ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1534 by gezelter, Wed Dec 29 21:53:28 2010 UTC vs.
Revision 1769 by gezelter, Mon Jul 9 14:15:52 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/doForces_interface.h"
58 #include "UseTheForce/DarkSide/neighborLists_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
62 > #include "brains/ForceField.hpp"
63   #include "nonbonded/SwitchingFunction.hpp"
65
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
69 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68   using namespace std;
69   namespace OpenMD {
# Line 75 | Line 72 | namespace OpenMD {
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79      calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81      MoleculeStamp* molStamp;
# Line 132 | Line 129 | namespace OpenMD {
129      //equal to the total number of atoms minus number of atoms belong to
130      //cutoff group defined in meta-data file plus the number of cutoff
131      //groups defined in meta-data file
132 +
133      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134      
135      //every free atom (atom does not belong to rigid bodies) is an
# Line 227 | Line 225 | namespace OpenMD {
225  
226  
227    void SimInfo::calcNdf() {
228 <    int ndf_local;
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230      vector<StuntDouble*>::iterator j;
231 +    vector<Atom*>::iterator k;
232 +
233      Molecule* mol;
234 <    StuntDouble* integrableObject;
234 >    StuntDouble* sd;
235 >    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
239      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
240           integrableObject = mol->nextIntegrableObject(j)) {
241  
242 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
243 +           sd = mol->nextIntegrableObject(j)) {
244 +
245          ndf_local += 3;
246  
247 <        if (integrableObject->isDirectional()) {
248 <          if (integrableObject->isLinear()) {
247 >        if (sd->isDirectional()) {
248 >          if (sd->isLinear()) {
249              ndf_local += 2;
250            } else {
251              ndf_local += 3;
252            }
253          }
251            
254        }
255 +
256 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
257 +           atom = mol->nextFluctuatingCharge(k)) {
258 +        if (atom->isFluctuatingCharge()) {
259 +          nfq_local++;
260 +        }
261 +      }
262      }
263      
264 +    ndfLocal_ = ndf_local;
265 +
266      // n_constraints is local, so subtract them on each processor
267      ndf_local -= nConstraints_;
268  
269   #ifdef IS_MPI
270      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
271 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
272   #else
273      ndf_ = ndf_local;
274 +    nGlobalFluctuatingCharges_ = nfq_local;
275   #endif
276  
277      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 275 | Line 288 | namespace OpenMD {
288   #endif
289      return fdf_;
290    }
291 +  
292 +  unsigned int SimInfo::getNLocalCutoffGroups(){
293 +    int nLocalCutoffAtoms = 0;
294 +    Molecule* mol;
295 +    MoleculeIterator mi;
296 +    CutoffGroup* cg;
297 +    Molecule::CutoffGroupIterator ci;
298      
299 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
300 +      
301 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
302 +           cg = mol->nextCutoffGroup(ci)) {
303 +        nLocalCutoffAtoms += cg->getNumAtom();
304 +        
305 +      }        
306 +    }
307 +    
308 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
309 +  }
310 +    
311    void SimInfo::calcNdfRaw() {
312      int ndfRaw_local;
313  
314      MoleculeIterator i;
315      vector<StuntDouble*>::iterator j;
316      Molecule* mol;
317 <    StuntDouble* integrableObject;
317 >    StuntDouble* sd;
318  
319      // Raw degrees of freedom that we have to set
320      ndfRaw_local = 0;
321      
322      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
291      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
292           integrableObject = mol->nextIntegrableObject(j)) {
323  
324 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
325 +           sd = mol->nextIntegrableObject(j)) {
326 +
327          ndfRaw_local += 3;
328  
329 <        if (integrableObject->isDirectional()) {
330 <          if (integrableObject->isLinear()) {
329 >        if (sd->isDirectional()) {
330 >          if (sd->isLinear()) {
331              ndfRaw_local += 2;
332            } else {
333              ndfRaw_local += 3;
# Line 354 | Line 387 | namespace OpenMD {
387      Molecule::RigidBodyIterator rbIter;
