ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1769 by gezelter, Mon Jul 9 14:15:52 2012 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 48 | Line 49
49  
50   #include <algorithm>
51   #include <set>
52 + #include <map>
53  
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/doForces_interface.h"
56 < #include "UseTheForce/notifyCutoffs_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61 <
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
64 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <
70 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 <                                ForceField* ff, Globals* simParams) :
72 <                                forceField_(ff), simParams_(simParams),
73 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <                                sman_(NULL), fortranInitialized_(false) {
79 <
80 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81      MoleculeStamp* molStamp;
82      int nMolWithSameStamp;
83      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85      CutoffGroupStamp* cgStamp;    
86      RigidBodyStamp* rbStamp;
87      int nRigidAtoms = 0;
88      
89 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
90 <        molStamp = i->first;
91 <        nMolWithSameStamp = i->second;
92 <        
93 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
94 <
95 <        //calculate atoms in molecules
96 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
97 <
98 <
99 <        //calculate atoms in cutoff groups
100 <        int nAtomsInGroups = 0;
101 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
102 <        
103 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
104 <            cgStamp = molStamp->getCutoffGroup(j);
105 <            nAtomsInGroups += cgStamp->getNMembers();
106 <        }
107 <
108 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
109 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
110 <
111 <        //calculate atoms in rigid bodies
112 <        int nAtomsInRigidBodies = 0;
113 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
114 <        
115 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
116 <            rbStamp = molStamp->getRigidBody(j);
117 <            nAtomsInRigidBodies += rbStamp->getNMembers();
118 <        }
119 <
120 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
121 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
122 <        
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94 >      
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107 >      }
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125      }
126 +    
127 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 +    //group therefore the total number of cutoff groups in the system is
129 +    //equal to the total number of atoms minus number of atoms belong to
130 +    //cutoff group defined in meta-data file plus the number of cutoff
131 +    //groups defined in meta-data file
132  
124    //every free atom (atom does not belong to cutoff groups) is a cutoff group
125    //therefore the total number of cutoff groups in the system is equal to
126    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127    //file plus the number of cutoff groups defined in meta-data file
133      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 <
135 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
136 <    //therefore the total number of  integrable objects in the system is equal to
137 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
138 <    //file plus the number of  rigid bodies defined in meta-data file
139 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
140 <
134 >    
135 >    //every free atom (atom does not belong to rigid bodies) is an
136 >    //integrable object therefore the total number of integrable objects
137 >    //in the system is equal to the total number of atoms minus number of
138 >    //atoms belong to rigid body defined in meta-data file plus the number
139 >    //of rigid bodies defined in meta-data file
140 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 >      + nGlobalRigidBodies_;
142 >    
143      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
144      molToProcMap_.resize(nGlobalMols_);
145 < #endif
146 <
147 < }
148 <
144 < SimInfo::~SimInfo() {
145 <    std::map<int, Molecule*>::iterator i;
145 >  }
146 >  
147 >  SimInfo::~SimInfo() {
148 >    map<int, Molecule*>::iterator i;
149      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150 <        delete i->second;
150 >      delete i->second;
151      }
152      molecules_.clear();
153 <    
151 <    MemoryUtils::deletePointers(moleculeStamps_);
152 <    
153 >      
154      delete sman_;
155      delete simParams_;
156      delete forceField_;
157 < }
157 >  }
158  
158 int SimInfo::getNGlobalConstraints() {
159    int nGlobalConstraints;
160 #ifdef IS_MPI
161    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
162                  MPI_COMM_WORLD);    
163 #else
164    nGlobalConstraints =  nConstraints_;
165 #endif
166    return nGlobalConstraints;
167 }
159  
160 < bool SimInfo::addMolecule(Molecule* mol) {
160 >  bool SimInfo::addMolecule(Molecule* mol) {
161      MoleculeIterator i;
162 <
162 >    
163      i = molecules_.find(mol->getGlobalIndex());
164      if (i == molecules_.end() ) {
165 <
166 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
167 <        
168 <        nAtoms_ += mol->getNAtoms();
169 <        nBonds_ += mol->getNBonds();
170 <        nBends_ += mol->getNBends();
171 <        nTorsions_ += mol->getNTorsions();
172 <        nRigidBodies_ += mol->getNRigidBodies();
173 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
174 <        nCutoffGroups_ += mol->getNCutoffGroups();
175 <        nConstraints_ += mol->getNConstraintPairs();
176 <
177 <        addExcludePairs(mol);
178 <        
179 <        return true;
180 <    } else {
181 <        return false;
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168 >      nAtoms_ += mol->getNAtoms();
169 >      nBonds_ += mol->getNBonds();
170 >      nBends_ += mol->getNBends();
171 >      nTorsions_ += mol->getNTorsions();
172 >      nInversions_ += mol->getNInversions();
173 >      nRigidBodies_ += mol->getNRigidBodies();
174 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
175 >      nCutoffGroups_ += mol->getNCutoffGroups();
176 >      nConstraints_ += mol->getNConstraintPairs();
177 >      
178 >      addInteractionPairs(mol);
179 >      
180 >      return true;
181 >    } else {
182 >      return false;
183      }
184 < }
185 <
186 < bool SimInfo::removeMolecule(Molecule* mol) {
184 >  }
185 >  
186 >  bool SimInfo::removeMolecule(Molecule* mol) {
187      MoleculeIterator i;
188      i = molecules_.find(mol->getGlobalIndex());
189  
190      if (i != molecules_.end() ) {
191  
192 <        assert(mol == i->second);
192 >      assert(mol == i->second);
193          
194 <        nAtoms_ -= mol->getNAtoms();
195 <        nBonds_ -= mol->getNBonds();
196 <        nBends_ -= mol->getNBends();
197 <        nTorsions_ -= mol->getNTorsions();
198 <        nRigidBodies_ -= mol->getNRigidBodies();
199 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
200 <        nCutoffGroups_ -= mol->getNCutoffGroups();
201 <        nConstraints_ -= mol->getNConstraintPairs();
194 >      nAtoms_ -= mol->getNAtoms();
195 >      nBonds_ -= mol->getNBonds();
196 >      nBends_ -= mol->getNBends();
197 >      nTorsions_ -= mol->getNTorsions();
198 >      nInversions_ -= mol->getNInversions();
199 >      nRigidBodies_ -= mol->getNRigidBodies();
200 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
201 >      nCutoffGroups_ -= mol->getNCutoffGroups();
202 >      nConstraints_ -= mol->getNConstraintPairs();
203  
204 <        removeExcludePairs(mol);
205 <        molecules_.erase(mol->getGlobalIndex());
204 >      removeInteractionPairs(mol);
205 >      molecules_.erase(mol->getGlobalIndex());
206  
207 <        delete mol;
207 >      delete mol;
208          
209 <        return true;
209 >      return true;
210      } else {
211 <        return false;
211 >      return false;
212      }
213 +  }    
214  
221
222 }    
223
215          
216 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
216 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
217      i = molecules_.begin();
218      return i == molecules_.end() ? NULL : i->second;
219 < }    
219 >  }    
220  
221 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
221 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
222      ++i;
223      return i == molecules_.end() ? NULL : i->second;    
224 < }
224 >  }
225  
226  
227 < void SimInfo::calcNdf() {
228 <    int ndf_local;
227 >  void SimInfo::calcNdf() {
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230 <    std::vector<StuntDouble*>::iterator j;
230 >    vector<StuntDouble*>::iterator j;
231 >    vector<Atom*>::iterator k;
232 >
233      Molecule* mol;
234 <    StuntDouble* integrableObject;
234 >    StuntDouble* sd;
235 >    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
246        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
247               integrableObject = mol->nextIntegrableObject(j)) {
241  
242 <            ndf_local += 3;
242 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
243 >           sd = mol->nextIntegrableObject(j)) {
244  
245 <            if (integrableObject->isDirectional()) {
246 <                if (integrableObject->isLinear()) {
247 <                    ndf_local += 2;
248 <                } else {
249 <                    ndf_local += 3;
250 <                }
251 <            }
252 <            
253 <        }//end for (integrableObject)
254 <    }// end for (mol)
245 >        ndf_local += 3;
246 >
247 >        if (sd->isDirectional()) {
248 >          if (sd->isLinear()) {
249 >            ndf_local += 2;
250 >          } else {
251 >            ndf_local += 3;
252 >          }
253 >        }
254 >      }
255 >
256 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
257 >           atom = mol->nextFluctuatingCharge(k)) {
258 >        if (atom->isFluctuatingCharge()) {
259 >          nfq_local++;
260 >        }
261 >      }
262 >    }
263      
264 +    ndfLocal_ = ndf_local;
265 +
266      // n_constraints is local, so subtract them on each processor
267      ndf_local -= nConstraints_;
268  
269   #ifdef IS_MPI
270      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
271 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
272   #else
273      ndf_ = ndf_local;
274 +    nGlobalFluctuatingCharges_ = nfq_local;
275   #endif
276  
277      // nZconstraints_ is global, as are the 3 COM translations for the
278      // entire system:
279      ndf_ = ndf_ - 3 - nZconstraint_;
280  
281 < }
281 >  }
282  
283 < void SimInfo::calcNdfRaw() {
283 >  int SimInfo::getFdf() {
284 > #ifdef IS_MPI
285 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
286 > #else
287 >    fdf_ = fdf_local;
288 > #endif
289 >    return fdf_;
290 >  }
291 >  
292 >  unsigned int SimInfo::getNLocalCutoffGroups(){
293 >    int nLocalCutoffAtoms = 0;
294 >    Molecule* mol;
295 >    MoleculeIterator mi;
296 >    CutoffGroup* cg;
297 >    Molecule::CutoffGroupIterator ci;
298 >    
299 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
300 >      
301 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
302 >           cg = mol->nextCutoffGroup(ci)) {
303 >        nLocalCutoffAtoms += cg->getNumAtom();
304 >        
305 >      }        
306 >    }
307 >    
308 >    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
309 >  }
310 >    
311 >  void SimInfo::calcNdfRaw() {
312      int ndfRaw_local;
313  
314      MoleculeIterator i;
315 <    std::vector<StuntDouble*>::iterator j;
315 >    vector<StuntDouble*>::iterator j;
316      Molecule* mol;
317 <    StuntDouble* integrableObject;
317 >    StuntDouble* sd;
318  
319      // Raw degrees of freedom that we have to set
320      ndfRaw_local = 0;
321      
322      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
289        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
290               integrableObject = mol->nextIntegrableObject(j)) {
323  
324 <            ndfRaw_local += 3;
324 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
325 >           sd = mol->nextIntegrableObject(j)) {
326  
327 <            if (integrableObject->isDirectional()) {
328 <                if (integrableObject->isLinear()) {
329 <                    ndfRaw_local += 2;
330 <                } else {
331 <                    ndfRaw_local += 3;
332 <                }
333 <            }
327 >        ndfRaw_local += 3;
328 >
329 >        if (sd->isDirectional()) {
330 >          if (sd->isLinear()) {
331 >            ndfRaw_local += 2;
332 >          } else {
333 >            ndfRaw_local += 3;
334 >          }
335 >        }
336              
337 <        }
337 >      }
338      }
339      
340   #ifdef IS_MPI
# Line 307 | Line 342 | void SimInfo::calcNdfRaw() {
342   #else
343      ndfRaw_ = ndfRaw_local;
344   #endif
345 < }
345 >  }
346  
347 < void SimInfo::calcNdfTrans() {
347 >  void SimInfo::calcNdfTrans() {
348      int ndfTrans_local;
349  
350      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 323 | Line 358 | void SimInfo::calcNdfTrans() {
358  
359      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
360  
361 < }
361 >  }
362  
363 < void SimInfo::addExcludePairs(Molecule* mol) {
364 <    std::vector<Bond*>::iterator bondIter;
365 <    std::vector<Bend*>::iterator bendIter;
366 <    std::vector<Torsion*>::iterator torsionIter;
363 >  void SimInfo::addInteractionPairs(Molecule* mol) {
364 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
365 >    vector<Bond*>::iterator bondIter;
366 >    vector<Bend*>::iterator bendIter;
367 >    vector<Torsion*>::iterator torsionIter;
368 >    vector<Inversion*>::iterator inversionIter;
369      Bond* bond;
370      Bend* bend;
371      Torsion* torsion;
372 +    Inversion* inversion;
373      int a;
374      int b;
375      int c;
376      int d;
377 +
378 +    // atomGroups can be used to add special interaction maps between
379 +    // groups of atoms that are in two separate rigid bodies.
380 +    // However, most site-site interactions between two rigid bodies
381 +    // are probably not special, just the ones between the physically
382 +    // bonded atoms.  Interactions *within* a single rigid body should
383 +    // always be excluded.  These are done at the bottom of this
384 +    // function.
385 +
386 +    map<int, set<int> > atomGroups;
387 +    Molecule::RigidBodyIterator rbIter;
388 +    RigidBody* rb;
389 +    Molecule::IntegrableObjectIterator ii;
390 +    StuntDouble* sd;
391      
392 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
393 <        a = bond->getAtomA()->getGlobalIndex();
394 <        b = bond->getAtomB()->getGlobalIndex();        
395 <        exclude_.addPair(a, b);
392 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
393 >         sd = mol->nextIntegrableObject(ii)) {
394 >      
395 >      if (sd->isRigidBody()) {
396 >        rb = static_cast<RigidBody*>(sd);
397 >        vector<Atom*> atoms = rb->getAtoms();
398 >        set<int> rigidAtoms;
399 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
400 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
401 >        }
402 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
403 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
404 >        }      
405 >      } else {
406 >        set<int> oneAtomSet;
407 >        oneAtomSet.insert(sd->getGlobalIndex());
408 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
409 >      }
410 >    }  
411 >          
412 >    for (bond= mol->beginBond(bondIter); bond != NULL;
413 >         bond = mol->nextBond(bondIter)) {
414 >
415 >      a = bond->getAtomA()->getGlobalIndex();
416 >      b = bond->getAtomB()->getGlobalIndex();  
417 >    
418 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
419 >        oneTwoInteractions_.addPair(a, b);
420 >      } else {
421 >        excludedInteractions_.addPair(a, b);
422 >      }
423      }
424  
425 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
426 <        a = bend->getAtomA()->getGlobalIndex();
348 <        b = bend->getAtomB()->getGlobalIndex();        
349 <        c = bend->getAtomC()->getGlobalIndex();
425 >    for (bend= mol->beginBend(bendIter); bend != NULL;
426 >         bend = mol->nextBend(bendIter)) {
427  
428 <        exclude_.addPair(a, b);
429 <        exclude_.addPair(a, c);
430 <        exclude_.addPair(b, c);        
428 >      a = bend->getAtomA()->getGlobalIndex();
429 >      b = bend->getAtomB()->getGlobalIndex();        
430 >      c = bend->getAtomC()->getGlobalIndex();
431 >      
432 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
433 >        oneTwoInteractions_.addPair(a, b);      
434 >        oneTwoInteractions_.addPair(b, c);
435 >      } else {
436 >        excludedInteractions_.addPair(a, b);
437 >        excludedInteractions_.addPair(b, c);
438 >      }
439 >
440 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
441 >        oneThreeInteractions_.addPair(a, c);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, c);
444 >      }
445      }
446  
447 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
448 <        a = torsion->getAtomA()->getGlobalIndex();
358 <        b = torsion->getAtomB()->getGlobalIndex();        
359 <        c = torsion->getAtomC()->getGlobalIndex();        
360 <        d = torsion->getAtomD()->getGlobalIndex();        
447 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
448 >         torsion = mol->nextTorsion(torsionIter)) {
449  
450 <        exclude_.addPair(a, b);
451 <        exclude_.addPair(a, c);
452 <        exclude_.addPair(a, d);
453 <        exclude_.addPair(b, c);
454 <        exclude_.addPair(b, d);
455 <        exclude_.addPair(c, d);        
450 >      a = torsion->getAtomA()->getGlobalIndex();
451 >      b = torsion->getAtomB()->getGlobalIndex();        
452 >      c = torsion->getAtomC()->getGlobalIndex();        
453 >      d = torsion->getAtomD()->getGlobalIndex();      
454 >
455 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
456 >        oneTwoInteractions_.addPair(a, b);      
457 >        oneTwoInteractions_.addPair(b, c);
458 >        oneTwoInteractions_.addPair(c, d);
459 >      } else {
460 >        excludedInteractions_.addPair(a, b);
461 >        excludedInteractions_.addPair(b, c);
462 >        excludedInteractions_.addPair(c, d);
463 >      }
464 >
465 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
466 >        oneThreeInteractions_.addPair(a, c);      
467 >        oneThreeInteractions_.addPair(b, d);      
468 >      } else {
469 >        excludedInteractions_.addPair(a, c);
470 >        excludedInteractions_.addPair(b, d);
471 >      }
472 >
473 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
474 >        oneFourInteractions_.addPair(a, d);      
475 >      } else {
476 >        excludedInteractions_.addPair(a, d);
477 >      }
478      }
479  
480 <    
481 < }
480 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
481 >         inversion = mol->nextInversion(inversionIter)) {
482  
483 < void SimInfo::removeExcludePairs(Molecule* mol) {
484 <    std::vector<Bond*>::iterator bondIter;
485 <    std::vector<Bend*>::iterator bendIter;
486 <    std::vector<Torsion*>::iterator torsionIter;
483 >      a = inversion->getAtomA()->getGlobalIndex();
484 >      b = inversion->getAtomB()->getGlobalIndex();        
485 >      c = inversion->getAtomC()->getGlobalIndex();        
486 >      d = inversion->getAtomD()->getGlobalIndex();        
487 >
488 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
489 >        oneTwoInteractions_.addPair(a, b);      
490 >        oneTwoInteractions_.addPair(a, c);
491 >        oneTwoInteractions_.addPair(a, d);
492 >      } else {
493 >        excludedInteractions_.addPair(a, b);
494 >        excludedInteractions_.addPair(a, c);
495 >        excludedInteractions_.addPair(a, d);
496 >      }
497 >
498 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
499 >        oneThreeInteractions_.addPair(b, c);    
500 >        oneThreeInteractions_.addPair(b, d);    
501 >        oneThreeInteractions_.addPair(c, d);      
502 >      } else {
503 >        excludedInteractions_.addPair(b, c);
504 >        excludedInteractions_.addPair(b, d);
505 >        excludedInteractions_.addPair(c, d);
506 >      }
507 >    }
508 >
509 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
510 >         rb = mol->nextRigidBody(rbIter)) {
511 >      vector<Atom*> atoms = rb->getAtoms();
512 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
513 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
514 >          a = atoms[i]->getGlobalIndex();
515 >          b = atoms[j]->getGlobalIndex();
516 >          excludedInteractions_.addPair(a, b);
517 >        }
518 >      }
519 >    }        
520 >
521 >  }
522 >
523 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
524 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
525 >    vector<Bond*>::iterator bondIter;
526 >    vector<Bend*>::iterator bendIter;
527 >    vector<Torsion*>::iterator torsionIter;
528 >    vector<Inversion*>::iterator inversionIter;
529      Bond* bond;
530      Bend* bend;
531      Torsion* torsion;
532 +    Inversion* inversion;
533      int a;
534      int b;
535      int c;
536      int d;
537 +
538 +    map<int, set<int> > atomGroups;
539 +    Molecule::RigidBodyIterator rbIter;
540 +    RigidBody* rb;
541 +    Molecule::IntegrableObjectIterator ii;
542 +    StuntDouble* sd;
543      
544 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
545 <        a = bond->getAtomA()->getGlobalIndex();
546 <        b = bond->getAtomB()->getGlobalIndex();        
547 <        exclude_.removePair(a, b);
544 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
545 >         sd = mol->nextIntegrableObject(ii)) {
546 >      
547 >      if (sd->isRigidBody()) {
548 >        rb = static_cast<RigidBody*>(sd);
549 >        vector<Atom*> atoms = rb->getAtoms();
550 >        set<int> rigidAtoms;
551 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
552 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
553 >        }
554 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
555 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
556 >        }      
557 >      } else {
558 >        set<int> oneAtomSet;
559 >        oneAtomSet.insert(sd->getGlobalIndex());
560 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
561 >      }
562 >    }  
563 >
564 >    for (bond= mol->beginBond(bondIter); bond != NULL;
565 >         bond = mol->nextBond(bondIter)) {
566 >      
567 >      a = bond->getAtomA()->getGlobalIndex();
568 >      b = bond->getAtomB()->getGlobalIndex();  
569 >    
570 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
571 >        oneTwoInteractions_.removePair(a, b);
572 >      } else {
573 >        excludedInteractions_.removePair(a, b);
574 >      }
575      }
576  
577 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
578 <        a = bend->getAtomA()->getGlobalIndex();
393 <        b = bend->getAtomB()->getGlobalIndex();        
394 <        c = bend->getAtomC()->getGlobalIndex();
577 >    for (bend= mol->beginBend(bendIter); bend != NULL;
578 >         bend = mol->nextBend(bendIter)) {
579  
580 <        exclude_.removePair(a, b);
581 <        exclude_.removePair(a, c);
582 <        exclude_.removePair(b, c);        
580 >      a = bend->getAtomA()->getGlobalIndex();
581 >      b = bend->getAtomB()->getGlobalIndex();        
582 >      c = bend->getAtomC()->getGlobalIndex();
583 >      
584 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
585 >        oneTwoInteractions_.removePair(a, b);      
586 >        oneTwoInteractions_.removePair(b, c);
587 >      } else {
588 >        excludedInteractions_.removePair(a, b);
589 >        excludedInteractions_.removePair(b, c);
590 >      }
591 >
592 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
593 >        oneThreeInteractions_.removePair(a, c);      
594 >      } else {
595 >        excludedInteractions_.removePair(a, c);
596 >      }
597      }
598  
599 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
600 <        a = torsion->getAtomA()->getGlobalIndex();
403 <        b = torsion->getAtomB()->getGlobalIndex();        
404 <        c = torsion->getAtomC()->getGlobalIndex();        
405 <        d = torsion->getAtomD()->getGlobalIndex();        
599 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
600 >         torsion = mol->nextTorsion(torsionIter)) {
601  
602 <        exclude_.removePair(a, b);
603 <        exclude_.removePair(a, c);
604 <        exclude_.removePair(a, d);
605 <        exclude_.removePair(b, c);
606 <        exclude_.removePair(b, d);
607 <        exclude_.removePair(c, d);        
602 >      a = torsion->getAtomA()->getGlobalIndex();
603 >      b = torsion->getAtomB()->getGlobalIndex();        
604 >      c = torsion->getAtomC()->getGlobalIndex();        
605 >      d = torsion->getAtomD()->getGlobalIndex();      
606 >  
607 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
608 >        oneTwoInteractions_.removePair(a, b);      
609 >        oneTwoInteractions_.removePair(b, c);
610 >        oneTwoInteractions_.removePair(c, d);
611 >      } else {
612 >        excludedInteractions_.removePair(a, b);
613 >        excludedInteractions_.removePair(b, c);
614 >        excludedInteractions_.removePair(c, d);
615 >      }
616 >
617 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
618 >        oneThreeInteractions_.removePair(a, c);      
619 >        oneThreeInteractions_.removePair(b, d);      
620 >      } else {
621 >        excludedInteractions_.removePair(a, c);
622 >        excludedInteractions_.removePair(b, d);
623 >      }
624 >
625 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
626 >        oneFourInteractions_.removePair(a, d);      
627 >      } else {
628 >        excludedInteractions_.removePair(a, d);
629 >      }
630      }
631  
632 < }
632 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
633 >         inversion = mol->nextInversion(inversionIter)) {
634  
635 +      a = inversion->getAtomA()->getGlobalIndex();
636 +      b = inversion->getAtomB()->getGlobalIndex();        
637 +      c = inversion->getAtomC()->getGlobalIndex();        
638 +      d = inversion->getAtomD()->getGlobalIndex();        
639  
640 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
641 <    int curStampId;
640 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
641 >        oneTwoInteractions_.removePair(a, b);      
642 >        oneTwoInteractions_.removePair(a, c);
643 >        oneTwoInteractions_.removePair(a, d);
644 >      } else {
645 >        excludedInteractions_.removePair(a, b);
646 >        excludedInteractions_.removePair(a, c);
647 >        excludedInteractions_.removePair(a, d);
648 >      }
649  
650 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
651 +        oneThreeInteractions_.removePair(b, c);    
652 +        oneThreeInteractions_.removePair(b, d);    
653 +        oneThreeInteractions_.removePair(c, d);      
654 +      } else {
655 +        excludedInteractions_.removePair(b, c);
656 +        excludedInteractions_.removePair(b, d);
657 +        excludedInteractions_.removePair(c, d);
658 +      }
659 +    }
660 +
661 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
662 +         rb = mol->nextRigidBody(rbIter)) {
663 +      vector<Atom*> atoms = rb->getAtoms();
664 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
665 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
666 +          a = atoms[i]->getGlobalIndex();
667 +          b = atoms[j]->getGlobalIndex();
668 +          excludedInteractions_.removePair(a, b);
669 +        }
670 +      }
671 +    }        
672 +    
673 +  }
674 +  
675 +  
676 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
677 +    int curStampId;
678 +    
679      //index from 0
680      curStampId = moleculeStamps_.size();
681  
682      moleculeStamps_.push_back(molStamp);
683      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
684 < }
684 >  }
685  
428 void SimInfo::update() {
686  
687 <    setupSimType();
688 <
689 < #ifdef IS_MPI
690 <    setupFortranParallel();
691 < #endif
692 <
693 <    setupFortranSim();
694 <
695 <    //setup fortran force field
439 <    /** @deprecate */    
440 <    int isError = 0;
441 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
442 <    if(isError){
443 <        sprintf( painCave.errMsg,
444 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
445 <        painCave.isFatal = 1;
446 <        simError();
447 <    }
448 <  
449 <    
450 <    setupCutoff();
451 <
687 >  /**
688 >   * update
689 >   *
690 >   *  Performs the global checks and variable settings after the
691 >   *  objects have been created.
692 >   *
693 >   */
694 >  void SimInfo::update() {  
695 >    setupSimVariables();
696      calcNdf();
697      calcNdfRaw();
698      calcNdfTrans();
699 <
700 <    fortranInitialized_ = true;
701 < }
702 <
703 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
699 >  }
700 >  
701 >  /**
702 >   * getSimulatedAtomTypes
703 >   *
704 >   * Returns an STL set of AtomType* that are actually present in this
705 >   * simulation.  Must query all processors to assemble this information.
706 >   *
707 >   */
708 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
709      SimInfo::MoleculeIterator mi;
710      Molecule* mol;
711      Molecule::AtomIterator ai;
712      Atom* atom;
713 <    std::set<AtomType*> atomTypes;
714 <
713 >    set<AtomType*> atomTypes;
714 >    
715      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
716 +      for(atom = mol->beginAtom(ai); atom != NULL;
717 +          atom = mol->nextAtom(ai)) {
718 +        atomTypes.insert(atom->getAtomType());
719 +      }      
720 +    }    
721 +    
722 + #ifdef IS_MPI
723  
724 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
725 <            atomTypes.insert(atom->getAtomType());
726 <        }
727 <        
728 <    }
724 >    // loop over the found atom types on this processor, and add their
725 >    // numerical idents to a vector:
726 >    
727 >    vector<int> foundTypes;
728 >    set<AtomType*>::iterator i;
729 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
730 >      foundTypes.push_back( (*i)->getIdent() );
731  
732 <    return atomTypes;        
733 < }
732 >    // count_local holds the number of found types on this processor
733 >    int count_local = foundTypes.size();
734  
735 < void SimInfo::setupSimType() {
478 <    std::set<AtomType*>::iterator i;
479 <    std::set<AtomType*> atomTypes;
480 <    atomTypes = getUniqueAtomTypes();
481 <    
482 <    int useLennardJones = 0;
483 <    int useElectrostatic = 0;
484 <    int useEAM = 0;
485 <    int useCharge = 0;
486 <    int useDirectional = 0;
487 <    int useDipole = 0;
488 <    int useGayBerne = 0;
489 <    int useSticky = 0;
490 <    int useShape = 0;
491 <    int useFLARB = 0; //it is not in AtomType yet
492 <    int useDirectionalAtom = 0;    
493 <    int useElectrostatics = 0;
494 <    //usePBC and useRF are from simParams
495 <    int usePBC = simParams_->getPBC();
496 <    int useRF = simParams_->getUseRF();
735 >    int nproc = MPI::COMM_WORLD.Get_size();
736  
737 <    //loop over all of the atom types
738 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
739 <        useLennardJones |= (*i)->isLennardJones();
740 <        useElectrostatic |= (*i)->isElectrostatic();
502 <        useEAM |= (*i)->isEAM();
503 <        useCharge |= (*i)->isCharge();
504 <        useDirectional |= (*i)->isDirectional();
505 <        useDipole |= (*i)->isDipole();
506 <        useGayBerne |= (*i)->isGayBerne();
507 <        useSticky |= (*i)->isSticky();
508 <        useShape |= (*i)->isShape();
509 <    }
737 >    // we need arrays to hold the counts and displacement vectors for
738 >    // all processors
739 >    vector<int> counts(nproc, 0);
740 >    vector<int> disps(nproc, 0);
741  
742 <    if (useSticky || useDipole || useGayBerne || useShape) {
743 <        useDirectionalAtom = 1;
742 >    // fill the counts array
743 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
744 >                              1, MPI::INT);
745 >  
746 >    // use the processor counts to compute the displacement array
747 >    disps[0] = 0;    
748 >    int totalCount = counts[0];
749 >    for (int iproc = 1; iproc < nproc; iproc++) {
750 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
751 >      totalCount += counts[iproc];
752      }
753  
754 <    if (useCharge || useDipole) {
755 <        useElectrostatics = 1;
756 <    }
754 >    // we need a (possibly redundant) set of all found types:
755 >    vector<int> ftGlobal(totalCount);
756 >    
757 >    // now spray out the foundTypes to all the other processors:    
758 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
759 >                               &ftGlobal[0], &counts[0], &disps[0],
760 >                               MPI::INT);
761  
762 < #ifdef IS_MPI    
520 <    int temp;
762 >    vector<int>::iterator j;
763  
764 <    temp = usePBC;
765 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
764 >    // foundIdents is a stl set, so inserting an already found ident
765 >    // will have no effect.
766 >    set<int> foundIdents;
767  
768 <    temp = useDirectionalAtom;
769 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
768 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
769 >      foundIdents.insert((*j));
770 >    
771 >    // now iterate over the foundIdents and get the actual atom types
772 >    // that correspond to these:
773 >    set<int>::iterator it;
774 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
775 >      atomTypes.insert( forceField_->getAtomType((*it)) );
776 >
777 > #endif
778  
779 <    temp = useLennardJones;
780 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
779 >    return atomTypes;        
780 >  }
781  
782 <    temp = useElectrostatics;
783 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
782 >  void SimInfo::setupSimVariables() {
783 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
784 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
785 >    calcBoxDipole_ = false;
786 >    if ( simParams_->haveAccumulateBoxDipole() )
787 >      if ( simParams_->getAccumulateBoxDipole() ) {
788 >        calcBoxDipole_ = true;      
789 >      }
790 >    
791 >    set<AtomType*>::iterator i;
792 >    set<AtomType*> atomTypes;
793 >    atomTypes = getSimulatedAtomTypes();    
794 >    bool usesElectrostatic = false;
795 >    bool usesMetallic = false;
796 >    bool usesDirectional = false;
797 >    bool usesFluctuatingCharges =  false;
798 >    //loop over all of the atom types
799 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
800 >      usesElectrostatic |= (*i)->isElectrostatic();
801 >      usesMetallic |= (*i)->isMetal();
802 >      usesDirectional |= (*i)->isDirectional();
803 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
804 >    }
805  
806 <    temp = useCharge;
807 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
806 > #ifdef IS_MPI
807 >    bool temp;
808 >    temp = usesDirectional;
809 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
810 >                              MPI::LOR);
811 >        
812 >    temp = usesMetallic;
813 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
814 >                              MPI::LOR);
815 >    
816 >    temp = usesElectrostatic;
817 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
818 >                              MPI::LOR);
819  
820 <    temp = useDipole;
821 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
820 >    temp = usesFluctuatingCharges;
821 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
822 >                              MPI::LOR);
823 > #else
824  
825 <    temp = useSticky;
826 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
825 >    usesDirectionalAtoms_ = usesDirectional;
826 >    usesMetallicAtoms_ = usesMetallic;
827 >    usesElectrostaticAtoms_ = usesElectrostatic;
828 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
829  
830 <    temp = useGayBerne;
831 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
830 > #endif
831 >    
832 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
833 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
834 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
835 >  }
836  
546    temp = useEAM;
547    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
837  
838 <    temp = useShape;
839 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
838 >  vector<int> SimInfo::getGlobalAtomIndices() {
839 >    SimInfo::MoleculeIterator mi;
840 >    Molecule* mol;
841 >    Molecule::AtomIterator ai;
842 >    Atom* atom;
843  
844 <    temp = useFLARB;
553 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
554 <
555 <    temp = useRF;
556 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
844 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
845      
846 < #endif
846 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
847 >      
848 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
849 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
850 >      }
851 >    }
852 >    return GlobalAtomIndices;
853 >  }
854  
560    fInfo_.SIM_uses_PBC = usePBC;    
561    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
562    fInfo_.SIM_uses_LennardJones = useLennardJones;
563    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
564    fInfo_.SIM_uses_Charges = useCharge;
565    fInfo_.SIM_uses_Dipoles = useDipole;
566    fInfo_.SIM_uses_Sticky = useSticky;
567    fInfo_.SIM_uses_GayBerne = useGayBerne;
568    fInfo_.SIM_uses_EAM = useEAM;
569    fInfo_.SIM_uses_Shapes = useShape;
570    fInfo_.SIM_uses_FLARB = useFLARB;
571    fInfo_.SIM_uses_RF = useRF;
855  
856 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
856 >  vector<int> SimInfo::getGlobalGroupIndices() {
857 >    SimInfo::MoleculeIterator mi;
858 >    Molecule* mol;
859 >    Molecule::CutoffGroupIterator ci;
860 >    CutoffGroup* cg;
861  
862 <        if (simParams_->haveDielectric()) {
863 <            fInfo_.dielect = simParams_->getDielectric();
864 <        } else {
865 <            sprintf(painCave.errMsg,
866 <                    "SimSetup Error: No Dielectric constant was set.\n"
867 <                    "\tYou are trying to use Reaction Field without"
868 <                    "\tsetting a dielectric constant!\n");
869 <            painCave.isFatal = 1;
870 <            simError();
871 <        }
585 <        
586 <    } else {
587 <        fInfo_.dielect = 0.0;
862 >    vector<int> GlobalGroupIndices;
863 >    
864 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
865 >      
866 >      //local index of cutoff group is trivial, it only depends on the
867 >      //order of travesing
868 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
869 >           cg = mol->nextCutoffGroup(ci)) {
870 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
871 >      }        
872      }
873 +    return GlobalGroupIndices;
874 +  }
875  
590 }
876  
877 < void SimInfo::setupFortranSim() {
878 <    int isError;
594 <    int nExclude;
595 <    std::vector<int> fortranGlobalGroupMembership;
596 <    
597 <    nExclude = exclude_.getSize();
598 <    isError = 0;
877 >  void SimInfo::prepareTopology() {
878 >    int nExclude, nOneTwo, nOneThree, nOneFour;
879  
600    //globalGroupMembership_ is filled by SimCreator    
601    for (int i = 0; i < nGlobalAtoms_; i++) {
602        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
603    }
604
880      //calculate mass ratio of cutoff group
606    std::vector<double> mfact;
881      SimInfo::MoleculeIterator mi;
882      Molecule* mol;
883      Molecule::CutoffGroupIterator ci;
884      CutoffGroup* cg;
885      Molecule::AtomIterator ai;
886      Atom* atom;
887 <    double totalMass;
887 >    RealType totalMass;
888  
889 <    //to avoid memory reallocation, reserve enough space for mfact
890 <    mfact.reserve(getNCutoffGroups());
889 >    /**
890 >     * The mass factor is the relative mass of an atom to the total
891 >     * mass of the cutoff group it belongs to.  By default, all atoms
892 >     * are their own cutoff groups, and therefore have mass factors of
893 >     * 1.  We need some special handling for massless atoms, which
894 >     * will be treated as carrying the entire mass of the cutoff
895 >     * group.
896 >     */
897 >    massFactors_.clear();
898 >    massFactors_.resize(getNAtoms(), 1.0);
899      
900      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
901 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
901 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
902 >           cg = mol->nextCutoffGroup(ci)) {
903  
904 <            totalMass = cg->getMass();
905 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
906 <                        mfact.push_back(atom->getMass()/totalMass);
907 <            }
908 <
909 <        }      
904 >        totalMass = cg->getMass();
905 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
906 >          // Check for massless groups - set mfact to 1 if true
907 >          if (totalMass != 0)
908 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
909 >          else
910 >            massFactors_[atom->getLocalIndex()] = 1.0;
911 >        }
912 >      }      
913      }
914  
915 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
630 <    std::vector<int> identArray;
915 >    // Build the identArray_
916  
917 <    //to avoid memory reallocation, reserve enough space identArray
918 <    identArray.reserve(getNAtoms());
634 <    
917 >    identArray_.clear();
918 >    identArray_.reserve(getNAtoms());    
919      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
920 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
921 <            identArray.push_back(atom->getIdent());
922 <        }
920 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
921 >        identArray_.push_back(atom->getIdent());
922 >      }
923      }    
640
641    //fill molMembershipArray
642    //molMembershipArray is filled by SimCreator    
643    std::vector<int> molMembershipArray(nGlobalAtoms_);
644    for (int i = 0; i < nGlobalAtoms_; i++) {
645        molMembershipArray[i] = globalMolMembership_[i] + 1;
646    }
924      
925 <    //setup fortran simulation
649 <    //gloalExcludes and molMembershipArray should go away (They are never used)
650 <    //why the hell fortran need to know molecule?
651 <    //OOPSE = Object-Obfuscated Parallel Simulation Engine
652 <    int nGlobalExcludes = 0;
653 <    int* globalExcludes = NULL;
654 <    int* excludeList = exclude_.getExcludeList();
655 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
656 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
657 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
925 >    //scan topology
926  
927 <    if( isError ){
927 >    nExclude = excludedInteractions_.getSize();
928 >    nOneTwo = oneTwoInteractions_.getSize();
929 >    nOneThree = oneThreeInteractions_.getSize();
930 >    nOneFour = oneFourInteractions_.getSize();
931  
932 <        sprintf( painCave.errMsg,
933 <                 "There was an error setting the simulation information in fortran.\n" );
934 <        painCave.isFatal = 1;
935 <        painCave.severity = OOPSE_ERROR;
665 <        simError();
666 <    }
932 >    int* excludeList = excludedInteractions_.getPairList();
933 >    int* oneTwoList = oneTwoInteractions_.getPairList();
934 >    int* oneThreeList = oneThreeInteractions_.getPairList();
935 >    int* oneFourList = oneFourInteractions_.getPairList();
936  
937 < #ifdef IS_MPI
938 <    sprintf( checkPointMsg,
670 <       "succesfully sent the simulation information to fortran.\n");
671 <    MPIcheckPoint();
672 < #endif // is_mpi
673 < }
937 >    topologyDone_ = true;
938 >  }
939  
940 <
676 < #ifdef IS_MPI
677 < void SimInfo::setupFortranParallel() {
678 <    
679 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
680 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
681 <    std::vector<int> localToGlobalCutoffGroupIndex;
682 <    SimInfo::MoleculeIterator mi;
683 <    Molecule::AtomIterator ai;
684 <    Molecule::CutoffGroupIterator ci;
685 <    Molecule* mol;
686 <    Atom* atom;
687 <    CutoffGroup* cg;
688 <    mpiSimData parallelData;
689 <    int isError;
690 <
691 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
692 <
693 <        //local index(index in DataStorge) of atom is important
694 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
695 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
696 <        }
697 <
698 <        //local index of cutoff group is trivial, it only depends on the order of travesing
699 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
700 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
701 <        }        
702 <        
703 <    }
704 <
705 <    //fill up mpiSimData struct
706 <    parallelData.nMolGlobal = getNGlobalMolecules();
707 <    parallelData.nMolLocal = getNMolecules();
708 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
709 <    parallelData.nAtomsLocal = getNAtoms();
710 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
711 <    parallelData.nGroupsLocal = getNCutoffGroups();
712 <    parallelData.myNode = worldRank;
713 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
714 <
715 <    //pass mpiSimData struct and index arrays to fortran
716 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
717 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
718 <                    &localToGlobalCutoffGroupIndex[0], &isError);
719 <
720 <    if (isError) {
721 <        sprintf(painCave.errMsg,
722 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
723 <        painCave.isFatal = 1;
724 <        simError();
725 <    }
726 <
727 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
728 <    MPIcheckPoint();
729 <
730 <
731 < }
732 <
733 < #endif
734 <
735 < double SimInfo::calcMaxCutoffRadius() {
736 <
737 <
738 <    std::set<AtomType*> atomTypes;
739 <    std::set<AtomType*>::iterator i;
740 <    std::vector<double> cutoffRadius;
741 <
742 <    //get the unique atom types
743 <    atomTypes = getUniqueAtomTypes();
744 <
745 <    //query the max cutoff radius among these atom types
746 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
747 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
748 <    }
749 <
750 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
751 < #ifdef IS_MPI
752 <    //pick the max cutoff radius among the processors
753 < #endif
754 <
755 <    return maxCutoffRadius;
756 < }
757 <
758 < void SimInfo::getCutoff(double& rcut, double& rsw) {
759 <    
760 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
761 <        
762 <        if (!simParams_->haveRcut()){
763 <            sprintf(painCave.errMsg,
764 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
765 <                "\tOOPSE will use a default value of 15.0 angstroms"
766 <                "\tfor the cutoffRadius.\n");
767 <            painCave.isFatal = 0;
768 <            simError();
769 <            rcut = 15.0;
770 <        } else{
771 <            rcut = simParams_->getRcut();
772 <        }
773 <
774 <        if (!simParams_->haveRsw()){
775 <            sprintf(painCave.errMsg,
776 <                "SimCreator Warning: No value was set for switchingRadius.\n"
777 <                "\tOOPSE will use a default value of\n"
778 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
779 <            painCave.isFatal = 0;
780 <            simError();
781 <            rsw = 0.95 * rcut;
782 <        } else{
783 <            rsw = simParams_->getRsw();
784 <        }
785 <
786 <    } else {
787 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
788 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
789 <        
790 <        if (simParams_->haveRcut()) {
791 <            rcut = simParams_->getRcut();
792 <        } else {
793 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
794 <            rcut = calcMaxCutoffRadius();
795 <        }
796 <
797 <        if (simParams_->haveRsw()) {
798 <            rsw  = simParams_->getRsw();
799 <        } else {
800 <            rsw = rcut;
801 <        }
802 <    
803 <    }
804 < }
805 <
806 < void SimInfo::setupCutoff() {
807 <    getCutoff(rcut_, rsw_);    
808 <    double rnblist = rcut_ + 1; // skin of neighbor list
809 <
810 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
811 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
812 < }
813 <
814 < void SimInfo::addProperty(GenericData* genData) {
940 >  void SimInfo::addProperty(GenericData* genData) {
941      properties_.addProperty(genData);  
942 < }
942 >  }
943  
944 < void SimInfo::removeProperty(const std::string& propName) {
944 >  void SimInfo::removeProperty(const string& propName) {
945      properties_.removeProperty(propName);  
946 < }
946 >  }
947  
948 < void SimInfo::clearProperties() {
948 >  void SimInfo::clearProperties() {
949      properties_.clearProperties();
950 < }
950 >  }
951  
952 < std::vector<std::string> SimInfo::getPropertyNames() {
952 >  vector<string> SimInfo::getPropertyNames() {
953      return properties_.getPropertyNames();  
954 < }
954 >  }
955        
956 < std::vector<GenericData*> SimInfo::getProperties() {
956 >  vector<GenericData*> SimInfo::getProperties() {
957      return properties_.getProperties();
958 < }
958 >  }
959  
960 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
960 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
961      return properties_.getPropertyByName(propName);
962 < }
962 >  }
963  
964 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
965 <    //if (sman_ == sman_) {
966 <    //    return;
967 <    //}
968 <    
843 <    //delete sman_;
964 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
965 >    if (sman_ == sman) {
966 >      return;
967 >    }    
968 >    delete sman_;
969      sman_ = sman;
970  
971      Molecule* mol;
972      RigidBody* rb;
973      Atom* atom;
974 +    CutoffGroup* cg;
975      SimInfo::MoleculeIterator mi;
976      Molecule::RigidBodyIterator rbIter;
977 <    Molecule::AtomIterator atomIter;;
977 >    Molecule::AtomIterator atomIter;
978 >    Molecule::CutoffGroupIterator cgIter;
979  
980      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
981          
982 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
983 <            atom->setSnapshotManager(sman_);
984 <        }
982 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
983 >        atom->setSnapshotManager(sman_);
984 >      }
985          
986 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
987 <            rb->setSnapshotManager(sman_);
988 <        }
986 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
987 >        rb->setSnapshotManager(sman_);
988 >      }
989 >
990 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
991 >        cg->setSnapshotManager(sman_);
992 >      }
993      }    
994      
995 < }
995 >  }
996  
866 Vector3d SimInfo::getComVel(){
867    SimInfo::MoleculeIterator i;
868    Molecule* mol;
997  
998 <    Vector3d comVel(0.0);
871 <    double totalMass = 0.0;
872 <    
873 <
874 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
875 <        double mass = mol->getMass();
876 <        totalMass += mass;
877 <        comVel += mass * mol->getComVel();
878 <    }  
998 >  ostream& operator <<(ostream& o, SimInfo& info) {
999  
1000 < #ifdef IS_MPI
1001 <    double tmpMass = totalMass;
1002 <    Vector3d tmpComVel(comVel);    
1003 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1004 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1005 < #endif
1000 >    return o;
1001 >  }
1002 >  
1003 >  
1004 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1005 >    return IOIndexToIntegrableObject.at(index);
1006 >  }
1007 >  
1008 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1009 >    IOIndexToIntegrableObject= v;
1010 >  }
1011 > /*
1012 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1013 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1014 >      sdByGlobalIndex_ = v;
1015 >    }
1016  
1017 <    comVel /= totalMass;
1018 <
1019 <    return comVel;
1020 < }
1021 <
1022 < Vector3d SimInfo::getCom(){
1023 <    SimInfo::MoleculeIterator i;
894 <    Molecule* mol;
895 <
896 <    Vector3d com(0.0);
897 <    double totalMass = 0.0;
898 <    
899 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
900 <        double mass = mol->getMass();
901 <        totalMass += mass;
902 <        com += mass * mol->getCom();
903 <    }  
904 <
1017 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1018 >      //assert(index < nAtoms_ + nRigidBodies_);
1019 >      return sdByGlobalIndex_.at(index);
1020 >    }  
1021 > */  
1022 >  int SimInfo::getNGlobalConstraints() {
1023 >    int nGlobalConstraints;
1024   #ifdef IS_MPI
1025 <    double tmpMass = totalMass;
1026 <    Vector3d tmpCom(com);    
1027 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1028 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1025 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1026 >                  MPI_COMM_WORLD);    
1027 > #else
1028 >    nGlobalConstraints =  nConstraints_;
1029   #endif
1030 +    return nGlobalConstraints;
1031 +  }
1032  
1033 <    com /= totalMass;
1033 > }//end namespace OpenMD
1034  
914    return com;
915
916 }        
917
918 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
919
920    return o;
921 }
922
923 }//end namespace oopse
924

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1769 by gezelter, Mon Jul 9 14:15:52 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines