ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 557 by chuckv, Tue May 31 22:31:54 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1767 by gezelter, Fri Jul 6 22:01:58 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 48 | Line 49
49  
50   #include <algorithm>
51   #include <set>
52 + #include <map>
53  
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/doForces_interface.h"
56 < #include "UseTheForce/notifyCutoffs_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61 <
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
64 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <
70 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 <                   ForceField* ff, Globals* simParams) :
72 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
73 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false) {
79 <
78 <            
79 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80 <      MoleculeStamp* molStamp;
81 <      int nMolWithSameStamp;
82 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
84 <      CutoffGroupStamp* cgStamp;    
85 <      RigidBodyStamp* rbStamp;
86 <      int nRigidAtoms = 0;
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
82 <        molStamp = i->first;
83 <        nMolWithSameStamp = i->second;
84 <        
85 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
86 <
87 <        //calculate atoms in molecules
88 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
89 <
90 <
91 <        //calculate atoms in cutoff groups
92 <        int nAtomsInGroups = 0;
93 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
94 <        
95 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
96 <          cgStamp = molStamp->getCutoffGroup(j);
97 <          nAtomsInGroups += cgStamp->getNMembers();
98 <        }
99 <
100 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
101 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
102 <
103 <        //calculate atoms in rigid bodies
104 <        int nAtomsInRigidBodies = 0;
105 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
106 <        
114 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
115 <          rbStamp = molStamp->getRigidBody(j);
116 <          nAtomsInRigidBodies += rbStamp->getNMembers();
117 <        }
118 <
119 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
121 <        
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94 >      
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107        }
108 <
109 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
110 <      //therefore the total number of cutoff groups in the system is equal to
111 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
112 <      //file plus the number of cutoff groups defined in meta-data file
113 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
114 <
115 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
116 <      //therefore the total number of  integrable objects in the system is equal to
117 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
118 <      //file plus the number of  rigid bodies defined in meta-data file
119 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
120 <
121 <      nGlobalMols_ = molStampIds_.size();
122 <
123 < #ifdef IS_MPI    
124 <      molToProcMap_.resize(nGlobalMols_);
140 < #endif
141 <
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125      }
126 +    
127 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 +    //group therefore the total number of cutoff groups in the system is
129 +    //equal to the total number of atoms minus number of atoms belong to
130 +    //cutoff group defined in meta-data file plus the number of cutoff
131 +    //groups defined in meta-data file
132  
133 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 +    
135 +    //every free atom (atom does not belong to rigid bodies) is an
136 +    //integrable object therefore the total number of integrable objects
137 +    //in the system is equal to the total number of atoms minus number of
138 +    //atoms belong to rigid body defined in meta-data file plus the number
139 +    //of rigid bodies defined in meta-data file
140 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 +      + nGlobalRigidBodies_;
142 +    
143 +    nGlobalMols_ = molStampIds_.size();
144 +    molToProcMap_.resize(nGlobalMols_);
145 +  }
146 +  
147    SimInfo::~SimInfo() {
148 <    std::map<int, Molecule*>::iterator i;
148 >    map<int, Molecule*>::iterator i;
149      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150        delete i->second;
151      }
152      molecules_.clear();
153        
151    delete stamps_;
154      delete sman_;
155      delete simParams_;
156      delete forceField_;
157    }
158  
157  int SimInfo::getNGlobalConstraints() {
158    int nGlobalConstraints;
159 #ifdef IS_MPI
160    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161                  MPI_COMM_WORLD);    
162 #else
163    nGlobalConstraints =  nConstraints_;
164 #endif
165    return nGlobalConstraints;
166  }
159  
160    bool SimInfo::addMolecule(Molecule* mol) {
161      MoleculeIterator i;
162 <
162 >    
163      i = molecules_.find(mol->getGlobalIndex());
164      if (i == molecules_.end() ) {
165 <
166 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
167 <        
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168        nAtoms_ += mol->getNAtoms();
169        nBonds_ += mol->getNBonds();
170        nBends_ += mol->getNBends();
171        nTorsions_ += mol->getNTorsions();
172 +      nInversions_ += mol->getNInversions();
173        nRigidBodies_ += mol->getNRigidBodies();
174        nIntegrableObjects_ += mol->getNIntegrableObjects();
175        nCutoffGroups_ += mol->getNCutoffGroups();
176        nConstraints_ += mol->getNConstraintPairs();
177 <
178 <      addExcludePairs(mol);
179 <        
177 >      
178 >      addInteractionPairs(mol);
179 >      
180        return true;
181      } else {
182        return false;
183      }
184    }
185 <
185 >  
186    bool SimInfo::removeMolecule(Molecule* mol) {
187      MoleculeIterator i;
188      i = molecules_.find(mol->getGlobalIndex());
# Line 202 | Line 195 | namespace oopse {
195        nBonds_ -= mol->getNBonds();
196        nBends_ -= mol->getNBends();
197        nTorsions_ -= mol->getNTorsions();
198 +      nInversions_ -= mol->getNInversions();
199        nRigidBodies_ -= mol->getNRigidBodies();
200        nIntegrableObjects_ -= mol->getNIntegrableObjects();
201        nCutoffGroups_ -= mol->getNCutoffGroups();
202        nConstraints_ -= mol->getNConstraintPairs();
203  
204 <      removeExcludePairs(mol);
204 >      removeInteractionPairs(mol);
205        molecules_.erase(mol->getGlobalIndex());
206  
207        delete mol;
# Line 216 | Line 210 | namespace oopse {
210      } else {
211        return false;
212      }
219
220
213    }    
214  
215          
# Line 233 | Line 225 | namespace oopse {
225  
226  
227    void SimInfo::calcNdf() {
228 <    int ndf_local;
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230 <    std::vector<StuntDouble*>::iterator j;
230 >    vector<StuntDouble*>::iterator j;
231 >    vector<Atom*>::iterator k;
232 >
233      Molecule* mol;
234      StuntDouble* integrableObject;
235 +    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
# Line 254 | Line 250 | namespace oopse {
250              ndf_local += 3;
251            }
252          }
253 <            
254 <      }//end for (integrableObject)
255 <    }// end for (mol)
253 >      }
254 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 >           atom = mol->nextFluctuatingCharge(k)) {
256 >        if (atom->isFluctuatingCharge()) {
257 >          nfq_local++;
258 >        }
259 >      }
260 >    }
261      
262 +    ndfLocal_ = ndf_local;
263 +
264      // n_constraints is local, so subtract them on each processor
265      ndf_local -= nConstraints_;
266  
267   #ifdef IS_MPI
268      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
269 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
270   #else
271      ndf_ = ndf_local;
272 +    nGlobalFluctuatingCharges_ = nfq_local;
273   #endif
274  
275      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 273 | Line 278 | namespace oopse {
278  
279    }
280  
281 +  int SimInfo::getFdf() {
282 + #ifdef IS_MPI
283 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284 + #else
285 +    fdf_ = fdf_local;
286 + #endif
287 +    return fdf_;
288 +  }
289 +  
290 +  unsigned int SimInfo::getNLocalCutoffGroups(){
291 +    int nLocalCutoffAtoms = 0;
292 +    Molecule* mol;
293 +    MoleculeIterator mi;
294 +    CutoffGroup* cg;
295 +    Molecule::CutoffGroupIterator ci;
296 +    
297 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
298 +      
299 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
300 +           cg = mol->nextCutoffGroup(ci)) {
301 +        nLocalCutoffAtoms += cg->getNumAtom();
302 +        
303 +      }        
304 +    }
305 +    
306 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
307 +  }
308 +    
309    void SimInfo::calcNdfRaw() {
310      int ndfRaw_local;
311  
312      MoleculeIterator i;
313 <    std::vector<StuntDouble*>::iterator j;
313 >    vector<StuntDouble*>::iterator j;
314      Molecule* mol;
315      StuntDouble* integrableObject;
316  
# Line 324 | Line 357 | namespace oopse {
357  
358    }
359  
360 <  void SimInfo::addExcludePairs(Molecule* mol) {
361 <    std::vector<Bond*>::iterator bondIter;
362 <    std::vector<Bend*>::iterator bendIter;
363 <    std::vector<Torsion*>::iterator torsionIter;
360 >  void SimInfo::addInteractionPairs(Molecule* mol) {
361 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
362 >    vector<Bond*>::iterator bondIter;
363 >    vector<Bend*>::iterator bendIter;
364 >    vector<Torsion*>::iterator torsionIter;
365 >    vector<Inversion*>::iterator inversionIter;
366      Bond* bond;
367      Bend* bend;
368      Torsion* torsion;
369 +    Inversion* inversion;
370      int a;
371      int b;
372      int c;
373      int d;
374 +
375 +    // atomGroups can be used to add special interaction maps between
376 +    // groups of atoms that are in two separate rigid bodies.
377 +    // However, most site-site interactions between two rigid bodies
378 +    // are probably not special, just the ones between the physically
379 +    // bonded atoms.  Interactions *within* a single rigid body should
380 +    // always be excluded.  These are done at the bottom of this
381 +    // function.
382 +
383 +    map<int, set<int> > atomGroups;
384 +    Molecule::RigidBodyIterator rbIter;
385 +    RigidBody* rb;
386 +    Molecule::IntegrableObjectIterator ii;
387 +    StuntDouble* integrableObject;
388      
389 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
389 >    for (integrableObject = mol->beginIntegrableObject(ii);
390 >         integrableObject != NULL;
391 >         integrableObject = mol->nextIntegrableObject(ii)) {
392 >      
393 >      if (integrableObject->isRigidBody()) {
394 >        rb = static_cast<RigidBody*>(integrableObject);
395 >        vector<Atom*> atoms = rb->getAtoms();
396 >        set<int> rigidAtoms;
397 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
398 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
399 >        }
400 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
401 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
402 >        }      
403 >      } else {
404 >        set<int> oneAtomSet;
405 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
406 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
407 >      }
408 >    }  
409 >          
410 >    for (bond= mol->beginBond(bondIter); bond != NULL;
411 >         bond = mol->nextBond(bondIter)) {
412 >
413        a = bond->getAtomA()->getGlobalIndex();
414 <      b = bond->getAtomB()->getGlobalIndex();        
415 <      exclude_.addPair(a, b);
414 >      b = bond->getAtomB()->getGlobalIndex();  
415 >    
416 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
417 >        oneTwoInteractions_.addPair(a, b);
418 >      } else {
419 >        excludedInteractions_.addPair(a, b);
420 >      }
421      }
422  
423 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
423 >    for (bend= mol->beginBend(bendIter); bend != NULL;
424 >         bend = mol->nextBend(bendIter)) {
425 >
426        a = bend->getAtomA()->getGlobalIndex();
427        b = bend->getAtomB()->getGlobalIndex();        
428        c = bend->getAtomC()->getGlobalIndex();
429 +      
430 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
431 +        oneTwoInteractions_.addPair(a, b);      
432 +        oneTwoInteractions_.addPair(b, c);
433 +      } else {
434 +        excludedInteractions_.addPair(a, b);
435 +        excludedInteractions_.addPair(b, c);
436 +      }
437  
438 <      exclude_.addPair(a, b);
439 <      exclude_.addPair(a, c);
440 <      exclude_.addPair(b, c);        
438 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
439 >        oneThreeInteractions_.addPair(a, c);      
440 >      } else {
441 >        excludedInteractions_.addPair(a, c);
442 >      }
443      }
444  
445 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
445 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
446 >         torsion = mol->nextTorsion(torsionIter)) {
447 >
448        a = torsion->getAtomA()->getGlobalIndex();
449        b = torsion->getAtomB()->getGlobalIndex();        
450        c = torsion->getAtomC()->getGlobalIndex();        
451 <      d = torsion->getAtomD()->getGlobalIndex();        
451 >      d = torsion->getAtomD()->getGlobalIndex();      
452  
453 <      exclude_.addPair(a, b);
454 <      exclude_.addPair(a, c);
455 <      exclude_.addPair(a, d);
456 <      exclude_.addPair(b, c);
457 <      exclude_.addPair(b, d);
458 <      exclude_.addPair(c, d);        
453 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
454 >        oneTwoInteractions_.addPair(a, b);      
455 >        oneTwoInteractions_.addPair(b, c);
456 >        oneTwoInteractions_.addPair(c, d);
457 >      } else {
458 >        excludedInteractions_.addPair(a, b);
459 >        excludedInteractions_.addPair(b, c);
460 >        excludedInteractions_.addPair(c, d);
461 >      }
462 >
463 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
464 >        oneThreeInteractions_.addPair(a, c);      
465 >        oneThreeInteractions_.addPair(b, d);      
466 >      } else {
467 >        excludedInteractions_.addPair(a, c);
468 >        excludedInteractions_.addPair(b, d);
469 >      }
470 >
471 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
472 >        oneFourInteractions_.addPair(a, d);      
473 >      } else {
474 >        excludedInteractions_.addPair(a, d);
475 >      }
476      }
477  
478 <    Molecule::RigidBodyIterator rbIter;
479 <    RigidBody* rb;
480 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
481 <      std::vector<Atom*> atoms = rb->getAtoms();
482 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
483 <        for (int j = i + 1; j < atoms.size(); ++j) {
478 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
479 >         inversion = mol->nextInversion(inversionIter)) {
480 >
481 >      a = inversion->getAtomA()->getGlobalIndex();
482 >      b = inversion->getAtomB()->getGlobalIndex();        
483 >      c = inversion->getAtomC()->getGlobalIndex();        
484 >      d = inversion->getAtomD()->getGlobalIndex();        
485 >
486 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
487 >        oneTwoInteractions_.addPair(a, b);      
488 >        oneTwoInteractions_.addPair(a, c);
489 >        oneTwoInteractions_.addPair(a, d);
490 >      } else {
491 >        excludedInteractions_.addPair(a, b);
492 >        excludedInteractions_.addPair(a, c);
493 >        excludedInteractions_.addPair(a, d);
494 >      }
495 >
496 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
497 >        oneThreeInteractions_.addPair(b, c);    
498 >        oneThreeInteractions_.addPair(b, d);    
499 >        oneThreeInteractions_.addPair(c, d);      
500 >      } else {
501 >        excludedInteractions_.addPair(b, c);
502 >        excludedInteractions_.addPair(b, d);
503 >        excludedInteractions_.addPair(c, d);
504 >      }
505 >    }
506 >
507 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
508 >         rb = mol->nextRigidBody(rbIter)) {
509 >      vector<Atom*> atoms = rb->getAtoms();
510 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
511 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
512            a = atoms[i]->getGlobalIndex();
513            b = atoms[j]->getGlobalIndex();
514 <          exclude_.addPair(a, b);
514 >          excludedInteractions_.addPair(a, b);
515          }
516        }
517      }        
518  
519    }
520  
521 <  void SimInfo::removeExcludePairs(Molecule* mol) {
522 <    std::vector<Bond*>::iterator bondIter;
523 <    std::vector<Bend*>::iterator bendIter;
524 <    std::vector<Torsion*>::iterator torsionIter;
521 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
522 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
523 >    vector<Bond*>::iterator bondIter;
524 >    vector<Bend*>::iterator bendIter;
525 >    vector<Torsion*>::iterator torsionIter;
526 >    vector<Inversion*>::iterator inversionIter;
527      Bond* bond;
528      Bend* bend;
529      Torsion* torsion;
530 +    Inversion* inversion;
531      int a;
532      int b;
533      int c;
534      int d;
535 +
536 +    map<int, set<int> > atomGroups;
537 +    Molecule::RigidBodyIterator rbIter;
538 +    RigidBody* rb;
539 +    Molecule::IntegrableObjectIterator ii;
540 +    StuntDouble* integrableObject;
541      
542 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
542 >    for (integrableObject = mol->beginIntegrableObject(ii);
543 >         integrableObject != NULL;
544 >         integrableObject = mol->nextIntegrableObject(ii)) {
545 >      
546 >      if (integrableObject->isRigidBody()) {
547 >        rb = static_cast<RigidBody*>(integrableObject);
548 >        vector<Atom*> atoms = rb->getAtoms();
549 >        set<int> rigidAtoms;
550 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
551 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
552 >        }
553 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
554 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
555 >        }      
556 >      } else {
557 >        set<int> oneAtomSet;
558 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
559 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
560 >      }
561 >    }  
562 >
563 >    for (bond= mol->beginBond(bondIter); bond != NULL;
564 >         bond = mol->nextBond(bondIter)) {
565 >      
566        a = bond->getAtomA()->getGlobalIndex();
567 <      b = bond->getAtomB()->getGlobalIndex();        
568 <      exclude_.removePair(a, b);
567 >      b = bond->getAtomB()->getGlobalIndex();  
568 >    
569 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
570 >        oneTwoInteractions_.removePair(a, b);
571 >      } else {
572 >        excludedInteractions_.removePair(a, b);
573 >      }
574      }
575  
576 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
576 >    for (bend= mol->beginBend(bendIter); bend != NULL;
577 >         bend = mol->nextBend(bendIter)) {
578 >
579        a = bend->getAtomA()->getGlobalIndex();
580        b = bend->getAtomB()->getGlobalIndex();        
581        c = bend->getAtomC()->getGlobalIndex();
582 +      
583 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
584 +        oneTwoInteractions_.removePair(a, b);      
585 +        oneTwoInteractions_.removePair(b, c);
586 +      } else {
587 +        excludedInteractions_.removePair(a, b);
588 +        excludedInteractions_.removePair(b, c);
589 +      }
590  
591 <      exclude_.removePair(a, b);
592 <      exclude_.removePair(a, c);
593 <      exclude_.removePair(b, c);        
591 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
592 >        oneThreeInteractions_.removePair(a, c);      
593 >      } else {
594 >        excludedInteractions_.removePair(a, c);
595 >      }
596      }
597  
598 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
598 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
599 >         torsion = mol->nextTorsion(torsionIter)) {
600 >
601        a = torsion->getAtomA()->getGlobalIndex();
602        b = torsion->getAtomB()->getGlobalIndex();        
603        c = torsion->getAtomC()->getGlobalIndex();        
604 <      d = torsion->getAtomD()->getGlobalIndex();        
604 >      d = torsion->getAtomD()->getGlobalIndex();      
605 >  
606 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
607 >        oneTwoInteractions_.removePair(a, b);      
608 >        oneTwoInteractions_.removePair(b, c);
609 >        oneTwoInteractions_.removePair(c, d);
610 >      } else {
611 >        excludedInteractions_.removePair(a, b);
612 >        excludedInteractions_.removePair(b, c);
613 >        excludedInteractions_.removePair(c, d);
614 >      }
615  
616 <      exclude_.removePair(a, b);
617 <      exclude_.removePair(a, c);
618 <      exclude_.removePair(a, d);
619 <      exclude_.removePair(b, c);
620 <      exclude_.removePair(b, d);
621 <      exclude_.removePair(c, d);        
616 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
617 >        oneThreeInteractions_.removePair(a, c);      
618 >        oneThreeInteractions_.removePair(b, d);      
619 >      } else {
620 >        excludedInteractions_.removePair(a, c);
621 >        excludedInteractions_.removePair(b, d);
622 >      }
623 >
624 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
625 >        oneFourInteractions_.removePair(a, d);      
626 >      } else {
627 >        excludedInteractions_.removePair(a, d);
628 >      }
629      }
630  
631 <    Molecule::RigidBodyIterator rbIter;
632 <    RigidBody* rb;
633 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
634 <      std::vector<Atom*> atoms = rb->getAtoms();
635 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
636 <        for (int j = i + 1; j < atoms.size(); ++j) {
631 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
632 >         inversion = mol->nextInversion(inversionIter)) {
633 >
634 >      a = inversion->getAtomA()->getGlobalIndex();
635 >      b = inversion->getAtomB()->getGlobalIndex();        
636 >      c = inversion->getAtomC()->getGlobalIndex();        
637 >      d = inversion->getAtomD()->getGlobalIndex();        
638 >
639 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
640 >        oneTwoInteractions_.removePair(a, b);      
641 >        oneTwoInteractions_.removePair(a, c);
642 >        oneTwoInteractions_.removePair(a, d);
643 >      } else {
644 >        excludedInteractions_.removePair(a, b);
645 >        excludedInteractions_.removePair(a, c);
646 >        excludedInteractions_.removePair(a, d);
647 >      }
648 >
649 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
650 >        oneThreeInteractions_.removePair(b, c);    
651 >        oneThreeInteractions_.removePair(b, d);    
652 >        oneThreeInteractions_.removePair(c, d);      
653 >      } else {
654 >        excludedInteractions_.removePair(b, c);
655 >        excludedInteractions_.removePair(b, d);
656 >        excludedInteractions_.removePair(c, d);
657 >      }
658 >    }
659 >
660 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
661 >         rb = mol->nextRigidBody(rbIter)) {
662 >      vector<Atom*> atoms = rb->getAtoms();
663 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
664 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
665            a = atoms[i]->getGlobalIndex();
666            b = atoms[j]->getGlobalIndex();
667 <          exclude_.removePair(a, b);
667 >          excludedInteractions_.removePair(a, b);
668          }
669        }
670      }        
671 <
671 >    
672    }
673 <
674 <
673 >  
674 >  
675    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
676      int curStampId;
677 <
677 >    
678      //index from 0
679      curStampId = moleculeStamps_.size();
680  
# Line 449 | Line 682 | namespace oopse {
682      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
683    }
684  
452  void SimInfo::update() {
685  
686 <    setupSimType();
687 <
688 < #ifdef IS_MPI
689 <    setupFortranParallel();
690 < #endif
691 <
692 <    setupFortranSim();
693 <
694 <    //setup fortran force field
463 <    /** @deprecate */    
464 <    int isError = 0;
465 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
466 <    if(isError){
467 <      sprintf( painCave.errMsg,
468 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
469 <      painCave.isFatal = 1;
470 <      simError();
471 <    }
472 <  
473 <    
474 <    setupCutoff();
475 <
686 >  /**
687 >   * update
688 >   *
689 >   *  Performs the global checks and variable settings after the
690 >   *  objects have been created.
691 >   *
692 >   */
693 >  void SimInfo::update() {  
694 >    setupSimVariables();
695      calcNdf();
696      calcNdfRaw();
697      calcNdfTrans();
479
480    fortranInitialized_ = true;
698    }
699 <
700 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
699 >  
700 >  /**
701 >   * getSimulatedAtomTypes
702 >   *
703 >   * Returns an STL set of AtomType* that are actually present in this
704 >   * simulation.  Must query all processors to assemble this information.
705 >   *
706 >   */
707 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
708      SimInfo::MoleculeIterator mi;
709      Molecule* mol;
710      Molecule::AtomIterator ai;
711      Atom* atom;
712 <    std::set<AtomType*> atomTypes;
713 <
712 >    set<AtomType*> atomTypes;
713 >    
714      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
715 <
716 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
715 >      for(atom = mol->beginAtom(ai); atom != NULL;
716 >          atom = mol->nextAtom(ai)) {
717          atomTypes.insert(atom->getAtomType());
718 <      }
719 <        
718 >      }      
719 >    }    
720 >    
721 > #ifdef IS_MPI
722 >
723 >    // loop over the found atom types on this processor, and add their
724 >    // numerical idents to a vector:
725 >    
726 >    vector<int> foundTypes;
727 >    set<AtomType*>::iterator i;
728 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
729 >      foundTypes.push_back( (*i)->getIdent() );
730 >
731 >    // count_local holds the number of found types on this processor
732 >    int count_local = foundTypes.size();
733 >
734 >    int nproc = MPI::COMM_WORLD.Get_size();
735 >
736 >    // we need arrays to hold the counts and displacement vectors for
737 >    // all processors
738 >    vector<int> counts(nproc, 0);
739 >    vector<int> disps(nproc, 0);
740 >
741 >    // fill the counts array
742 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
743 >                              1, MPI::INT);
744 >  
745 >    // use the processor counts to compute the displacement array
746 >    disps[0] = 0;    
747 >    int totalCount = counts[0];
748 >    for (int iproc = 1; iproc < nproc; iproc++) {
749 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
750 >      totalCount += counts[iproc];
751      }
752  
753 +    // we need a (possibly redundant) set of all found types:
754 +    vector<int> ftGlobal(totalCount);
755 +    
756 +    // now spray out the foundTypes to all the other processors:    
757 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
758 +                               &ftGlobal[0], &counts[0], &disps[0],
759 +                               MPI::INT);
760 +
761 +    vector<int>::iterator j;
762 +
763 +    // foundIdents is a stl set, so inserting an already found ident
764 +    // will have no effect.
765 +    set<int> foundIdents;
766 +
767 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
768 +      foundIdents.insert((*j));
769 +    
770 +    // now iterate over the foundIdents and get the actual atom types
771 +    // that correspond to these:
772 +    set<int>::iterator it;
773 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
774 +      atomTypes.insert( forceField_->getAtomType((*it)) );
775 +
776 + #endif
777 +
778      return atomTypes;        
779    }
780  
781 <  void SimInfo::setupSimType() {
782 <    std::set<AtomType*>::iterator i;
783 <    std::set<AtomType*> atomTypes;
784 <    atomTypes = getUniqueAtomTypes();
781 >  void SimInfo::setupSimVariables() {
782 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
783 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
784 >    calcBoxDipole_ = false;
785 >    if ( simParams_->haveAccumulateBoxDipole() )
786 >      if ( simParams_->getAccumulateBoxDipole() ) {
787 >        calcBoxDipole_ = true;      
788 >      }
789      
790 <    int useLennardJones = 0;
791 <    int useElectrostatic = 0;
792 <    int useEAM = 0;
793 <    int useCharge = 0;
794 <    int useDirectional = 0;
795 <    int useDipole = 0;
796 <    int useGayBerne = 0;
513 <    int useSticky = 0;
514 <    int useStickyPower = 0;
515 <    int useShape = 0;
516 <    int useFLARB = 0; //it is not in AtomType yet
517 <    int useDirectionalAtom = 0;    
518 <    int useElectrostatics = 0;
519 <    //usePBC and useRF are from simParams
520 <    int usePBC = simParams_->getPBC();
521 <    int useRF = simParams_->getUseRF();
522 <
790 >    set<AtomType*>::iterator i;
791 >    set<AtomType*> atomTypes;
792 >    atomTypes = getSimulatedAtomTypes();    
793 >    bool usesElectrostatic = false;
794 >    bool usesMetallic = false;
795 >    bool usesDirectional = false;
796 >    bool usesFluctuatingCharges =  false;
797      //loop over all of the atom types
798      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
799 <      useLennardJones |= (*i)->isLennardJones();
800 <      useElectrostatic |= (*i)->isElectrostatic();
801 <      useEAM |= (*i)->isEAM();
802 <      useCharge |= (*i)->isCharge();
529 <      useDirectional |= (*i)->isDirectional();
530 <      useDipole |= (*i)->isDipole();
531 <      useGayBerne |= (*i)->isGayBerne();
532 <      useSticky |= (*i)->isSticky();
533 <      useStickyPower |= (*i)->isStickyPower();
534 <      useShape |= (*i)->isShape();
799 >      usesElectrostatic |= (*i)->isElectrostatic();
800 >      usesMetallic |= (*i)->isMetal();
801 >      usesDirectional |= (*i)->isDirectional();
802 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
803      }
804  
805 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
806 <      useDirectionalAtom = 1;
807 <    }
805 > #ifdef IS_MPI
806 >    bool temp;
807 >    temp = usesDirectional;
808 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
809 >                              MPI::LOR);
810 >        
811 >    temp = usesMetallic;
812 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
813 >                              MPI::LOR);
814 >    
815 >    temp = usesElectrostatic;
816 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
817 >                              MPI::LOR);
818  
819 <    if (useCharge || useDipole) {
820 <      useElectrostatics = 1;
821 <    }
819 >    temp = usesFluctuatingCharges;
820 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
821 >                              MPI::LOR);
822 > #else
823  
824 < #ifdef IS_MPI    
825 <    int temp;
824 >    usesDirectionalAtoms_ = usesDirectional;
825 >    usesMetallicAtoms_ = usesMetallic;
826 >    usesElectrostaticAtoms_ = usesElectrostatic;
827 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
828  
829 <    temp = usePBC;
549 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
550 <
551 <    temp = useDirectionalAtom;
552 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553 <
554 <    temp = useLennardJones;
555 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
556 <
557 <    temp = useElectrostatics;
558 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
559 <
560 <    temp = useCharge;
561 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
562 <
563 <    temp = useDipole;
564 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
565 <
566 <    temp = useSticky;
567 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
568 <
569 <    temp = useStickyPower;
570 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
829 > #endif
830      
831 <    temp = useGayBerne;
832 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
831 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
832 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
833 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
834 >  }
835  
575    temp = useEAM;
576    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
836  
837 <    temp = useShape;
838 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
837 >  vector<int> SimInfo::getGlobalAtomIndices() {
838 >    SimInfo::MoleculeIterator mi;
839 >    Molecule* mol;
840 >    Molecule::AtomIterator ai;
841 >    Atom* atom;
842  
843 <    temp = useFLARB;
582 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
583 <
584 <    temp = useRF;
585 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
843 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
844      
845 < #endif
845 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
846 >      
847 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
848 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
849 >      }
850 >    }
851 >    return GlobalAtomIndices;
852 >  }
853  
589    fInfo_.SIM_uses_PBC = usePBC;    
590    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
591    fInfo_.SIM_uses_LennardJones = useLennardJones;
592    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
593    fInfo_.SIM_uses_Charges = useCharge;
594    fInfo_.SIM_uses_Dipoles = useDipole;
595    fInfo_.SIM_uses_Sticky = useSticky;
596    fInfo_.SIM_uses_StickyPower = useStickyPower;
597    fInfo_.SIM_uses_GayBerne = useGayBerne;
598    fInfo_.SIM_uses_EAM = useEAM;
599    fInfo_.SIM_uses_Shapes = useShape;
600    fInfo_.SIM_uses_FLARB = useFLARB;
601    fInfo_.SIM_uses_RF = useRF;
854  
855 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
855 >  vector<int> SimInfo::getGlobalGroupIndices() {
856 >    SimInfo::MoleculeIterator mi;
857 >    Molecule* mol;
858 >    Molecule::CutoffGroupIterator ci;
859 >    CutoffGroup* cg;
860  
861 <      if (simParams_->haveDielectric()) {
862 <        fInfo_.dielect = simParams_->getDielectric();
863 <      } else {
864 <        sprintf(painCave.errMsg,
865 <                "SimSetup Error: No Dielectric constant was set.\n"
866 <                "\tYou are trying to use Reaction Field without"
867 <                "\tsetting a dielectric constant!\n");
868 <        painCave.isFatal = 1;
869 <        simError();
870 <      }
615 <        
616 <    } else {
617 <      fInfo_.dielect = 0.0;
861 >    vector<int> GlobalGroupIndices;
862 >    
863 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
864 >      
865 >      //local index of cutoff group is trivial, it only depends on the
866 >      //order of travesing
867 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
868 >           cg = mol->nextCutoffGroup(ci)) {
869 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
870 >      }        
871      }
872 <
872 >    return GlobalGroupIndices;
873    }
874  
622  void SimInfo::setupFortranSim() {
623    int isError;
624    int nExclude;
625    std::vector<int> fortranGlobalGroupMembership;
626    
627    nExclude = exclude_.getSize();
628    isError = 0;
875  
876 <    //globalGroupMembership_ is filled by SimCreator    
877 <    for (int i = 0; i < nGlobalAtoms_; i++) {
632 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
633 <    }
876 >  void SimInfo::prepareTopology() {
877 >    int nExclude, nOneTwo, nOneThree, nOneFour;
878  
879      //calculate mass ratio of cutoff group
636    std::vector<double> mfact;
880      SimInfo::MoleculeIterator mi;
881      Molecule* mol;
882      Molecule::CutoffGroupIterator ci;
883      CutoffGroup* cg;
884      Molecule::AtomIterator ai;
885      Atom* atom;
886 <    double totalMass;
886 >    RealType totalMass;
887  
888 <    //to avoid memory reallocation, reserve enough space for mfact
889 <    mfact.reserve(getNCutoffGroups());
888 >    /**
889 >     * The mass factor is the relative mass of an atom to the total
890 >     * mass of the cutoff group it belongs to.  By default, all atoms
891 >     * are their own cutoff groups, and therefore have mass factors of
892 >     * 1.  We need some special handling for massless atoms, which
893 >     * will be treated as carrying the entire mass of the cutoff
894 >     * group.
895 >     */
896 >    massFactors_.clear();
897 >    massFactors_.resize(getNAtoms(), 1.0);
898      
899      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
900 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
900 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
901 >           cg = mol->nextCutoffGroup(ci)) {
902  
903          totalMass = cg->getMass();
904          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
905 <          mfact.push_back(atom->getMass()/totalMass);
905 >          // Check for massless groups - set mfact to 1 if true
906 >          if (totalMass != 0)
907 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
908 >          else
909 >            massFactors_[atom->getLocalIndex()] = 1.0;
910          }
655
911        }      
912      }
913  
914 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
660 <    std::vector<int> identArray;
914 >    // Build the identArray_
915  
916 <    //to avoid memory reallocation, reserve enough space identArray
917 <    identArray.reserve(getNAtoms());
664 <    
916 >    identArray_.clear();
917 >    identArray_.reserve(getNAtoms());    
918      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
919        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
920 <        identArray.push_back(atom->getIdent());
920 >        identArray_.push_back(atom->getIdent());
921        }
922      }    
670
671    //fill molMembershipArray
672    //molMembershipArray is filled by SimCreator    
673    std::vector<int> molMembershipArray(nGlobalAtoms_);
674    for (int i = 0; i < nGlobalAtoms_; i++) {
675      molMembershipArray[i] = globalMolMembership_[i] + 1;
676    }
923      
924 <    //setup fortran simulation
679 <    int nGlobalExcludes = 0;
680 <    int* globalExcludes = NULL;
681 <    int* excludeList = exclude_.getExcludeList();
682 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
683 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
684 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
924 >    //scan topology
925  
926 <    if( isError ){
927 <
928 <      sprintf( painCave.errMsg,
929 <               "There was an error setting the simulation information in fortran.\n" );
690 <      painCave.isFatal = 1;
691 <      painCave.severity = OOPSE_ERROR;
692 <      simError();
693 <    }
694 <
695 < #ifdef IS_MPI
696 <    sprintf( checkPointMsg,
697 <             "succesfully sent the simulation information to fortran.\n");
698 <    MPIcheckPoint();
699 < #endif // is_mpi
700 <  }
701 <
702 <
703 < #ifdef IS_MPI
704 <  void SimInfo::setupFortranParallel() {
705 <    
706 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
707 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
708 <    std::vector<int> localToGlobalCutoffGroupIndex;
709 <    SimInfo::MoleculeIterator mi;
710 <    Molecule::AtomIterator ai;
711 <    Molecule::CutoffGroupIterator ci;
712 <    Molecule* mol;
713 <    Atom* atom;
714 <    CutoffGroup* cg;
715 <    mpiSimData parallelData;
716 <    int isError;
717 <
718 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
719 <
720 <      //local index(index in DataStorge) of atom is important
721 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
722 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
723 <      }
724 <
725 <      //local index of cutoff group is trivial, it only depends on the order of travesing
726 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
727 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
728 <      }        
729 <        
730 <    }
731 <
732 <    //fill up mpiSimData struct
733 <    parallelData.nMolGlobal = getNGlobalMolecules();
734 <    parallelData.nMolLocal = getNMolecules();
735 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
736 <    parallelData.nAtomsLocal = getNAtoms();
737 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
738 <    parallelData.nGroupsLocal = getNCutoffGroups();
739 <    parallelData.myNode = worldRank;
740 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
741 <
742 <    //pass mpiSimData struct and index arrays to fortran
743 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
744 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
745 <                    &localToGlobalCutoffGroupIndex[0], &isError);
746 <
747 <    if (isError) {
748 <      sprintf(painCave.errMsg,
749 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
750 <      painCave.isFatal = 1;
751 <      simError();
752 <    }
753 <
754 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
755 <    MPIcheckPoint();
756 <
757 <
758 <  }
759 <
760 < #endif
761 <
762 <  double SimInfo::calcMaxCutoffRadius() {
926 >    nExclude = excludedInteractions_.getSize();
927 >    nOneTwo = oneTwoInteractions_.getSize();
928 >    nOneThree = oneThreeInteractions_.getSize();
929 >    nOneFour = oneFourInteractions_.getSize();
930  
931 +    int* excludeList = excludedInteractions_.getPairList();
932 +    int* oneTwoList = oneTwoInteractions_.getPairList();
933 +    int* oneThreeList = oneThreeInteractions_.getPairList();
934 +    int* oneFourList = oneFourInteractions_.getPairList();
935  
936 <    std::set<AtomType*> atomTypes;
766 <    std::set<AtomType*>::iterator i;
767 <    std::vector<double> cutoffRadius;
768 <
769 <    //get the unique atom types
770 <    atomTypes = getUniqueAtomTypes();
771 <
772 <    //query the max cutoff radius among these atom types
773 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
774 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
775 <    }
776 <
777 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
778 < #ifdef IS_MPI
779 <    //pick the max cutoff radius among the processors
780 < #endif
781 <
782 <    return maxCutoffRadius;
936 >    topologyDone_ = true;
937    }
938  
785  void SimInfo::getCutoff(double& rcut, double& rsw) {
786    
787    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
788        
789      if (!simParams_->haveRcut()){
790        sprintf(painCave.errMsg,
791                "SimCreator Warning: No value was set for the cutoffRadius.\n"
792                "\tOOPSE will use a default value of 15.0 angstroms"
793                "\tfor the cutoffRadius.\n");
794        painCave.isFatal = 0;
795        simError();
796        rcut = 15.0;
797      } else{
798        rcut = simParams_->getRcut();
799      }
800
801      if (!simParams_->haveRsw()){
802        sprintf(painCave.errMsg,
803                "SimCreator Warning: No value was set for switchingRadius.\n"
804                "\tOOPSE will use a default value of\n"
805                "\t0.95 * cutoffRadius for the switchingRadius\n");
806        painCave.isFatal = 0;
807        simError();
808        rsw = 0.95 * rcut;
809      } else{
810        rsw = simParams_->getRsw();
811      }
812
813    } else {
814      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
815      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
816        
817      if (simParams_->haveRcut()) {
818        rcut = simParams_->getRcut();
819      } else {
820        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
821        rcut = calcMaxCutoffRadius();
822      }
823
824      if (simParams_->haveRsw()) {
825        rsw  = simParams_->getRsw();
826      } else {
827        rsw = rcut;
828      }
829    
830    }
831  }
832
833  void SimInfo::setupCutoff() {
834    getCutoff(rcut_, rsw_);    
835    double rnblist = rcut_ + 1; // skin of neighbor list
836
837    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
838    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
839  }
840
939    void SimInfo::addProperty(GenericData* genData) {
940      properties_.addProperty(genData);  
941    }
942  
943 <  void SimInfo::removeProperty(const std::string& propName) {
943 >  void SimInfo::removeProperty(const string& propName) {
944      properties_.removeProperty(propName);  
945    }
946  
# Line 850 | Line 948 | namespace oopse {
948      properties_.clearProperties();
949    }
950  
951 <  std::vector<std::string> SimInfo::getPropertyNames() {
951 >  vector<string> SimInfo::getPropertyNames() {
952      return properties_.getPropertyNames();  
953    }
954        
955 <  std::vector<GenericData*> SimInfo::getProperties() {
955 >  vector<GenericData*> SimInfo::getProperties() {
956      return properties_.getProperties();
957    }
958  
959 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
959 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
960      return properties_.getPropertyByName(propName);
961    }
962  
# Line 872 | Line 970 | namespace oopse {
970      Molecule* mol;
971      RigidBody* rb;
972      Atom* atom;
973 +    CutoffGroup* cg;
974      SimInfo::MoleculeIterator mi;
975      Molecule::RigidBodyIterator rbIter;
976 <    Molecule::AtomIterator atomIter;;
976 >    Molecule::AtomIterator atomIter;
977 >    Molecule::CutoffGroupIterator cgIter;
978  
979      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
980          
# Line 885 | Line 985 | namespace oopse {
985        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
986          rb->setSnapshotManager(sman_);
987        }
988 +
989 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
990 +        cg->setSnapshotManager(sman_);
991 +      }
992      }    
993      
994    }
995  
892  Vector3d SimInfo::getComVel(){
893    SimInfo::MoleculeIterator i;
894    Molecule* mol;
996  
997 <    Vector3d comVel(0.0);
897 <    double totalMass = 0.0;
898 <    
899 <
900 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
901 <      double mass = mol->getMass();
902 <      totalMass += mass;
903 <      comVel += mass * mol->getComVel();
904 <    }  
997 >  ostream& operator <<(ostream& o, SimInfo& info) {
998  
906 #ifdef IS_MPI
907    double tmpMass = totalMass;
908    Vector3d tmpComVel(comVel);    
909    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
910    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
911 #endif
912
913    comVel /= totalMass;
914
915    return comVel;
916  }
917
918  Vector3d SimInfo::getCom(){
919    SimInfo::MoleculeIterator i;
920    Molecule* mol;
921
922    Vector3d com(0.0);
923    double totalMass = 0.0;
924    
925    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
926      double mass = mol->getMass();
927      totalMass += mass;
928      com += mass * mol->getCom();
929    }  
930
931 #ifdef IS_MPI
932    double tmpMass = totalMass;
933    Vector3d tmpCom(com);    
934    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
935    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
936 #endif
937
938    com /= totalMass;
939
940    return com;
941
942  }        
943
944  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
945
999      return o;
1000    }
1001    
1002 <  
1003 <   /*
1004 <   Returns center of mass and center of mass velocity in one function call.
1005 <   */
1006 <  
1007 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1008 <      SimInfo::MoleculeIterator i;
1009 <      Molecule* mol;
1010 <      
1011 <    
1012 <      double totalMass = 0.0;
1013 <    
1002 >  
1003 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1004 >    return IOIndexToIntegrableObject.at(index);
1005 >  }
1006 >  
1007 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1008 >    IOIndexToIntegrableObject= v;
1009 >  }
1010 > /*
1011 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1012 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1013 >      sdByGlobalIndex_ = v;
1014 >    }
1015  
1016 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1017 <         double mass = mol->getMass();
1018 <         totalMass += mass;
1019 <         com += mass * mol->getCom();
1020 <         comVel += mass * mol->getComVel();          
1021 <      }  
1022 <      
1016 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1017 >      //assert(index < nAtoms_ + nRigidBodies_);
1018 >      return sdByGlobalIndex_.at(index);
1019 >    }  
1020 > */  
1021 >  int SimInfo::getNGlobalConstraints() {
1022 >    int nGlobalConstraints;
1023   #ifdef IS_MPI
1024 <      double tmpMass = totalMass;
1025 <      Vector3d tmpCom(com);  
1026 <      Vector3d tmpComVel(comVel);
1027 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
974 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
975 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1024 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1025 >                  MPI_COMM_WORLD);    
1026 > #else
1027 >    nGlobalConstraints =  nConstraints_;
1028   #endif
1029 <      
1030 <      com /= totalMass;
979 <      comVel /= totalMass;
980 <   }        
981 <  
982 <   /*
983 <   Return intertia tensor for entire system and angular momentum Vector.
1029 >    return nGlobalConstraints;
1030 >  }
1031  
1032 + }//end namespace OpenMD
1033  
986       [  Ixx -Ixy  -Ixz ]
987  J =| -Iyx  Iyy  -Iyz |
988       [ -Izx -Iyz   Izz ]
989    */
990
991   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
992      
993
994      double xx = 0.0;
995      double yy = 0.0;
996      double zz = 0.0;
997      double xy = 0.0;
998      double xz = 0.0;
999      double yz = 0.0;
1000      Vector3d com(0.0);
1001      Vector3d comVel(0.0);
1002      
1003      getComAll(com, comVel);
1004      
1005      SimInfo::MoleculeIterator i;
1006      Molecule* mol;
1007      
1008      Vector3d thisq(0.0);
1009      Vector3d thisv(0.0);
1010
1011      double thisMass = 0.0;
1012    
1013      
1014      
1015  
1016      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1017        
1018         thisq = mol->getCom()-com;
1019         thisv = mol->getComVel()-comVel;
1020         thisMass = mol->getMass();
1021         // Compute moment of intertia coefficients.
1022         xx += thisq[0]*thisq[0]*thisMass;
1023         yy += thisq[1]*thisq[1]*thisMass;
1024         zz += thisq[2]*thisq[2]*thisMass;
1025        
1026         // compute products of intertia
1027         xy += thisq[0]*thisq[1]*thisMass;
1028         xz += thisq[0]*thisq[2]*thisMass;
1029         yz += thisq[1]*thisq[2]*thisMass;
1030            
1031         angularMomentum += cross( thisq, thisv ) * thisMass;
1032            
1033      }  
1034      
1035      
1036      inertiaTensor(0,0) = yy + zz;
1037      inertiaTensor(0,1) = -xy;
1038      inertiaTensor(0,2) = -xz;
1039      inertiaTensor(1,0) = -xy;
1040      inertiaTensor(1,1) = xx + zz;
1041      inertiaTensor(1,2) = -yz;
1042      inertiaTensor(2,0) = -xz;
1043      inertiaTensor(2,1) = -yz;
1044      inertiaTensor(2,2) = xx + yy;
1045      
1046 #ifdef IS_MPI
1047      Mat3x3d tmpI(inertiaTensor);
1048      Vector3d tmpAngMom;
1049      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1050      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1051 #endif
1052              
1053      return;
1054   }
1055
1056   //Returns the angular momentum of the system
1057   Vector3d SimInfo::getAngularMomentum(){
1058      
1059      Vector3d com(0.0);
1060      Vector3d comVel(0.0);
1061      Vector3d angularMomentum(0.0);
1062      
1063      getComAll(com,comVel);
1064      
1065      SimInfo::MoleculeIterator i;
1066      Molecule* mol;
1067      
1068      Vector3d thisr(0.0);
1069      Vector3d thisp(0.0);
1070      
1071      double thisMass;
1072      
1073      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1074        thisMass = mol->getMass();
1075        thisr = mol->getCom()-com;
1076        thisp = (mol->getComVel()-comVel)*thisMass;
1077        
1078        angularMomentum += cross( thisr, thisp );
1079        
1080      }  
1081      
1082 #ifdef IS_MPI
1083      Vector3d tmpAngMom;
1084      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1085 #endif
1086      
1087      return angularMomentum;
1088   }
1089  
1090  
1091 }//end namespace oopse
1092

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 557 by chuckv, Tue May 31 22:31:54 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1767 by gezelter, Fri Jul 6 22:01:58 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines