneTwoInteractions_.addPair(c, d); |
459 |
> |
} else { |
460 |
> |
excludedInteractions_.addPair(a, b); |
461 |
> |
excludedInteractions_.addPair(b, c); |
462 |
> |
excludedInteractions_.addPair(c, d); |
463 |
> |
} |
464 |
> |
|
465 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
466 |
> |
oneThreeInteractions_.addPair(a, c); |
467 |
> |
oneThreeInteractions_.addPair(b, d); |
468 |
> |
} else { |
469 |
> |
excludedInteractions_.addPair(a, c); |
470 |
> |
excludedInteractions_.addPair(b, d); |
471 |
> |
} |
472 |
> |
|
473 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
474 |
> |
oneFourInteractions_.addPair(a, d); |
475 |
> |
} else { |
476 |
> |
excludedInteractions_.addPair(a, d); |
477 |
> |
} |
478 |
|
} |
479 |
|
|
480 |
< |
Molecule::RigidBodyIterator rbIter; |
481 |
< |
RigidBody* rb; |
482 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
483 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
484 |
< |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
485 |
< |
for (int j = i + 1; j < atoms.size(); ++j) { |
480 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
481 |
> |
inversion = mol->nextInversion(inversionIter)) { |
482 |
> |
|
483 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
484 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
485 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
486 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
487 |
> |
|
488 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
489 |
> |
oneTwoInteractions_.addPair(a, b); |
490 |
> |
oneTwoInteractions_.addPair(a, c); |
491 |
> |
oneTwoInteractions_.addPair(a, d); |
492 |
> |
} else { |
493 |
> |
excludedInteractions_.addPair(a, b); |
494 |
> |
excludedInteractions_.addPair(a, c); |
495 |
> |
excludedInteractions_.addPair(a, d); |
496 |
> |
} |
497 |
> |
|
498 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
499 |
> |
oneThreeInteractions_.addPair(b, c); |
500 |
> |
oneThreeInteractions_.addPair(b, d); |
501 |
> |
oneThreeInteractions_.addPair(c, d); |
502 |
> |
} else { |
503 |
> |
excludedInteractions_.addPair(b, c); |
504 |
> |
excludedInteractions_.addPair(b, d); |
505 |
> |
excludedInteractions_.addPair(c, d); |
506 |
> |
} |
507 |
> |
} |
508 |
> |
|
509 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
510 |
> |
rb = mol->nextRigidBody(rbIter)) { |
511 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
512 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
513 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
514 |
|
a = atoms[i]->getGlobalIndex(); |
515 |
|
b = atoms[j]->getGlobalIndex(); |
516 |
< |
exclude_.addPair(a, b); |
516 |
> |
excludedInteractions_.addPair(a, b); |
517 |
|
} |
518 |
|
} |
519 |
|
} |
520 |
|
|
521 |
|
} |
522 |
|
|
523 |
< |
void SimInfo::removeExcludePairs(Molecule* mol) { |
524 |
< |
std::vector<Bond*>::iterator bondIter; |
525 |
< |
std::vector<Bend*>::iterator bendIter; |
526 |
< |
std::vector<Torsion*>::iterator torsionIter; |
523 |
> |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
524 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
525 |
> |
vector<Bond*>::iterator bondIter; |
526 |
> |
vector<Bend*>::iterator bendIter; |
527 |
> |
vector<Torsion*>::iterator torsionIter; |
528 |
> |
vector<Inversion*>::iterator inversionIter; |
529 |
|
Bond* bond; |
530 |
|
Bend* bend; |
531 |
|
Torsion* torsion; |
532 |
+ |
Inversion* inversion; |
533 |
|
int a; |
534 |
|
int b; |
535 |
|
int c; |
536 |
|
int d; |
537 |
+ |
|
538 |
+ |
map<int, set<int> > atomGroups; |
539 |
+ |
Molecule::RigidBodyIterator rbIter; |
540 |
+ |
RigidBody* rb; |
541 |
+ |
Molecule::IntegrableObjectIterator ii; |
542 |
+ |
StuntDouble* sd; |
543 |
|
|
544 |
< |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
544 |
> |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
545 |
> |
sd = mol->nextIntegrableObject(ii)) { |
546 |
> |
|
547 |
> |
if (sd->isRigidBody()) { |
548 |
> |
rb = static_cast<RigidBody*>(sd); |
549 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
550 |
> |
set<int> rigidAtoms; |
551 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
552 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
553 |
> |
} |
554 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
555 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
556 |
> |
} |
557 |
> |
} else { |
558 |
> |
set<int> oneAtomSet; |
559 |
> |
oneAtomSet.insert(sd->getGlobalIndex()); |
560 |
> |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
561 |
> |
} |
562 |
> |
} |
563 |
> |
|
564 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
565 |
> |
bond = mol->nextBond(bondIter)) { |
566 |
> |
|
567 |
|
a = bond->getAtomA()->getGlobalIndex(); |
568 |
< |
b = bond->getAtomB()->getGlobalIndex(); |
569 |
< |
exclude_.removePair(a, b); |
568 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
569 |
> |
|
570 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
571 |
> |
oneTwoInteractions_.removePair(a, b); |
572 |
> |
} else { |
573 |
> |
excludedInteractions_.removePair(a, b); |
574 |
> |
} |
575 |
|
} |
576 |
|
|
577 |
< |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
577 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
578 |
> |
bend = mol->nextBend(bendIter)) { |
579 |
> |
|
580 |
|
a = bend->getAtomA()->getGlobalIndex(); |
581 |
|
b = bend->getAtomB()->getGlobalIndex(); |
582 |
|
c = bend->getAtomC()->getGlobalIndex(); |
583 |
+ |
|
584 |
+ |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
585 |
+ |
oneTwoInteractions_.removePair(a, b); |
586 |
+ |
oneTwoInteractions_.removePair(b, c); |
587 |
+ |
} else { |
588 |
+ |
excludedInteractions_.removePair(a, b); |
589 |
+ |
excludedInteractions_.removePair(b, c); |
590 |
+ |
} |
591 |
|
|
592 |
< |
exclude_.removePair(a, b); |
593 |
< |
exclude_.removePair(a, c); |
594 |
< |
exclude_.removePair(b, c); |
592 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
593 |
> |
oneThreeInteractions_.removePair(a, c); |
594 |
> |
} else { |
595 |
> |
excludedInteractions_.removePair(a, c); |
596 |
> |
} |
597 |
|
} |
598 |
|
|
599 |
< |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
599 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
600 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
601 |
> |
|
602 |
|
a = torsion->getAtomA()->getGlobalIndex(); |
603 |
|
b = torsion->getAtomB()->getGlobalIndex(); |
604 |
|
c = torsion->getAtomC()->getGlobalIndex(); |
605 |
< |
d = torsion->getAtomD()->getGlobalIndex(); |
605 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
606 |
> |
|
607 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
608 |
> |
oneTwoInteractions_.removePair(a, b); |
609 |
> |
oneTwoInteractions_.removePair(b, c); |
610 |
> |
oneTwoInteractions_.removePair(c, d); |
611 |
> |
} else { |
612 |
> |
excludedInteractions_.removePair(a, b); |
613 |
> |
excludedInteractions_.removePair(b, c); |
614 |
> |
excludedInteractions_.removePair(c, d); |
615 |
> |
} |
616 |
|
|
617 |
< |
exclude_.removePair(a, b); |
618 |
< |
exclude_.removePair(a, c); |
619 |
< |
exclude_.removePair(a, d); |
620 |
< |
exclude_.removePair(b, c); |
621 |
< |
exclude_.removePair(b, d); |
622 |
< |
exclude_.removePair(c, d); |
617 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
618 |
> |
oneThreeInteractions_.removePair(a, c); |
619 |
> |
oneThreeInteractions_.removePair(b, d); |
620 |
> |
} else { |
621 |
> |
excludedInteractions_.removePair(a, c); |
622 |
> |
excludedInteractions_.removePair(b, d); |
623 |
> |
} |
624 |
> |
|
625 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
626 |
> |
oneFourInteractions_.removePair(a, d); |
627 |
> |
} else { |
628 |
> |
excludedInteractions_.removePair(a, d); |
629 |
> |
} |
630 |
|
} |
631 |
|
|
632 |
< |
Molecule::RigidBodyIterator rbIter; |
633 |
< |
RigidBody* rb; |
634 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
635 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
636 |
< |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
637 |
< |
for (int j = i + 1; j < atoms.size(); ++j) { |
632 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
633 |
> |
inversion = mol->nextInversion(inversionIter)) { |
634 |
> |
|
635 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
636 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
637 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
638 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
639 |
> |
|
640 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
641 |
> |
oneTwoInteractions_.removePair(a, b); |
642 |
> |
oneTwoInteractions_.removePair(a, c); |
643 |
> |
oneTwoInteractions_.removePair(a, d); |
644 |
> |
} else { |
645 |
> |
excludedInteractions_.removePair(a, b); |
646 |
> |
excludedInteractions_.removePair(a, c); |
647 |
> |
excludedInteractions_.removePair(a, d); |
648 |
> |
} |
649 |
> |
|
650 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
651 |
> |
oneThreeInteractions_.removePair(b, c); |
652 |
> |
oneThreeInteractions_.removePair(b, d); |
653 |
> |
oneThreeInteractions_.removePair(c, d); |
654 |
> |
} else { |
655 |
> |
excludedInteractions_.removePair(b, c); |
656 |
> |
excludedInteractions_.removePair(b, d); |
657 |
> |
excludedInteractions_.removePair(c, d); |
658 |
> |
} |
659 |
> |
} |
660 |
> |
|
661 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
662 |
> |
rb = mol->nextRigidBody(rbIter)) { |
663 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
664 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
665 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
666 |
|
a = atoms[i]->getGlobalIndex(); |
667 |
|
b = atoms[j]->getGlobalIndex(); |
668 |
< |
exclude_.removePair(a, b); |
668 |
> |
excludedInteractions_.removePair(a, b); |
669 |
|
} |
670 |
|
} |
671 |
|
} |
672 |
< |
|
672 |
> |
|
673 |
|
} |
674 |
< |
|
675 |
< |
|
674 |
> |
|
675 |
> |
|
676 |
|
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
677 |
|
int curStampId; |
678 |
< |
|
678 |
> |
|
679 |
|
//index from 0 |
680 |
|
curStampId = moleculeStamps_.size(); |
681 |
|
|
683 |
|
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
684 |
|
} |
685 |
|
|
455 |
– |
void SimInfo::update() { |
686 |
|
|
687 |
< |
setupSimType(); |
688 |
< |
|
689 |
< |
#ifdef IS_MPI |
690 |
< |
setupFortranParallel(); |
691 |
< |
#endif |
692 |
< |
|
693 |
< |
setupFortranSim(); |
694 |
< |
|
695 |
< |
//setup fortran force field |
466 |
< |
/** @deprecate */ |
467 |
< |
int isError = 0; |
468 |
< |
|
469 |
< |
setupElectrostaticSummationMethod( isError ); |
470 |
< |
|
471 |
< |
if(isError){ |
472 |
< |
sprintf( painCave.errMsg, |
473 |
< |
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
474 |
< |
painCave.isFatal = 1; |
475 |
< |
simError(); |
476 |
< |
} |
477 |
< |
|
478 |
< |
|
479 |
< |
setupCutoff(); |
480 |
< |
|
687 |
> |
/** |
688 |
> |
* update |
689 |
> |
* |
690 |
> |
* Performs the global checks and variable settings after the |
691 |
> |
* objects have been created. |
692 |
> |
* |
693 |
> |
*/ |
694 |
> |
void SimInfo::update() { |
695 |
> |
setupSimVariables(); |
696 |
|
calcNdf(); |
697 |
|
calcNdfRaw(); |
698 |
|
calcNdfTrans(); |
484 |
– |
|
485 |
– |
fortranInitialized_ = true; |
699 |
|
} |
700 |
< |
|
701 |
< |
std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
700 |
> |
|
701 |
> |
/** |
702 |
> |
* getSimulatedAtomTypes |
703 |
> |
* |
704 |
> |
* Returns an STL set of AtomType* that are actually present in this |
705 |
> |
* simulation. Must query all processors to assemble this information. |
706 |
> |
* |
707 |
> |
*/ |
708 |
> |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
709 |
|
SimInfo::MoleculeIterator mi; |
710 |
|
Molecule* mol; |
711 |
|
Molecule::AtomIterator ai; |
712 |
|
Atom* atom; |
713 |
< |
std::set<AtomType*> atomTypes; |
714 |
< |
|
713 |
> |
set<AtomType*> atomTypes; |
714 |
> |
|
715 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
716 |
< |
|
717 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
716 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
717 |
> |
atom = mol->nextAtom(ai)) { |
718 |
|
atomTypes.insert(atom->getAtomType()); |
719 |
< |
} |
720 |
< |
|
719 |
> |
} |
720 |
> |
} |
721 |
> |
|
722 |
> |
#ifdef IS_MPI |
723 |
> |
|
724 |
> |
// loop over the found atom types on this processor, and add their |
725 |
> |
// numerical idents to a vector: |
726 |
> |
|
727 |
> |
vector<int> foundTypes; |
728 |
> |
set<AtomType*>::iterator i; |
729 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
730 |
> |
foundTypes.push_back( (*i)->getIdent() ); |
731 |
> |
|
732 |
> |
// count_local holds the number of found types on this processor |
733 |
> |
int count_local = foundTypes.size(); |
734 |
> |
|
735 |
> |
int nproc = MPI::COMM_WORLD.Get_size(); |
736 |
> |
|
737 |
> |
// we need arrays to hold the counts and displacement vectors for |
738 |
> |
// all processors |
739 |
> |
vector<int> counts(nproc, 0); |
740 |
> |
vector<int> disps(nproc, 0); |
741 |
> |
|
742 |
> |
// fill the counts array |
743 |
> |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
744 |
> |
1, MPI::INT); |
745 |
> |
|
746 |
> |
// use the processor counts to compute the displacement array |
747 |
> |
disps[0] = 0; |
748 |
> |
int totalCount = counts[0]; |
749 |
> |
for (int iproc = 1; iproc < nproc; iproc++) { |
750 |
> |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
751 |
> |
totalCount += counts[iproc]; |
752 |
|
} |
753 |
|
|
754 |
+ |
// we need a (possibly redundant) set of all found types: |
755 |
+ |
vector<int> ftGlobal(totalCount); |
756 |
+ |
|
757 |
+ |
// now spray out the foundTypes to all the other processors: |
758 |
+ |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
759 |
+ |
&ftGlobal[0], &counts[0], &disps[0], |
760 |
+ |
MPI::INT); |
761 |
+ |
|
762 |
+ |
vector<int>::iterator j; |
763 |
+ |
|
764 |
+ |
// foundIdents is a stl set, so inserting an already found ident |
765 |
+ |
// will have no effect. |
766 |
+ |
set<int> foundIdents; |
767 |
+ |
|
768 |
+ |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
769 |
+ |
foundIdents.insert((*j)); |
770 |
+ |
|
771 |
+ |
// now iterate over the foundIdents and get the actual atom types |
772 |
+ |
// that correspond to these: |
773 |
+ |
set<int>::iterator it; |
774 |
+ |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
775 |
+ |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
776 |
+ |
|
777 |
+ |
#endif |
778 |
+ |
|
779 |
|
return atomTypes; |
780 |
|
} |
781 |
|
|
782 |
< |
void SimInfo::setupSimType() { |
783 |
< |
std::set<AtomType*>::iterator i; |
784 |
< |
std::set<AtomType*> atomTypes; |
785 |
< |
atomTypes = getUniqueAtomTypes(); |
782 |
> |
void SimInfo::setupSimVariables() { |
783 |
> |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
784 |
> |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
785 |
> |
calcBoxDipole_ = false; |
786 |
> |
if ( simParams_->haveAccumulateBoxDipole() ) |
787 |
> |
if ( simParams_->getAccumulateBoxDipole() ) { |
788 |
> |
calcBoxDipole_ = true; |
789 |
> |
} |
790 |
|
|
791 |
< |
int useLennardJones = 0; |
792 |
< |
int useElectrostatic = 0; |
793 |
< |
int useEAM = 0; |
794 |
< |
int useCharge = 0; |
795 |
< |
int useDirectional = 0; |
796 |
< |
int useDipole = 0; |
797 |
< |
int useGayBerne = 0; |
518 |
< |
int useSticky = 0; |
519 |
< |
int useStickyPower = 0; |
520 |
< |
int useShape = 0; |
521 |
< |
int useFLARB = 0; //it is not in AtomType yet |
522 |
< |
int useDirectionalAtom = 0; |
523 |
< |
int useElectrostatics = 0; |
524 |
< |
//usePBC and useRF are from simParams |
525 |
< |
int usePBC = simParams_->getPBC(); |
526 |
< |
int useRF; |
527 |
< |
|
528 |
< |
// set the useRF logical |
529 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
530 |
< |
if (myMethod == "REACTION_FIELD") |
531 |
< |
useRF = 1; |
532 |
< |
else |
533 |
< |
useRF = 0; |
534 |
< |
|
791 |
> |
set<AtomType*>::iterator i; |
792 |
> |
set<AtomType*> atomTypes; |
793 |
> |
atomTypes = getSimulatedAtomTypes(); |
794 |
> |
bool usesElectrostatic = false; |
795 |
> |
bool usesMetallic = false; |
796 |
> |
bool usesDirectional = false; |
797 |
> |
bool usesFluctuatingCharges = false; |
798 |
|
//loop over all of the atom types |
799 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
800 |
< |
useLennardJones |= (*i)->isLennardJones(); |
801 |
< |
useElectrostatic |= (*i)->isElectrostatic(); |
802 |
< |
useEAM |= (*i)->isEAM(); |
803 |
< |
useCharge |= (*i)->isCharge(); |
541 |
< |
useDirectional |= (*i)->isDirectional(); |
542 |
< |
useDipole |= (*i)->isDipole(); |
543 |
< |
useGayBerne |= (*i)->isGayBerne(); |
544 |
< |
useSticky |= (*i)->isSticky(); |
545 |
< |
useStickyPower |= (*i)->isStickyPower(); |
546 |
< |
useShape |= (*i)->isShape(); |
800 |
> |
usesElectrostatic |= (*i)->isElectrostatic(); |
801 |
> |
usesMetallic |= (*i)->isMetal(); |
802 |
> |
usesDirectional |= (*i)->isDirectional(); |
803 |
> |
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
804 |
|
} |
805 |
|
|
806 |
< |
if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
807 |
< |
useDirectionalAtom = 1; |
808 |
< |
} |
809 |
< |
|
810 |
< |
if (useCharge || useDipole) { |
811 |
< |
useElectrostatics = 1; |
812 |
< |
} |
813 |
< |
|
814 |
< |
#ifdef IS_MPI |
558 |
< |
int temp; |
559 |
< |
|
560 |
< |
temp = usePBC; |
561 |
< |
MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
562 |
< |
|
563 |
< |
temp = useDirectionalAtom; |
564 |
< |
MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
565 |
< |
|
566 |
< |
temp = useLennardJones; |
567 |
< |
MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
568 |
< |
|
569 |
< |
temp = useElectrostatics; |
570 |
< |
MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
571 |
< |
|
572 |
< |
temp = useCharge; |
573 |
< |
MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
574 |
< |
|
575 |
< |
temp = useDipole; |
576 |
< |
MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
577 |
< |
|
578 |
< |
temp = useSticky; |
579 |
< |
MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
580 |
< |
|
581 |
< |
temp = useStickyPower; |
582 |
< |
MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
806 |
> |
#ifdef IS_MPI |
807 |
> |
bool temp; |
808 |
> |
temp = usesDirectional; |
809 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, |
810 |
> |
MPI::LOR); |
811 |
> |
|
812 |
> |
temp = usesMetallic; |
813 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, |
814 |
> |
MPI::LOR); |
815 |
|
|
816 |
< |
temp = useGayBerne; |
817 |
< |
MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
816 |
> |
temp = usesElectrostatic; |
817 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, |
818 |
> |
MPI::LOR); |
819 |
|
|
820 |
< |
temp = useEAM; |
821 |
< |
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
820 |
> |
temp = usesFluctuatingCharges; |
821 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, |
822 |
> |
MPI::LOR); |
823 |
> |
#else |
824 |
|
|
825 |
< |
temp = useShape; |
826 |
< |
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
825 |
> |
usesDirectionalAtoms_ = usesDirectional; |
826 |
> |
usesMetallicAtoms_ = usesMetallic; |
827 |
> |
usesElectrostaticAtoms_ = usesElectrostatic; |
828 |
> |
usesFluctuatingCharges_ = usesFluctuatingCharges; |
829 |
|
|
593 |
– |
temp = useFLARB; |
594 |
– |
MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
595 |
– |
|
596 |
– |
temp = useRF; |
597 |
– |
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
598 |
– |
|
830 |
|
#endif |
831 |
+ |
|
832 |
+ |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
833 |
+ |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
834 |
+ |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
835 |
+ |
} |
836 |
|
|
601 |
– |
fInfo_.SIM_uses_PBC = usePBC; |
602 |
– |
fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
603 |
– |
fInfo_.SIM_uses_LennardJones = useLennardJones; |
604 |
– |
fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
605 |
– |
fInfo_.SIM_uses_Charges = useCharge; |
606 |
– |
fInfo_.SIM_uses_Dipoles = useDipole; |
607 |
– |
fInfo_.SIM_uses_Sticky = useSticky; |
608 |
– |
fInfo_.SIM_uses_StickyPower = useStickyPower; |
609 |
– |
fInfo_.SIM_uses_GayBerne = useGayBerne; |
610 |
– |
fInfo_.SIM_uses_EAM = useEAM; |
611 |
– |
fInfo_.SIM_uses_Shapes = useShape; |
612 |
– |
fInfo_.SIM_uses_FLARB = useFLARB; |
613 |
– |
fInfo_.SIM_uses_RF = useRF; |
837 |
|
|
838 |
< |
if( fInfo_.SIM_uses_Dipoles && myMethod == "REACTION_FIELD") { |
838 |
> |
vector<int> SimInfo::getGlobalAtomIndices() { |
839 |
> |
SimInfo::MoleculeIterator mi; |
840 |
> |
Molecule* mol; |
841 |
> |
Molecule::AtomIterator ai; |
842 |
> |
Atom* atom; |
843 |
|
|
844 |
< |
if (simParams_->haveDielectric()) { |
845 |
< |
fInfo_.dielect = simParams_->getDielectric(); |
846 |
< |
} else { |
847 |
< |
sprintf(painCave.errMsg, |
848 |
< |
"SimSetup Error: No Dielectric constant was set.\n" |
849 |
< |
"\tYou are trying to use Reaction Field without" |
623 |
< |
"\tsetting a dielectric constant!\n"); |
624 |
< |
painCave.isFatal = 1; |
625 |
< |
simError(); |
844 |
> |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
845 |
> |
|
846 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
847 |
> |
|
848 |
> |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
849 |
> |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
850 |
|
} |
627 |
– |
|
628 |
– |
} else { |
629 |
– |
fInfo_.dielect = 0.0; |
851 |
|
} |
852 |
< |
|
852 |
> |
return GlobalAtomIndices; |
853 |
|
} |
854 |
|
|
634 |
– |
void SimInfo::setupFortranSim() { |
635 |
– |
int isError; |
636 |
– |
int nExclude; |
637 |
– |
std::vector<int> fortranGlobalGroupMembership; |
638 |
– |
|
639 |
– |
nExclude = exclude_.getSize(); |
640 |
– |
isError = 0; |
855 |
|
|
856 |
< |
//globalGroupMembership_ is filled by SimCreator |
857 |
< |
for (int i = 0; i < nGlobalAtoms_; i++) { |
858 |
< |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
856 |
> |
vector<int> SimInfo::getGlobalGroupIndices() { |
857 |
> |
SimInfo::MoleculeIterator mi; |
858 |
> |
Molecule* mol; |
859 |
> |
Molecule::CutoffGroupIterator ci; |
860 |
> |
CutoffGroup* cg; |
861 |
> |
|
862 |
> |
vector<int> GlobalGroupIndices; |
863 |
> |
|
864 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
865 |
> |
|
866 |
> |
//local index of cutoff group is trivial, it only depends on the |
867 |
> |
//order of travesing |
868 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
869 |
> |
cg = mol->nextCutoffGroup(ci)) { |
870 |
> |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
871 |
> |
} |
872 |
|
} |
873 |
+ |
return GlobalGroupIndices; |
874 |
+ |
} |
875 |
|
|
876 |
+ |
|
877 |
+ |
void SimInfo::prepareTopology() { |
878 |
+ |
int nExclude, nOneTwo, nOneThree, nOneFour; |
879 |
+ |
|
880 |
|
//calculate mass ratio of cutoff group |
648 |
– |
std::vector<double> mfact; |
881 |
|
SimInfo::MoleculeIterator mi; |
882 |
|
Molecule* mol; |
883 |
|
Molecule::CutoffGroupIterator ci; |
884 |
|
CutoffGroup* cg; |
885 |
|
Molecule::AtomIterator ai; |
886 |
|
Atom* atom; |
887 |
< |
double totalMass; |
887 |
> |
RealType totalMass; |
888 |
|
|
889 |
< |
//to avoid memory reallocation, reserve enough space for mfact |
890 |
< |
mfact.reserve(getNCutoffGroups()); |
889 |
> |
/** |
890 |
> |
* The mass factor is the relative mass of an atom to the total |
891 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
892 |
> |
* are their own cutoff groups, and therefore have mass factors of |
893 |
> |
* 1. We need some special handling for massless atoms, which |
894 |
> |
* will be treated as carrying the entire mass of the cutoff |
895 |
> |
* group. |
896 |
> |
*/ |
897 |
> |
massFactors_.clear(); |
898 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
899 |
|
|
900 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
901 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
901 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
902 |
> |
cg = mol->nextCutoffGroup(ci)) { |
903 |
|
|
904 |
|
totalMass = cg->getMass(); |
905 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
906 |
< |
mfact.push_back(atom->getMass()/totalMass); |
906 |
> |
// Check for massless groups - set mfact to 1 if true |
907 |
> |
if (totalMass != 0) |
908 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
909 |
> |
else |
910 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
911 |
|
} |
667 |
– |
|
912 |
|
} |
913 |
|
} |
914 |
|
|
915 |
< |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
672 |
< |
std::vector<int> identArray; |
915 |
> |
// Build the identArray_ |
916 |
|
|
917 |
< |
//to avoid memory reallocation, reserve enough space identArray |
918 |
< |
identArray.reserve(getNAtoms()); |
676 |
< |
|
917 |
> |
identArray_.clear(); |
918 |
> |
identArray_.reserve(getNAtoms()); |
919 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
920 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
921 |
< |
identArray.push_back(atom->getIdent()); |
921 |
> |
identArray_.push_back(atom->getIdent()); |
922 |
|
} |
923 |
|
} |
682 |
– |
|
683 |
– |
//fill molMembershipArray |
684 |
– |
//molMembershipArray is filled by SimCreator |
685 |
– |
std::vector<int> molMembershipArray(nGlobalAtoms_); |
686 |
– |
for (int i = 0; i < nGlobalAtoms_; i++) { |
687 |
– |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
688 |
– |
} |
924 |
|
|
925 |
< |
//setup fortran simulation |
691 |
< |
int nGlobalExcludes = 0; |
692 |
< |
int* globalExcludes = NULL; |
693 |
< |
int* excludeList = exclude_.getExcludeList(); |
694 |
< |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , |
695 |
< |
&nGlobalExcludes, globalExcludes, &molMembershipArray[0], |
696 |
< |
&mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); |
925 |
> |
//scan topology |
926 |
|
|
927 |
< |
if( isError ){ |
927 |
> |
nExclude = excludedInteractions_.getSize(); |
928 |
> |
nOneTwo = oneTwoInteractions_.getSize(); |
929 |
> |
nOneThree = oneThreeInteractions_.getSize(); |
930 |
> |
nOneFour = oneFourInteractions_.getSize(); |
931 |
|
|
932 |
< |
sprintf( painCave.errMsg, |
933 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
934 |
< |
painCave.isFatal = 1; |
935 |
< |
painCave.severity = OOPSE_ERROR; |
704 |
< |
simError(); |
705 |
< |
} |
706 |
< |
|
707 |
< |
#ifdef IS_MPI |
708 |
< |
sprintf( checkPointMsg, |
709 |
< |
"succesfully sent the simulation information to fortran.\n"); |
710 |
< |
MPIcheckPoint(); |
711 |
< |
#endif // is_mpi |
712 |
< |
} |
713 |
< |
|
714 |
< |
|
715 |
< |
#ifdef IS_MPI |
716 |
< |
void SimInfo::setupFortranParallel() { |
717 |
< |
|
718 |
< |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
719 |
< |
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
720 |
< |
std::vector<int> localToGlobalCutoffGroupIndex; |
721 |
< |
SimInfo::MoleculeIterator mi; |
722 |
< |
Molecule::AtomIterator ai; |
723 |
< |
Molecule::CutoffGroupIterator ci; |
724 |
< |
Molecule* mol; |
725 |
< |
Atom* atom; |
726 |
< |
CutoffGroup* cg; |
727 |
< |
mpiSimData parallelData; |
728 |
< |
int isError; |
729 |
< |
|
730 |
< |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
731 |
< |
|
732 |
< |
//local index(index in DataStorge) of atom is important |
733 |
< |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
734 |
< |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
735 |
< |
} |
736 |
< |
|
737 |
< |
//local index of cutoff group is trivial, it only depends on the order of travesing |
738 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
739 |
< |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
740 |
< |
} |
741 |
< |
|
742 |
< |
} |
743 |
< |
|
744 |
< |
//fill up mpiSimData struct |
745 |
< |
parallelData.nMolGlobal = getNGlobalMolecules(); |
746 |
< |
parallelData.nMolLocal = getNMolecules(); |
747 |
< |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
748 |
< |
parallelData.nAtomsLocal = getNAtoms(); |
749 |
< |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
750 |
< |
parallelData.nGroupsLocal = getNCutoffGroups(); |
751 |
< |
parallelData.myNode = worldRank; |
752 |
< |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
753 |
< |
|
754 |
< |
//pass mpiSimData struct and index arrays to fortran |
755 |
< |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
756 |
< |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
757 |
< |
&localToGlobalCutoffGroupIndex[0], &isError); |
758 |
< |
|
759 |
< |
if (isError) { |
760 |
< |
sprintf(painCave.errMsg, |
761 |
< |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
762 |
< |
painCave.isFatal = 1; |
763 |
< |
simError(); |
764 |
< |
} |
765 |
< |
|
766 |
< |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
767 |
< |
MPIcheckPoint(); |
768 |
< |
|
769 |
< |
|
770 |
< |
} |
771 |
< |
|
772 |
< |
#endif |
773 |
< |
|
774 |
< |
double SimInfo::calcMaxCutoffRadius() { |
775 |
< |
|
776 |
< |
|
777 |
< |
std::set<AtomType*> atomTypes; |
778 |
< |
std::set<AtomType*>::iterator i; |
779 |
< |
std::vector<double> cutoffRadius; |
780 |
< |
|
781 |
< |
//get the unique atom types |
782 |
< |
atomTypes = getUniqueAtomTypes(); |
783 |
< |
|
784 |
< |
//query the max cutoff radius among these atom types |
785 |
< |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
786 |
< |
cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i)); |
787 |
< |
} |
788 |
< |
|
789 |
< |
double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end())); |
790 |
< |
#ifdef IS_MPI |
791 |
< |
//pick the max cutoff radius among the processors |
792 |
< |
#endif |
793 |
< |
|
794 |
< |
return maxCutoffRadius; |
795 |
< |
} |
796 |
< |
|
797 |
< |
void SimInfo::getCutoff(double& rcut, double& rsw) { |
798 |
< |
|
799 |
< |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
800 |
< |
|
801 |
< |
if (!simParams_->haveRcut()){ |
802 |
< |
sprintf(painCave.errMsg, |
803 |
< |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
804 |
< |
"\tOOPSE will use a default value of 15.0 angstroms" |
805 |
< |
"\tfor the cutoffRadius.\n"); |
806 |
< |
painCave.isFatal = 0; |
807 |
< |
simError(); |
808 |
< |
rcut = 15.0; |
809 |
< |
} else{ |
810 |
< |
rcut = simParams_->getRcut(); |
811 |
< |
} |
812 |
< |
|
813 |
< |
if (!simParams_->haveRsw()){ |
814 |
< |
sprintf(painCave.errMsg, |
815 |
< |
"SimCreator Warning: No value was set for switchingRadius.\n" |
816 |
< |
"\tOOPSE will use a default value of\n" |
817 |
< |
"\t0.95 * cutoffRadius for the switchingRadius\n"); |
818 |
< |
painCave.isFatal = 0; |
819 |
< |
simError(); |
820 |
< |
rsw = 0.95 * rcut; |
821 |
< |
} else{ |
822 |
< |
rsw = simParams_->getRsw(); |
823 |
< |
} |
932 |
> |
int* excludeList = excludedInteractions_.getPairList(); |
933 |
> |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
934 |
> |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
935 |
> |
int* oneFourList = oneFourInteractions_.getPairList(); |
936 |
|
|
937 |
< |
} else { |
826 |
< |
// if charge, dipole or reaction field is not used and the cutofff radius is not specified in |
827 |
< |
//meta-data file, the maximum cutoff radius calculated from forcefiled will be used |
828 |
< |
|
829 |
< |
if (simParams_->haveRcut()) { |
830 |
< |
rcut = simParams_->getRcut(); |
831 |
< |
} else { |
832 |
< |
//set cutoff radius to the maximum cutoff radius based on atom types in the whole system |
833 |
< |
rcut = calcMaxCutoffRadius(); |
834 |
< |
} |
835 |
< |
|
836 |
< |
if (simParams_->haveRsw()) { |
837 |
< |
rsw = simParams_->getRsw(); |
838 |
< |
} else { |
839 |
< |
rsw = rcut; |
840 |
< |
} |
841 |
< |
|
842 |
< |
} |
937 |
> |
topologyDone_ = true; |
938 |
|
} |
939 |
|
|
845 |
– |
void SimInfo::setupCutoff() { |
846 |
– |
getCutoff(rcut_, rsw_); |
847 |
– |
double rnblist = rcut_ + 1; // skin of neighbor list |
848 |
– |
|
849 |
– |
//Pass these cutoff radius etc. to fortran. This function should be called once and only once |
850 |
– |
|
851 |
– |
int cp = TRADITIONAL_CUTOFF_POLICY; |
852 |
– |
if (simParams_->haveCutoffPolicy()) { |
853 |
– |
std::string myPolicy = simParams_->getCutoffPolicy(); |
854 |
– |
if (myPolicy == "MIX") { |
855 |
– |
cp = MIX_CUTOFF_POLICY; |
856 |
– |
} else { |
857 |
– |
if (myPolicy == "MAX") { |
858 |
– |
cp = MAX_CUTOFF_POLICY; |
859 |
– |
} else { |
860 |
– |
if (myPolicy == "TRADITIONAL") { |
861 |
– |
cp = TRADITIONAL_CUTOFF_POLICY; |
862 |
– |
} else { |
863 |
– |
// throw error |
864 |
– |
sprintf( painCave.errMsg, |
865 |
– |
"SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
866 |
– |
painCave.isFatal = 1; |
867 |
– |
simError(); |
868 |
– |
} |
869 |
– |
} |
870 |
– |
} |
871 |
– |
} |
872 |
– |
|
873 |
– |
|
874 |
– |
if (simParams_->haveSkinThickness()) { |
875 |
– |
double skinThickness = simParams_->getSkinThickness(); |
876 |
– |
} |
877 |
– |
|
878 |
– |
notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp); |
879 |
– |
// also send cutoff notification to electrostatics |
880 |
– |
setElectrostaticCutoffRadius(&rcut_); |
881 |
– |
} |
882 |
– |
|
883 |
– |
void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
884 |
– |
|
885 |
– |
int errorOut; |
886 |
– |
int esm = NONE; |
887 |
– |
double alphaVal; |
888 |
– |
double dielectric; |
889 |
– |
|
890 |
– |
errorOut = isError; |
891 |
– |
alphaVal = simParams_->getDampingAlpha(); |
892 |
– |
dielectric = simParams_->getDielectric(); |
893 |
– |
|
894 |
– |
if (simParams_->haveElectrostaticSummationMethod()) { |
895 |
– |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
896 |
– |
if (myMethod == "NONE") { |
897 |
– |
esm = NONE; |
898 |
– |
} else { |
899 |
– |
if (myMethod == "UNDAMPED_WOLF") { |
900 |
– |
esm = UNDAMPED_WOLF; |
901 |
– |
} else { |
902 |
– |
if (myMethod == "DAMPED_WOLF") { |
903 |
– |
esm = DAMPED_WOLF; |
904 |
– |
if (!simParams_->haveDampingAlpha()) { |
905 |
– |
//throw error |
906 |
– |
sprintf( painCave.errMsg, |
907 |
– |
"SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal); |
908 |
– |
painCave.isFatal = 0; |
909 |
– |
simError(); |
910 |
– |
} |
911 |
– |
} else { |
912 |
– |
if (myMethod == "REACTION_FIELD") { |
913 |
– |
esm = REACTION_FIELD; |
914 |
– |
} else { |
915 |
– |
// throw error |
916 |
– |
sprintf( painCave.errMsg, |
917 |
– |
"SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() ); |
918 |
– |
painCave.isFatal = 1; |
919 |
– |
simError(); |
920 |
– |
} |
921 |
– |
} |
922 |
– |
} |
923 |
– |
} |
924 |
– |
} |
925 |
– |
// let's pass some summation method variables to fortran |
926 |
– |
setElectrostaticSummationMethod( &esm ); |
927 |
– |
setDampedWolfAlpha( &alphaVal ); |
928 |
– |
setReactionFieldDielectric( &dielectric ); |
929 |
– |
initFortranFF( &esm, &errorOut ); |
930 |
– |
} |
931 |
– |
|
940 |
|
void SimInfo::addProperty(GenericData* genData) { |
941 |
|
properties_.addProperty(genData); |
942 |
|
} |
943 |
|
|
944 |
< |
void SimInfo::removeProperty(const std::string& propName) { |
944 |
> |
void SimInfo::removeProperty(const string& propName) { |
945 |
|
properties_.removeProperty(propName); |
946 |
|
} |
947 |
|
|
949 |
|
properties_.clearProperties(); |
950 |
|
} |
951 |
|
|
952 |
< |
std::vector<std::string> SimInfo::getPropertyNames() { |
952 |
> |
vector<string> SimInfo::getPropertyNames() { |
953 |
|
return properties_.getPropertyNames(); |
954 |
|
} |
955 |
|
|
956 |
< |
std::vector<GenericData*> SimInfo::getProperties() { |
956 |
> |
vector<GenericData*> SimInfo::getProperties() { |
957 |
|
return properties_.getProperties(); |
958 |
|
} |
959 |
|
|
960 |
< |
GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
960 |
> |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
961 |
|
return properties_.getPropertyByName(propName); |
962 |
|
} |
963 |
|
|
971 |
|
Molecule* mol; |
972 |
|
RigidBody* rb; |
973 |
|
Atom* atom; |
974 |
+ |
CutoffGroup* cg; |
975 |
|
SimInfo::MoleculeIterator mi; |
976 |
|
Molecule::RigidBodyIterator rbIter; |
977 |
< |
Molecule::AtomIterator atomIter;; |
977 |
> |
Molecule::AtomIterator atomIter; |
978 |
> |
Molecule::CutoffGroupIterator cgIter; |
979 |
|
|
980 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
981 |
|
|
986 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
987 |
|
rb->setSnapshotManager(sman_); |
988 |
|
} |
989 |
+ |
|
990 |
+ |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
991 |
+ |
cg->setSnapshotManager(sman_); |
992 |
+ |
} |
993 |
|
} |
994 |
|
|
995 |
|
} |
996 |
|
|
983 |
– |
Vector3d SimInfo::getComVel(){ |
984 |
– |
SimInfo::MoleculeIterator i; |
985 |
– |
Molecule* mol; |
997 |
|
|
998 |
< |
Vector3d comVel(0.0); |
988 |
< |
double totalMass = 0.0; |
989 |
< |
|
990 |
< |
|
991 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
992 |
< |
double mass = mol->getMass(); |
993 |
< |
totalMass += mass; |
994 |
< |
comVel += mass * mol->getComVel(); |
995 |
< |
} |
998 |
> |
ostream& operator <<(ostream& o, SimInfo& info) { |
999 |
|
|
997 |
– |
#ifdef IS_MPI |
998 |
– |
double tmpMass = totalMass; |
999 |
– |
Vector3d tmpComVel(comVel); |
1000 |
– |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1001 |
– |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1002 |
– |
#endif |
1003 |
– |
|
1004 |
– |
comVel /= totalMass; |
1005 |
– |
|
1006 |
– |
return comVel; |
1007 |
– |
} |
1008 |
– |
|
1009 |
– |
Vector3d SimInfo::getCom(){ |
1010 |
– |
SimInfo::MoleculeIterator i; |
1011 |
– |
Molecule* mol; |
1012 |
– |
|
1013 |
– |
Vector3d com(0.0); |
1014 |
– |
double totalMass = 0.0; |
1015 |
– |
|
1016 |
– |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1017 |
– |
double mass = mol->getMass(); |
1018 |
– |
totalMass += mass; |
1019 |
– |
com += mass * mol->getCom(); |
1020 |
– |
} |
1021 |
– |
|
1022 |
– |
#ifdef IS_MPI |
1023 |
– |
double tmpMass = totalMass; |
1024 |
– |
Vector3d tmpCom(com); |
1025 |
– |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1026 |
– |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1027 |
– |
#endif |
1028 |
– |
|
1029 |
– |
com /= totalMass; |
1030 |
– |
|
1031 |
– |
return com; |
1032 |
– |
|
1033 |
– |
} |
1034 |
– |
|
1035 |
– |
std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1036 |
– |
|
1000 |
|
return o; |
1001 |
|
} |
1002 |
|
|
1003 |
< |
|
1004 |
< |
/* |
1005 |
< |
Returns center of mass and center of mass velocity in one function call. |
1006 |
< |
*/ |
1007 |
< |
|
1008 |
< |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1009 |
< |
SimInfo::MoleculeIterator i; |
1010 |
< |
Molecule* mol; |
1011 |
< |
|
1012 |
< |
|
1013 |
< |
double totalMass = 0.0; |
1014 |
< |
|
1003 |
> |
|
1004 |
> |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1005 |
> |
return IOIndexToIntegrableObject.at(index); |
1006 |
> |
} |
1007 |
> |
|
1008 |
> |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1009 |
> |
IOIndexToIntegrableObject= v; |
1010 |
> |
} |
1011 |
> |
/* |
1012 |
> |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1013 |
> |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1014 |
> |
sdByGlobalIndex_ = v; |
1015 |
> |
} |
1016 |
|
|
1017 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1018 |
< |
double mass = mol->getMass(); |
1019 |
< |
totalMass += mass; |
1020 |
< |
com += mass * mol->getCom(); |
1021 |
< |
comVel += mass * mol->getComVel(); |
1022 |
< |
} |
1023 |
< |
|
1017 |
> |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1018 |
> |
//assert(index < nAtoms_ + nRigidBodies_); |
1019 |
> |
return sdByGlobalIndex_.at(index); |
1020 |
> |
} |
1021 |
> |
*/ |
1022 |
> |
int SimInfo::getNGlobalConstraints() { |
1023 |
> |
int nGlobalConstraints; |
1024 |
|
#ifdef IS_MPI |
1025 |
< |
double tmpMass = totalMass; |
1026 |
< |
Vector3d tmpCom(com); |
1027 |
< |
Vector3d tmpComVel(comVel); |
1028 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1065 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1066 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1025 |
> |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1026 |
> |
MPI_COMM_WORLD); |
1027 |
> |
#else |
1028 |
> |
nGlobalConstraints = nConstraints_; |
1029 |
|
#endif |
1030 |
< |
|
1031 |
< |
com /= totalMass; |
1070 |
< |
comVel /= totalMass; |
1071 |
< |
} |
1072 |
< |
|
1073 |
< |
/* |
1074 |
< |
Return intertia tensor for entire system and angular momentum Vector. |
1030 |
> |
return nGlobalConstraints; |
1031 |
> |
} |
1032 |
|
|
1033 |
+ |
}//end namespace OpenMD |
1034 |
|
|
1077 |
– |
[ Ixx -Ixy -Ixz ] |
1078 |
– |
J =| -Iyx Iyy -Iyz | |
1079 |
– |
[ -Izx -Iyz Izz ] |
1080 |
– |
*/ |
1081 |
– |
|
1082 |
– |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1083 |
– |
|
1084 |
– |
|
1085 |
– |
double xx = 0.0; |
1086 |
– |
double yy = 0.0; |
1087 |
– |
double zz = 0.0; |
1088 |
– |
double xy = 0.0; |
1089 |
– |
double xz = 0.0; |
1090 |
– |
double yz = 0.0; |
1091 |
– |
Vector3d com(0.0); |
1092 |
– |
Vector3d comVel(0.0); |
1093 |
– |
|
1094 |
– |
getComAll(com, comVel); |
1095 |
– |
|
1096 |
– |
SimInfo::MoleculeIterator i; |
1097 |
– |
Molecule* mol; |
1098 |
– |
|
1099 |
– |
Vector3d thisq(0.0); |
1100 |
– |
Vector3d thisv(0.0); |
1101 |
– |
|
1102 |
– |
double thisMass = 0.0; |
1103 |
– |
|
1104 |
– |
|
1105 |
– |
|
1106 |
– |
|
1107 |
– |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1108 |
– |
|
1109 |
– |
thisq = mol->getCom()-com; |
1110 |
– |
thisv = mol->getComVel()-comVel; |
1111 |
– |
thisMass = mol->getMass(); |
1112 |
– |
// Compute moment of intertia coefficients. |
1113 |
– |
xx += thisq[0]*thisq[0]*thisMass; |
1114 |
– |
yy += thisq[1]*thisq[1]*thisMass; |
1115 |
– |
zz += thisq[2]*thisq[2]*thisMass; |
1116 |
– |
|
1117 |
– |
// compute products of intertia |
1118 |
– |
xy += thisq[0]*thisq[1]*thisMass; |
1119 |
– |
xz += thisq[0]*thisq[2]*thisMass; |
1120 |
– |
yz += thisq[1]*thisq[2]*thisMass; |
1121 |
– |
|
1122 |
– |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1123 |
– |
|
1124 |
– |
} |
1125 |
– |
|
1126 |
– |
|
1127 |
– |
inertiaTensor(0,0) = yy + zz; |
1128 |
– |
inertiaTensor(0,1) = -xy; |
1129 |
– |
inertiaTensor(0,2) = -xz; |
1130 |
– |
inertiaTensor(1,0) = -xy; |
1131 |
– |
inertiaTensor(1,1) = xx + zz; |
1132 |
– |
inertiaTensor(1,2) = -yz; |
1133 |
– |
inertiaTensor(2,0) = -xz; |
1134 |
– |
inertiaTensor(2,1) = -yz; |
1135 |
– |
inertiaTensor(2,2) = xx + yy; |
1136 |
– |
|
1137 |
– |
#ifdef IS_MPI |
1138 |
– |
Mat3x3d tmpI(inertiaTensor); |
1139 |
– |
Vector3d tmpAngMom; |
1140 |
– |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1141 |
– |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1142 |
– |
#endif |
1143 |
– |
|
1144 |
– |
return; |
1145 |
– |
} |
1146 |
– |
|
1147 |
– |
//Returns the angular momentum of the system |
1148 |
– |
Vector3d SimInfo::getAngularMomentum(){ |
1149 |
– |
|
1150 |
– |
Vector3d com(0.0); |
1151 |
– |
Vector3d comVel(0.0); |
1152 |
– |
Vector3d angularMomentum(0.0); |
1153 |
– |
|
1154 |
– |
getComAll(com,comVel); |
1155 |
– |
|
1156 |
– |
SimInfo::MoleculeIterator i; |
1157 |
– |
Molecule* mol; |
1158 |
– |
|
1159 |
– |
Vector3d thisr(0.0); |
1160 |
– |
Vector3d thisp(0.0); |
1161 |
– |
|
1162 |
– |
double thisMass; |
1163 |
– |
|
1164 |
– |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1165 |
– |
thisMass = mol->getMass(); |
1166 |
– |
thisr = mol->getCom()-com; |
1167 |
– |
thisp = (mol->getComVel()-comVel)*thisMass; |
1168 |
– |
|
1169 |
– |
angularMomentum += cross( thisr, thisp ); |
1170 |
– |
|
1171 |
– |
} |
1172 |
– |
|
1173 |
– |
#ifdef IS_MPI |
1174 |
– |
Vector3d tmpAngMom; |
1175 |
– |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1176 |
– |
#endif |
1177 |
– |
|
1178 |
– |
return angularMomentum; |
1179 |
– |
} |
1180 |
– |
|
1181 |
– |
|
1182 |
– |
}//end namespace oopse |
1183 |
– |
|