388      RigidBody* rb;
389      Molecule::IntegrableObjectIterator ii;
390 <    StuntDouble* integrableObject;
390 >    StuntDouble* sd;
391      
392 <    for (integrableObject = mol->beginIntegrableObject(ii);
393 <         integrableObject != NULL;
361 <         integrableObject = mol->nextIntegrableObject(ii)) {
392 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
393 >         sd = mol->nextIntegrableObject(ii)) {
394        
395 <      if (integrableObject->isRigidBody()) {
396 <        rb = static_cast<RigidBody*>(integrableObject);
395 >      if (sd->isRigidBody()) {
396 >        rb = static_cast<RigidBody*>(sd);
397          vector<Atom*> atoms = rb->getAtoms();
398          set<int> rigidAtoms;
399          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 372 | Line 404 | namespace OpenMD {
404          }      
405        } else {
406          set<int> oneAtomSet;
407 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
408 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
407 >        oneAtomSet.insert(sd->getGlobalIndex());
408 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
409        }
410      }  
411            
# Line 507 | Line 539 | namespace OpenMD {
539      Molecule::RigidBodyIterator rbIter;
540      RigidBody* rb;
541      Molecule::IntegrableObjectIterator ii;
542 <    StuntDouble* integrableObject;
542 >    StuntDouble* sd;
543      
544 <    for (integrableObject = mol->beginIntegrableObject(ii);
545 <         integrableObject != NULL;
514 <         integrableObject = mol->nextIntegrableObject(ii)) {
544 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
545 >         sd = mol->nextIntegrableObject(ii)) {
546        
547 <      if (integrableObject->isRigidBody()) {
548 <        rb = static_cast<RigidBody*>(integrableObject);
547 >      if (sd->isRigidBody()) {
548 >        rb = static_cast<RigidBody*>(sd);
549          vector<Atom*> atoms = rb->getAtoms();
550          set<int> rigidAtoms;
551          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 525 | Line 556 | namespace OpenMD {
556          }      
557        } else {
558          set<int> oneAtomSet;
559 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
560 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
559 >        oneAtomSet.insert(sd->getGlobalIndex());
560 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
561        }
562      }  
563  
# Line 656 | Line 687 | namespace OpenMD {
687    /**
688     * update
689     *
690 <   *  Performs the global checks and variable settings after the objects have been
691 <   *  created.
690 >   *  Performs the global checks and variable settings after the
691 >   *  objects have been created.
692     *
693     */
694 <  void SimInfo::update() {
664 <    
694 >  void SimInfo::update() {  
695      setupSimVariables();
666    setupCutoffs();
667    setupSwitching();
668    setupElectrostatics();
669    setupNeighborlists();
670
671 #ifdef IS_MPI
672    setupFortranParallel();
673 #endif
674    setupFortranSim();
675    fortranInitialized_ = true;
676
696      calcNdf();
697      calcNdfRaw();
698      calcNdfTrans();
699    }
700    
701 +  /**
702 +   * getSimulatedAtomTypes
703 +   *
704 +   * Returns an STL set of AtomType* that are actually present in this
705 +   * simulation.  Must query all processors to assemble this information.
706 +   *
707 +   */
708    set<AtomType*> SimInfo::getSimulatedAtomTypes() {
709      SimInfo::MoleculeIterator mi;
710      Molecule* mol;
# Line 686 | Line 712 | namespace OpenMD {
712      Atom* atom;
713      set<AtomType*> atomTypes;
714      
715 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
716 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
715 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
716 >      for(atom = mol->beginAtom(ai); atom != NULL;
717 >          atom = mol->nextAtom(ai)) {
718          atomTypes.insert(atom->getAtomType());
719        }      
720      }    
721 <    return atomTypes;        
722 <  }
721 >    
722 > #ifdef IS_MPI
723  
724 <  /**
725 <   * setupCutoffs
699 <   *
700 <   * Sets the values of cutoffRadius and cutoffMethod
701 <   *
702 <   * cutoffRadius : realType
703 <   *  If the cutoffRadius was explicitly set, use that value.
704 <   *  If the cutoffRadius was not explicitly set:
705 <   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
706 <   *      No electrostatic atoms?  Poll the atom types present in the
707 <   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
708 <   *      Use the maximum suggested value that was found.
709 <   *
710 <   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
711 <   *      If cutoffMethod was explicitly set, use that choice.
712 <   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
713 <   */
714 <  void SimInfo::setupCutoffs() {
724 >    // loop over the found atom types on this processor, and add their
725 >    // numerical idents to a vector:
726      
727 <    if (simParams_->haveCutoffRadius()) {
728 <      cutoffRadius_ = simParams_->getCutoffRadius();
729 <    } else {      
730 <      if (usesElectrostaticAtoms_) {
720 <        sprintf(painCave.errMsg,
721 <                "SimInfo: No value was set for the cutoffRadius.\n"
722 <                "\tOpenMD will use a default value of 12.0 angstroms"
723 <                "\tfor the cutoffRadius.\n");
724 <        painCave.isFatal = 0;
725 <        painCave.severity = OPENMD_INFO;
726 <        simError();
727 <        cutoffRadius_ = 12.0;
728 <      } else {
729 <        RealType thisCut;
730 <        set<AtomType*>::iterator i;
731 <        set<AtomType*> atomTypes;
732 <        atomTypes = getSimulatedAtomTypes();        
733 <        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
734 <          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
735 <          cutoffRadius_ = max(thisCut, cutoffRadius_);
736 <        }
737 <        sprintf(painCave.errMsg,
738 <                "SimInfo: No value was set for the cutoffRadius.\n"
739 <                "\tOpenMD will use %lf angstroms.\n",
740 <                cutoffRadius_);
741 <        painCave.isFatal = 0;
742 <        painCave.severity = OPENMD_INFO;
743 <        simError();
744 <      }            
745 <    }
727 >    vector<int> foundTypes;
728 >    set<AtomType*>::iterator i;
729 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
730 >      foundTypes.push_back( (*i)->getIdent() );
731  
732 <    map<string, CutoffMethod> stringToCutoffMethod;
733 <    stringToCutoffMethod["HARD"] = HARD;
734 <    stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION;
735 <    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
736 <    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
732 >    // count_local holds the number of found types on this processor
733 >    int count_local = foundTypes.size();
734 >
735 >    int nproc = MPI::COMM_WORLD.Get_size();
736 >
737 >    // we need arrays to hold the counts and displacement vectors for
738 >    // all processors
739 >    vector<int> counts(nproc, 0);
740 >    vector<int> disps(nproc, 0);
741 >
742 >    // fill the counts array
743 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
744 >                              1, MPI::INT);
745    
746 <    if (simParams_->haveCutoffMethod()) {
747 <      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
748 <      map<string, CutoffMethod>::iterator i;
749 <      i = stringToCutoffMethod.find(cutMeth);
750 <      if (i == stringToCutoffMethod.end()) {
751 <        sprintf(painCave.errMsg,
759 <                "SimInfo: Could not find chosen cutoffMethod %s\n"
760 <                "\tShould be one of: "
761 <                "HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
762 <                cutMeth.c_str());
763 <        painCave.isFatal = 1;
764 <        painCave.severity = OPENMD_ERROR;
765 <        simError();
766 <      } else {
767 <        cutoffMethod_ = i->second;
768 <      }
769 <    } else {
770 <      sprintf(painCave.errMsg,
771 <              "SimInfo: No value was set for the cutoffMethod.\n"
772 <              "\tOpenMD will use SHIFTED_FORCE.\n");
773 <        painCave.isFatal = 0;
774 <        painCave.severity = OPENMD_INFO;
775 <        simError();
776 <        cutoffMethod_ = SHIFTED_FORCE;        
746 >    // use the processor counts to compute the displacement array
747 >    disps[0] = 0;    
748 >    int totalCount = counts[0];
749 >    for (int iproc = 1; iproc < nproc; iproc++) {
750 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
751 >      totalCount += counts[iproc];
752      }
753 <  }
754 <  
755 <  /**
781 <   * setupSwitching
782 <   *
783 <   * Sets the values of switchingRadius and
784 <   *  If the switchingRadius was explicitly set, use that value (but check it)
785 <   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
786 <   */
787 <  void SimInfo::setupSwitching() {
753 >
754 >    // we need a (possibly redundant) set of all found types:
755 >    vector<int> ftGlobal(totalCount);
756      
757 <    if (simParams_->haveSwitchingRadius()) {
758 <      switchingRadius_ = simParams_->getSwitchingRadius();
759 <      if (switchingRadius_ > cutoffRadius_) {        
760 <        sprintf(painCave.errMsg,
761 <                "SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
762 <                switchingRadius_, cutoffRadius_);
763 <        painCave.isFatal = 1;
764 <        painCave.severity = OPENMD_ERROR;
765 <        simError();
766 <      }
767 <    } else {      
768 <      switchingRadius_ = 0.85 * cutoffRadius_;
769 <      sprintf(painCave.errMsg,
802 <              "SimInfo: No value was set for the switchingRadius.\n"
803 <              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
804 <              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
805 <      painCave.isFatal = 0;
806 <      painCave.severity = OPENMD_WARNING;
807 <      simError();
808 <    }          
757 >    // now spray out the foundTypes to all the other processors:    
758 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
759 >                               &ftGlobal[0], &counts[0], &disps[0],
760 >                               MPI::INT);
761 >
762 >    vector<int>::iterator j;
763 >
764 >    // foundIdents is a stl set, so inserting an already found ident
765 >    // will have no effect.
766 >    set<int> foundIdents;
767 >
768 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
769 >      foundIdents.insert((*j));
770      
771 <    if (simParams_->haveSwitchingFunctionType()) {
772 <      string funcType = simParams_->getSwitchingFunctionType();
773 <      toUpper(funcType);
774 <      if (funcType == "CUBIC") {
775 <        sft_ = cubic;
776 <      } else {
777 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
817 <          sft_ = fifth_order_poly;
818 <        } else {
819 <          // throw error        
820 <          sprintf( painCave.errMsg,
821 <                   "SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n"
822 <                   "\tswitchingFunctionType must be one of: "
823 <                   "\"cubic\" or \"fifth_order_polynomial\".",
824 <                   funcType.c_str() );
825 <          painCave.isFatal = 1;
826 <          painCave.severity = OPENMD_ERROR;
827 <          simError();
828 <        }          
829 <      }
830 <    }
831 <  }
771 >    // now iterate over the foundIdents and get the actual atom types
772 >    // that correspond to these:
773 >    set<int>::iterator it;
774 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
775 >      atomTypes.insert( forceField_->getAtomType((*it)) );
776 >
777 > #endif
778  
779 <  /**
834 <   * setupNeighborlists
835 <   *
836 <   *  If the skinThickness was explicitly set, use that value (but check it)
837 <   *  If the skinThickness was not explicitly set: use 1.0 angstroms
838 <   */
839 <  void SimInfo::setupNeighborlists() {    
840 <    if (simParams_->haveSkinThickness()) {
841 <      skinThickness_ = simParams_->getSkinThickness();
842 <    } else {      
843 <      skinThickness_ = 1.0;
844 <      sprintf(painCave.errMsg,
845 <              "SimInfo: No value was set for the skinThickness.\n"
846 <              "\tOpenMD will use a default value of %f Angstroms\n"
847 <              "\tfor this simulation\n", skinThickness_);
848 <      painCave.severity = OPENMD_INFO;
849 <      painCave.isFatal = 0;
850 <      simError();
851 <    }            
779 >    return atomTypes;        
780    }
781  
782    void SimInfo::setupSimVariables() {
# Line 859 | Line 787 | namespace OpenMD {
787        if ( simParams_->getAccumulateBoxDipole() ) {
788          calcBoxDipole_ = true;      
789        }
790 <
790 >    
791      set<AtomType*>::iterator i;
792      set<AtomType*> atomTypes;
793      atomTypes = getSimulatedAtomTypes();    
794 <    int usesElectrostatic = 0;
795 <    int usesMetallic = 0;
796 <    int usesDirectional = 0;
794 >    bool usesElectrostatic = false;
795 >    bool usesMetallic = false;
796 >    bool usesDirectional = false;
797 >    bool usesFluctuatingCharges =  false;
798      //loop over all of the atom types
799      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
800        usesElectrostatic |= (*i)->isElectrostatic();
801        usesMetallic |= (*i)->isMetal();
802        usesDirectional |= (*i)->isDirectional();
803 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
804      }
805  
806 < #ifdef IS_MPI    
807 <    int temp;
806 > #ifdef IS_MPI
807 >    bool temp;
808      temp = usesDirectional;
809 <    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 <
809 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
810 >                              MPI::LOR);
811 >        
812      temp = usesMetallic;
813 <    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
814 <
813 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
814 >                              MPI::LOR);
815 >    
816      temp = usesElectrostatic;
817 <    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
817 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
818 >                              MPI::LOR);
819 >
820 >    temp = usesFluctuatingCharges;
821 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
822 >                              MPI::LOR);
823 > #else
824 >
825 >    usesDirectionalAtoms_ = usesDirectional;
826 >    usesMetallicAtoms_ = usesMetallic;
827 >    usesElectrostaticAtoms_ = usesElectrostatic;
828 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
829 >
830   #endif
831 <    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
832 <    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
833 <    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
834 <    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
891 <    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
892 <    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
831 >    
832 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
833 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
834 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
835    }
836  
895  void SimInfo::setupFortranSim() {
896    int isError;
897    int nExclude, nOneTwo, nOneThree, nOneFour;
898    vector<int> fortranGlobalGroupMembership;
899    
900    notifyFortranSkinThickness(&skinThickness_);
837  
838 <    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
839 <    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
840 <    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
838 >  vector<int> SimInfo::getGlobalAtomIndices() {
839 >    SimInfo::MoleculeIterator mi;
840 >    Molecule* mol;
841 >    Molecule::AtomIterator ai;
842 >    Atom* atom;
843  
844 <    isError = 0;
845 <
846 <    //globalGroupMembership_ is filled by SimCreator    
847 <    for (int i = 0; i < nGlobalAtoms_; i++) {
848 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
844 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
845 >    
846 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
847 >      
848 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
849 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
850 >      }
851      }
852 +    return GlobalAtomIndices;
853 +  }
854  
855 +
856 +  vector<int> SimInfo::getGlobalGroupIndices() {
857 +    SimInfo::MoleculeIterator mi;
858 +    Molecule* mol;
859 +    Molecule::CutoffGroupIterator ci;
860 +    CutoffGroup* cg;
861 +
862 +    vector<int> GlobalGroupIndices;
863 +    
864 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
865 +      
866 +      //local index of cutoff group is trivial, it only depends on the
867 +      //order of travesing
868 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
869 +           cg = mol->nextCutoffGroup(ci)) {
870 +        GlobalGroupIndices.push_back(cg->getGlobalIndex());
871 +      }        
872 +    }
873 +    return GlobalGroupIndices;
874 +  }
875 +
876 +
877 +  void SimInfo::prepareTopology() {
878 +    int nExclude, nOneTwo, nOneThree, nOneFour;
879 +
880      //calculate mass ratio of cutoff group
914    vector<RealType> mfact;
881      SimInfo::MoleculeIterator mi;
882      Molecule* mol;
883      Molecule::CutoffGroupIterator ci;
# Line 920 | Line 886 | namespace OpenMD {
886      Atom* atom;
887      RealType totalMass;
888  
889 <    //to avoid memory reallocation, reserve enough space for mfact
890 <    mfact.reserve(getNCutoffGroups());
889 >    /**
890 >     * The mass factor is the relative mass of an atom to the total
891 >     * mass of the cutoff group it belongs to.  By default, all atoms
892 >     * are their own cutoff groups, and therefore have mass factors of
893 >     * 1.  We need some special handling for massless atoms, which
894 >     * will be treated as carrying the entire mass of the cutoff
895 >     * group.
896 >     */
897 >    massFactors_.clear();
898 >    massFactors_.resize(getNAtoms(), 1.0);
899      
900      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
901 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
901 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
902 >           cg = mol->nextCutoffGroup(ci)) {
903  
904          totalMass = cg->getMass();
905          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
906            // Check for massless groups - set mfact to 1 if true
907 <          if (totalMass != 0)
908 <            mfact.push_back(atom->getMass()/totalMass);
907 >          if (totalMass != 0)
908 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
909            else
910 <            mfact.push_back( 1.0 );
910 >            massFactors_[atom->getLocalIndex()] = 1.0;
911          }
912        }      
913      }
914  
915 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
941 <    vector<int> identArray;
915 >    // Build the identArray_
916  
917 <    //to avoid memory reallocation, reserve enough space identArray
918 <    identArray.reserve(getNAtoms());
945 <    
917 >    identArray_.clear();
918 >    identArray_.reserve(getNAtoms());    
919      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
920        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
921 <        identArray.push_back(atom->getIdent());
921 >        identArray_.push_back(atom->getIdent());
922        }
923      }    
951
952    //fill molMembershipArray
953    //molMembershipArray is filled by SimCreator    
954    vector<int> molMembershipArray(nGlobalAtoms_);
955    for (int i = 0; i < nGlobalAtoms_; i++) {
956      molMembershipArray[i] = globalMolMembership_[i] + 1;
957    }
924      
925 <    //setup fortran simulation
925 >    //scan topology
926  
927      nExclude = excludedInteractions_.getSize();
928      nOneTwo = oneTwoInteractions_.getSize();
# Line 968 | Line 934 | namespace OpenMD {
934      int* oneThreeList = oneThreeInteractions_.getPairList();
935      int* oneFourList = oneFourInteractions_.getPairList();
936  
937 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
972 <                   &nExclude, excludeList,
973 <                   &nOneTwo, oneTwoList,
974 <                   &nOneThree, oneThreeList,
975 <                   &nOneFour, oneFourList,
976 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
977 <                   &fortranGlobalGroupMembership[0], &isError);
978 <    
979 <    if( isError ){
980 <      
981 <      sprintf( painCave.errMsg,
982 <               "There was an error setting the simulation information in fortran.\n" );
983 <      painCave.isFatal = 1;
984 <      painCave.severity = OPENMD_ERROR;
985 <      simError();
986 <    }
987 <    
988 <    
989 <    sprintf( checkPointMsg,
990 <             "succesfully sent the simulation information to fortran.\n");
991 <    
992 <    errorCheckPoint();
993 <    
994 <    // Setup number of neighbors in neighbor list if present
995 <    if (simParams_->haveNeighborListNeighbors()) {
996 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
997 <      setNeighbors(&nlistNeighbors);
998 <    }
999 <  
1000 <
937 >    topologyDone_ = true;
938    }
939  
1003
1004  void SimInfo::setupFortranParallel() {
1005 #ifdef IS_MPI    
1006    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
1007    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1008    vector<int> localToGlobalCutoffGroupIndex;
1009    SimInfo::MoleculeIterator mi;
1010    Molecule::AtomIterator ai;
1011    Molecule::CutoffGroupIterator ci;
1012    Molecule* mol;
1013    Atom* atom;
1014    CutoffGroup* cg;
1015    mpiSimData parallelData;
1016    int isError;
1017
1018    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1019
1020      //local index(index in DataStorge) of atom is important
1021      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1022        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1023      }
1024
1025      //local index of cutoff group is trivial, it only depends on the order of travesing
1026      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1027        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1028      }        
1029        
1030    }
1031
1032    //fill up mpiSimData struct
1033    parallelData.nMolGlobal = getNGlobalMolecules();
1034    parallelData.nMolLocal = getNMolecules();
1035    parallelData.nAtomsGlobal = getNGlobalAtoms();
1036    parallelData.nAtomsLocal = getNAtoms();
1037    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1038    parallelData.nGroupsLocal = getNCutoffGroups();
1039    parallelData.myNode = worldRank;
1040    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1041
1042    //pass mpiSimData struct and index arrays to fortran
1043    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1044                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
1045                    &localToGlobalCutoffGroupIndex[0], &isError);
1046
1047    if (isError) {
1048      sprintf(painCave.errMsg,
1049              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1050      painCave.isFatal = 1;
1051      simError();
1052    }
1053
1054    sprintf(checkPointMsg, " mpiRefresh successful.\n");
1055    errorCheckPoint();
1056
1057 #endif
1058  }
1059
1060
1061  void SimInfo::setupAccumulateBoxDipole() {    
1062
1063
1064  }
1065
940    void SimInfo::addProperty(GenericData* genData) {
941      properties_.addProperty(genData);  
942    }
# Line 1097 | Line 971 | namespace OpenMD {
971      Molecule* mol;
972      RigidBody* rb;
973      Atom* atom;
974 +    CutoffGroup* cg;
975      SimInfo::MoleculeIterator mi;
976      Molecule::RigidBodyIterator rbIter;
977 <    Molecule::AtomIterator atomIter;;
977 >    Molecule::AtomIterator atomIter;
978 >    Molecule::CutoffGroupIterator cgIter;
979  
980      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
981          
# Line 1110 | Line 986 | namespace OpenMD {
986        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
987          rb->setSnapshotManager(sman_);
988        }
989 +
990 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
991 +        cg->setSnapshotManager(sman_);
992 +      }
993      }    
994      
995    }
996  
1117  Vector3d SimInfo::getComVel(){
1118    SimInfo::MoleculeIterator i;
1119    Molecule* mol;
997  
1121    Vector3d comVel(0.0);
1122    RealType totalMass = 0.0;
1123    
1124
1125    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1126      RealType mass = mol->getMass();
1127      totalMass += mass;
1128      comVel += mass * mol->getComVel();
1129    }  
1130
1131 #ifdef IS_MPI
1132    RealType tmpMass = totalMass;
1133    Vector3d tmpComVel(comVel);    
1134    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1135    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1136 #endif
1137
1138    comVel /= totalMass;
1139
1140    return comVel;
1141  }
1142
1143  Vector3d SimInfo::getCom(){
1144    SimInfo::MoleculeIterator i;
1145    Molecule* mol;
1146
1147    Vector3d com(0.0);
1148    RealType totalMass = 0.0;
1149    
1150    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1151      RealType mass = mol->getMass();
1152      totalMass += mass;
1153      com += mass * mol->getCom();
1154    }  
1155
1156 #ifdef IS_MPI
1157    RealType tmpMass = totalMass;
1158    Vector3d tmpCom(com);    
1159    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1160    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1161 #endif
1162
1163    com /= totalMass;
1164
1165    return com;
1166
1167  }        
1168
998    ostream& operator <<(ostream& o, SimInfo& info) {
999  
1000      return o;
1001    }
1002    
1003 <  
1175 <   /*
1176 <   Returns center of mass and center of mass velocity in one function call.
1177 <   */
1178 <  
1179 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1180 <      SimInfo::MoleculeIterator i;
1181 <      Molecule* mol;
1182 <      
1183 <    
1184 <      RealType totalMass = 0.0;
1185 <    
1186 <
1187 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1188 <         RealType mass = mol->getMass();
1189 <         totalMass += mass;
1190 <         com += mass * mol->getCom();
1191 <         comVel += mass * mol->getComVel();          
1192 <      }  
1193 <      
1194 < #ifdef IS_MPI
1195 <      RealType tmpMass = totalMass;
1196 <      Vector3d tmpCom(com);  
1197 <      Vector3d tmpComVel(comVel);
1198 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1199 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1200 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1201 < #endif
1202 <      
1203 <      com /= totalMass;
1204 <      comVel /= totalMass;
1205 <   }        
1206 <  
1207 <   /*
1208 <   Return intertia tensor for entire system and angular momentum Vector.
1209 <
1210 <
1211 <       [  Ixx -Ixy  -Ixz ]
1212 <    J =| -Iyx  Iyy  -Iyz |
1213 <       [ -Izx -Iyz   Izz ]
1214 <    */
1215 <
1216 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1217 <      
1218 <
1219 <      RealType xx = 0.0;
1220 <      RealType yy = 0.0;
1221 <      RealType zz = 0.0;
1222 <      RealType xy = 0.0;
1223 <      RealType xz = 0.0;
1224 <      RealType yz = 0.0;
1225 <      Vector3d com(0.0);
1226 <      Vector3d comVel(0.0);
1227 <      
1228 <      getComAll(com, comVel);
1229 <      
1230 <      SimInfo::MoleculeIterator i;
1231 <      Molecule* mol;
1232 <      
1233 <      Vector3d thisq(0.0);
1234 <      Vector3d thisv(0.0);
1235 <
1236 <      RealType thisMass = 0.0;
1237 <    
1238 <      
1239 <      
1240 <  
1241 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1242 <        
1243 <         thisq = mol->getCom()-com;
1244 <         thisv = mol->getComVel()-comVel;
1245 <         thisMass = mol->getMass();
1246 <         // Compute moment of intertia coefficients.
1247 <         xx += thisq[0]*thisq[0]*thisMass;
1248 <         yy += thisq[1]*thisq[1]*thisMass;
1249 <         zz += thisq[2]*thisq[2]*thisMass;
1250 <        
1251 <         // compute products of intertia
1252 <         xy += thisq[0]*thisq[1]*thisMass;
1253 <         xz += thisq[0]*thisq[2]*thisMass;
1254 <         yz += thisq[1]*thisq[2]*thisMass;
1255 <            
1256 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1257 <            
1258 <      }  
1259 <      
1260 <      
1261 <      inertiaTensor(0,0) = yy + zz;
1262 <      inertiaTensor(0,1) = -xy;
1263 <      inertiaTensor(0,2) = -xz;
1264 <      inertiaTensor(1,0) = -xy;
1265 <      inertiaTensor(1,1) = xx + zz;
1266 <      inertiaTensor(1,2) = -yz;
1267 <      inertiaTensor(2,0) = -xz;
1268 <      inertiaTensor(2,1) = -yz;
1269 <      inertiaTensor(2,2) = xx + yy;
1270 <      
1271 < #ifdef IS_MPI
1272 <      Mat3x3d tmpI(inertiaTensor);
1273 <      Vector3d tmpAngMom;
1274 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1275 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1276 < #endif
1277 <              
1278 <      return;
1279 <   }
1280 <
1281 <   //Returns the angular momentum of the system
1282 <   Vector3d SimInfo::getAngularMomentum(){
1283 <      
1284 <      Vector3d com(0.0);
1285 <      Vector3d comVel(0.0);
1286 <      Vector3d angularMomentum(0.0);
1287 <      
1288 <      getComAll(com,comVel);
1289 <      
1290 <      SimInfo::MoleculeIterator i;
1291 <      Molecule* mol;
1292 <      
1293 <      Vector3d thisr(0.0);
1294 <      Vector3d thisp(0.0);
1295 <      
1296 <      RealType thisMass;
1297 <      
1298 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1299 <        thisMass = mol->getMass();
1300 <        thisr = mol->getCom()-com;
1301 <        thisp = (mol->getComVel()-comVel)*thisMass;
1302 <        
1303 <        angularMomentum += cross( thisr, thisp );
1304 <        
1305 <      }  
1306 <      
1307 < #ifdef IS_MPI
1308 <      Vector3d tmpAngMom;
1309 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1310 < #endif
1311 <      
1312 <      return angularMomentum;
1313 <   }
1314 <  
1003 >  
1004    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1005      return IOIndexToIntegrableObject.at(index);
1006    }
# Line 1319 | Line 1008 | namespace OpenMD {
1008    void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1009      IOIndexToIntegrableObject= v;
1010    }
1322
1323  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1324     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1325     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1326     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1327  */
1328  void SimInfo::getGyrationalVolume(RealType &volume){
1329    Mat3x3d intTensor;
1330    RealType det;
1331    Vector3d dummyAngMom;
1332    RealType sysconstants;
1333    RealType geomCnst;
1334
1335    geomCnst = 3.0/2.0;
1336    /* Get the inertial tensor and angular momentum for free*/
1337    getInertiaTensor(intTensor,dummyAngMom);
1338    
1339    det = intTensor.determinant();
1340    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1341    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1342    return;
1343  }
1344
1345  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1346    Mat3x3d intTensor;
1347    Vector3d dummyAngMom;
1348    RealType sysconstants;
1349    RealType geomCnst;
1350
1351    geomCnst = 3.0/2.0;
1352    /* Get the inertial tensor and angular momentum for free*/
1353    getInertiaTensor(intTensor,dummyAngMom);
1354    
1355    detI = intTensor.determinant();
1356    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1357    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1358    return;
1359  }
1011   /*
1012     void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1013        assert( v.size() == nAtoms_ + nRigidBodies_);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines