ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1767 by gezelter, Fri Jul 6 22:01:58 2012 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimInfo.cpp
45 > * @author    tlin
46 > * @date  11/02/2004
47 > * @version 1.0
48 > */
49  
50 < #include <iostream>
51 < using namespace std;
50 > #include <algorithm>
51 > #include <set>
52 > #include <map>
53  
54   #include "brains/SimInfo.hpp"
55 < #define __C
56 < #include "brains/fSimulation.h"
55 > #include "math/Vector3.hpp"
56 > #include "primitives/Molecule.hpp"
57 > #include "primitives/StuntDouble.hpp"
58 > #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60 <
61 < #include "UseTheForce/fortranWrappers.hpp"
62 <
63 < #include "math/MatVec3.h"
16 <
60 > #include "selection/SelectionManager.hpp"
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "brains/mpiSimulation.hpp"
65 > #include <mpi.h>
66   #endif
67  
68 < inline double roundMe( double x ){
69 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
70 < }
71 <          
72 < inline double min( double a, double b ){
73 <  return (a < b ) ? a : b;
74 < }
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94 >      
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107 >      }
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125 >    }
126 >    
127 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 >    //group therefore the total number of cutoff groups in the system is
129 >    //equal to the total number of atoms minus number of atoms belong to
130 >    //cutoff group defined in meta-data file plus the number of cutoff
131 >    //groups defined in meta-data file
132  
133 < SimInfo* currentInfo;
133 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 >    
135 >    //every free atom (atom does not belong to rigid bodies) is an
136 >    //integrable object therefore the total number of integrable objects
137 >    //in the system is equal to the total number of atoms minus number of
138 >    //atoms belong to rigid body defined in meta-data file plus the number
139 >    //of rigid bodies defined in meta-data file
140 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 >      + nGlobalRigidBodies_;
142 >    
143 >    nGlobalMols_ = molStampIds_.size();
144 >    molToProcMap_.resize(nGlobalMols_);
145 >  }
146 >  
147 >  SimInfo::~SimInfo() {
148 >    map<int, Molecule*>::iterator i;
149 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150 >      delete i->second;
151 >    }
152 >    molecules_.clear();
153 >      
154 >    delete sman_;
155 >    delete simParams_;
156 >    delete forceField_;
157 >  }
158  
31 SimInfo::SimInfo(){
159  
160 <  n_constraints = 0;
161 <  nZconstraints = 0;
162 <  n_oriented = 0;
163 <  n_dipoles = 0;
164 <  ndf = 0;
165 <  ndfRaw = 0;
166 <  nZconstraints = 0;
167 <  the_integrator = NULL;
168 <  setTemp = 0;
169 <  thermalTime = 0.0;
170 <  currentTime = 0.0;
171 <  rCut = 0.0;
172 <  rSw = 0.0;
173 <
174 <  haveRcut = 0;
175 <  haveRsw = 0;
176 <  boxIsInit = 0;
160 >  bool SimInfo::addMolecule(Molecule* mol) {
161 >    MoleculeIterator i;
162 >    
163 >    i = molecules_.find(mol->getGlobalIndex());
164 >    if (i == molecules_.end() ) {
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168 >      nAtoms_ += mol->getNAtoms();
169 >      nBonds_ += mol->getNBonds();
170 >      nBends_ += mol->getNBends();
171 >      nTorsions_ += mol->getNTorsions();
172 >      nInversions_ += mol->getNInversions();
173 >      nRigidBodies_ += mol->getNRigidBodies();
174 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
175 >      nCutoffGroups_ += mol->getNCutoffGroups();
176 >      nConstraints_ += mol->getNConstraintPairs();
177 >      
178 >      addInteractionPairs(mol);
179 >      
180 >      return true;
181 >    } else {
182 >      return false;
183 >    }
184 >  }
185    
186 <  resetTime = 1e99;
186 >  bool SimInfo::removeMolecule(Molecule* mol) {
187 >    MoleculeIterator i;
188 >    i = molecules_.find(mol->getGlobalIndex());
189  
190 <  orthoRhombic = 0;
54 <  orthoTolerance = 1E-6;
55 <  useInitXSstate = true;
190 >    if (i != molecules_.end() ) {
191  
192 <  usePBC = 0;
193 <  useLJ = 0;
194 <  useSticky = 0;
195 <  useCharges = 0;
196 <  useDipoles = 0;
197 <  useReactionField = 0;
198 <  useGB = 0;
199 <  useEAM = 0;
200 <  useSolidThermInt = 0;
201 <  useLiquidThermInt = 0;
192 >      assert(mol == i->second);
193 >        
194 >      nAtoms_ -= mol->getNAtoms();
195 >      nBonds_ -= mol->getNBonds();
196 >      nBends_ -= mol->getNBends();
197 >      nTorsions_ -= mol->getNTorsions();
198 >      nInversions_ -= mol->getNInversions();
199 >      nRigidBodies_ -= mol->getNRigidBodies();
200 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
201 >      nCutoffGroups_ -= mol->getNCutoffGroups();
202 >      nConstraints_ -= mol->getNConstraintPairs();
203  
204 <  haveCutoffGroups = false;
204 >      removeInteractionPairs(mol);
205 >      molecules_.erase(mol->getGlobalIndex());
206  
207 <  excludes = Exclude::Instance();
207 >      delete mol;
208 >        
209 >      return true;
210 >    } else {
211 >      return false;
212 >    }
213 >  }    
214  
215 <  myConfiguration = new SimState();
215 >        
216 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
217 >    i = molecules_.begin();
218 >    return i == molecules_.end() ? NULL : i->second;
219 >  }    
220  
221 <  has_minimizer = false;
222 <  the_minimizer =NULL;
221 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
222 >    ++i;
223 >    return i == molecules_.end() ? NULL : i->second;    
224 >  }
225  
77  ngroup = 0;
226  
227 <  wrapMeSimInfo( this );
228 < }
227 >  void SimInfo::calcNdf() {
228 >    int ndf_local, nfq_local;
229 >    MoleculeIterator i;
230 >    vector<StuntDouble*>::iterator j;
231 >    vector<Atom*>::iterator k;
232  
233 +    Molecule* mol;
234 +    StuntDouble* integrableObject;
235 +    Atom* atom;
236  
237 < SimInfo::~SimInfo(){
237 >    ndf_local = 0;
238 >    nfq_local = 0;
239 >    
240 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
242 >           integrableObject = mol->nextIntegrableObject(j)) {
243  
244 <  delete myConfiguration;
244 >        ndf_local += 3;
245  
246 <  map<string, GenericData*>::iterator i;
247 <  
248 <  for(i = properties.begin(); i != properties.end(); i++)
249 <    delete (*i).second;
246 >        if (integrableObject->isDirectional()) {
247 >          if (integrableObject->isLinear()) {
248 >            ndf_local += 2;
249 >          } else {
250 >            ndf_local += 3;
251 >          }
252 >        }
253 >      }
254 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 >           atom = mol->nextFluctuatingCharge(k)) {
256 >        if (atom->isFluctuatingCharge()) {
257 >          nfq_local++;
258 >        }
259 >      }
260 >    }
261 >    
262 >    ndfLocal_ = ndf_local;
263  
264 < }
264 >    // n_constraints is local, so subtract them on each processor
265 >    ndf_local -= nConstraints_;
266  
267 < void SimInfo::setBox(double newBox[3]) {
268 <  
269 <  int i, j;
270 <  double tempMat[3][3];
267 > #ifdef IS_MPI
268 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
269 >    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
270 > #else
271 >    ndf_ = ndf_local;
272 >    nGlobalFluctuatingCharges_ = nfq_local;
273 > #endif
274  
275 <  for(i=0; i<3; i++)
276 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
275 >    // nZconstraints_ is global, as are the 3 COM translations for the
276 >    // entire system:
277 >    ndf_ = ndf_ - 3 - nZconstraint_;
278  
279 <  tempMat[0][0] = newBox[0];
103 <  tempMat[1][1] = newBox[1];
104 <  tempMat[2][2] = newBox[2];
279 >  }
280  
281 <  setBoxM( tempMat );
282 <
283 < }
284 <
285 < void SimInfo::setBoxM( double theBox[3][3] ){
281 >  int SimInfo::getFdf() {
282 > #ifdef IS_MPI
283 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284 > #else
285 >    fdf_ = fdf_local;
286 > #endif
287 >    return fdf_;
288 >  }
289    
290 <  int i, j;
291 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
292 <                         // ordering in the array is as follows:
293 <                         // [ 0 3 6 ]
294 <                         // [ 1 4 7 ]
295 <                         // [ 2 5 8 ]
296 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
297 <
298 <  if( !boxIsInit ) boxIsInit = 1;
299 <
300 <  for(i=0; i < 3; i++)
301 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
302 <  
303 <  calcBoxL();
126 <  calcHmatInv();
127 <
128 <  for(i=0; i < 3; i++) {
129 <    for (j=0; j < 3; j++) {
130 <      FortranHmat[3*j + i] = Hmat[i][j];
131 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
290 >  unsigned int SimInfo::getNLocalCutoffGroups(){
291 >    int nLocalCutoffAtoms = 0;
292 >    Molecule* mol;
293 >    MoleculeIterator mi;
294 >    CutoffGroup* cg;
295 >    Molecule::CutoffGroupIterator ci;
296 >    
297 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
298 >      
299 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
300 >           cg = mol->nextCutoffGroup(ci)) {
301 >        nLocalCutoffAtoms += cg->getNumAtom();
302 >        
303 >      }        
304      }
305 +    
306 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
307    }
308 +    
309 +  void SimInfo::calcNdfRaw() {
310 +    int ndfRaw_local;
311  
312 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
313 <
314 < }
315 <
312 >    MoleculeIterator i;
313 >    vector<StuntDouble*>::iterator j;
314 >    Molecule* mol;
315 >    StuntDouble* integrableObject;
316  
317 < void SimInfo::getBoxM (double theBox[3][3]) {
318 <
319 <  int i, j;
320 <  for(i=0; i<3; i++)
321 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
322 < }
317 >    // Raw degrees of freedom that we have to set
318 >    ndfRaw_local = 0;
319 >    
320 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
321 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
322 >           integrableObject = mol->nextIntegrableObject(j)) {
323  
324 +        ndfRaw_local += 3;
325  
326 < void SimInfo::scaleBox(double scale) {
327 <  double theBox[3][3];
328 <  int i, j;
329 <
330 <  // cerr << "Scaling box by " << scale << "\n";
331 <
332 <  for(i=0; i<3; i++)
333 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
156 <
157 <  setBoxM(theBox);
158 <
159 < }
160 <
161 < void SimInfo::calcHmatInv( void ) {
162 <  
163 <  int oldOrtho;
164 <  int i,j;
165 <  double smallDiag;
166 <  double tol;
167 <  double sanity[3][3];
168 <
169 <  invertMat3( Hmat, HmatInv );
170 <
171 <  // check to see if Hmat is orthorhombic
172 <  
173 <  oldOrtho = orthoRhombic;
174 <
175 <  smallDiag = fabs(Hmat[0][0]);
176 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
179 <
180 <  orthoRhombic = 1;
181 <  
182 <  for (i = 0; i < 3; i++ ) {
183 <    for (j = 0 ; j < 3; j++) {
184 <      if (i != j) {
185 <        if (orthoRhombic) {
186 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
187 <        }        
326 >        if (integrableObject->isDirectional()) {
327 >          if (integrableObject->isLinear()) {
328 >            ndfRaw_local += 2;
329 >          } else {
330 >            ndfRaw_local += 3;
331 >          }
332 >        }
333 >            
334        }
335      }
190  }
191
192  if( oldOrtho != orthoRhombic ){
336      
337 <    if( orthoRhombic ) {
338 <      sprintf( painCave.errMsg,
339 <               "OOPSE is switching from the default Non-Orthorhombic\n"
340 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
341 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
337 > #ifdef IS_MPI
338 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
339 > #else
340 >    ndfRaw_ = ndfRaw_local;
341 > #endif
342    }
218 }
343  
344 < void SimInfo::calcBoxL( void ){
344 >  void SimInfo::calcNdfTrans() {
345 >    int ndfTrans_local;
346  
347 <  double dx, dy, dz, dsq;
347 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
348  
224  // boxVol = Determinant of Hmat
349  
350 <  boxVol = matDet3( Hmat );
350 > #ifdef IS_MPI
351 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
352 > #else
353 >    ndfTrans_ = ndfTrans_local;
354 > #endif
355  
356 <  // boxLx
357 <  
358 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
231 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
356 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
357 >
358 >  }
359  
360 <  // boxLy
361 <  
362 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
363 <  dsq = dx*dx + dy*dy + dz*dz;
364 <  boxL[1] = sqrt( dsq );
365 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
360 >  void SimInfo::addInteractionPairs(Molecule* mol) {
361 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
362 >    vector<Bond*>::iterator bondIter;
363 >    vector<Bend*>::iterator bendIter;
364 >    vector<Torsion*>::iterator torsionIter;
365 >    vector<Inversion*>::iterator inversionIter;
366 >    Bond* bond;
367 >    Bend* bend;
368 >    Torsion* torsion;
369 >    Inversion* inversion;
370 >    int a;
371 >    int b;
372 >    int c;
373 >    int d;
374  
375 +    // atomGroups can be used to add special interaction maps between
376 +    // groups of atoms that are in two separate rigid bodies.
377 +    // However, most site-site interactions between two rigid bodies
378 +    // are probably not special, just the ones between the physically
379 +    // bonded atoms.  Interactions *within* a single rigid body should
380 +    // always be excluded.  These are done at the bottom of this
381 +    // function.
382  
383 <  // boxLz
384 <  
385 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
386 <  dsq = dx*dx + dy*dy + dz*dz;
387 <  boxL[2] = sqrt( dsq );
388 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
383 >    map<int, set<int> > atomGroups;
384 >    Molecule::RigidBodyIterator rbIter;
385 >    RigidBody* rb;
386 >    Molecule::IntegrableObjectIterator ii;
387 >    StuntDouble* integrableObject;
388 >    
389 >    for (integrableObject = mol->beginIntegrableObject(ii);
390 >         integrableObject != NULL;
391 >         integrableObject = mol->nextIntegrableObject(ii)) {
392 >      
393 >      if (integrableObject->isRigidBody()) {
394 >        rb = static_cast<RigidBody*>(integrableObject);
395 >        vector<Atom*> atoms = rb->getAtoms();
396 >        set<int> rigidAtoms;
397 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
398 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
399 >        }
400 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
401 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
402 >        }      
403 >      } else {
404 >        set<int> oneAtomSet;
405 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
406 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
407 >      }
408 >    }  
409 >          
410 >    for (bond= mol->beginBond(bondIter); bond != NULL;
411 >         bond = mol->nextBond(bondIter)) {
412  
413 <  //calculate the max cutoff
414 <  maxCutoff =  calcMaxCutOff();
415 <  
416 <  checkCutOffs();
413 >      a = bond->getAtomA()->getGlobalIndex();
414 >      b = bond->getAtomB()->getGlobalIndex();  
415 >    
416 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
417 >        oneTwoInteractions_.addPair(a, b);
418 >      } else {
419 >        excludedInteractions_.addPair(a, b);
420 >      }
421 >    }
422  
423 < }
423 >    for (bend= mol->beginBend(bendIter); bend != NULL;
424 >         bend = mol->nextBend(bendIter)) {
425  
426 +      a = bend->getAtomA()->getGlobalIndex();
427 +      b = bend->getAtomB()->getGlobalIndex();        
428 +      c = bend->getAtomC()->getGlobalIndex();
429 +      
430 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
431 +        oneTwoInteractions_.addPair(a, b);      
432 +        oneTwoInteractions_.addPair(b, c);
433 +      } else {
434 +        excludedInteractions_.addPair(a, b);
435 +        excludedInteractions_.addPair(b, c);
436 +      }
437  
438 < double SimInfo::calcMaxCutOff(){
438 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
439 >        oneThreeInteractions_.addPair(a, c);      
440 >      } else {
441 >        excludedInteractions_.addPair(a, c);
442 >      }
443 >    }
444  
445 <  double ri[3], rj[3], rk[3];
446 <  double rij[3], rjk[3], rki[3];
262 <  double minDist;
445 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
446 >         torsion = mol->nextTorsion(torsionIter)) {
447  
448 <  ri[0] = Hmat[0][0];
449 <  ri[1] = Hmat[1][0];
450 <  ri[2] = Hmat[2][0];
448 >      a = torsion->getAtomA()->getGlobalIndex();
449 >      b = torsion->getAtomB()->getGlobalIndex();        
450 >      c = torsion->getAtomC()->getGlobalIndex();        
451 >      d = torsion->getAtomD()->getGlobalIndex();      
452  
453 <  rj[0] = Hmat[0][1];
454 <  rj[1] = Hmat[1][1];
455 <  rj[2] = Hmat[2][1];
453 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
454 >        oneTwoInteractions_.addPair(a, b);      
455 >        oneTwoInteractions_.addPair(b, c);
456 >        oneTwoInteractions_.addPair(c, d);
457 >      } else {
458 >        excludedInteractions_.addPair(a, b);
459 >        excludedInteractions_.addPair(b, c);
460 >        excludedInteractions_.addPair(c, d);
461 >      }
462  
463 <  rk[0] = Hmat[0][2];
464 <  rk[1] = Hmat[1][2];
465 <  rk[2] = Hmat[2][2];
466 <    
467 <  crossProduct3(ri, rj, rij);
468 <  distXY = dotProduct3(rk,rij) / norm3(rij);
463 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
464 >        oneThreeInteractions_.addPair(a, c);      
465 >        oneThreeInteractions_.addPair(b, d);      
466 >      } else {
467 >        excludedInteractions_.addPair(a, c);
468 >        excludedInteractions_.addPair(b, d);
469 >      }
470  
471 <  crossProduct3(rj,rk, rjk);
472 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
471 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
472 >        oneFourInteractions_.addPair(a, d);      
473 >      } else {
474 >        excludedInteractions_.addPair(a, d);
475 >      }
476 >    }
477  
478 <  crossProduct3(rk,ri, rki);
479 <  distZX = dotProduct3(rj,rki) / norm3(rki);
478 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
479 >         inversion = mol->nextInversion(inversionIter)) {
480  
481 <  minDist = min(min(distXY, distYZ), distZX);
482 <  return minDist/2;
483 <  
484 < }
481 >      a = inversion->getAtomA()->getGlobalIndex();
482 >      b = inversion->getAtomB()->getGlobalIndex();        
483 >      c = inversion->getAtomC()->getGlobalIndex();        
484 >      d = inversion->getAtomD()->getGlobalIndex();        
485  
486 < void SimInfo::wrapVector( double thePos[3] ){
486 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
487 >        oneTwoInteractions_.addPair(a, b);      
488 >        oneTwoInteractions_.addPair(a, c);
489 >        oneTwoInteractions_.addPair(a, d);
490 >      } else {
491 >        excludedInteractions_.addPair(a, b);
492 >        excludedInteractions_.addPair(a, c);
493 >        excludedInteractions_.addPair(a, d);
494 >      }
495  
496 <  int i;
497 <  double scaled[3];
496 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
497 >        oneThreeInteractions_.addPair(b, c);    
498 >        oneThreeInteractions_.addPair(b, d);    
499 >        oneThreeInteractions_.addPair(c, d);      
500 >      } else {
501 >        excludedInteractions_.addPair(b, c);
502 >        excludedInteractions_.addPair(b, d);
503 >        excludedInteractions_.addPair(c, d);
504 >      }
505 >    }
506  
507 <  if( !orthoRhombic ){
508 <    // calc the scaled coordinates.
509 <  
507 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
508 >         rb = mol->nextRigidBody(rbIter)) {
509 >      vector<Atom*> atoms = rb->getAtoms();
510 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
511 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
512 >          a = atoms[i]->getGlobalIndex();
513 >          b = atoms[j]->getGlobalIndex();
514 >          excludedInteractions_.addPair(a, b);
515 >        }
516 >      }
517 >    }        
518  
299    matVecMul3(HmatInv, thePos, scaled);
300    
301    for(i=0; i<3; i++)
302      scaled[i] -= roundMe(scaled[i]);
303    
304    // calc the wrapped real coordinates from the wrapped scaled coordinates
305    
306    matVecMul3(Hmat, scaled, thePos);
307
519    }
309  else{
310    // calc the scaled coordinates.
311    
312    for(i=0; i<3; i++)
313      scaled[i] = thePos[i]*HmatInv[i][i];
314    
315    // wrap the scaled coordinates
316    
317    for(i=0; i<3; i++)
318      scaled[i] -= roundMe(scaled[i]);
319    
320    // calc the wrapped real coordinates from the wrapped scaled coordinates
321    
322    for(i=0; i<3; i++)
323      thePos[i] = scaled[i]*Hmat[i][i];
324  }
325    
326 }
520  
521 +  void SimInfo::removeInteractionPairs(Molecule* mol) {
522 +    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
523 +    vector<Bond*>::iterator bondIter;
524 +    vector<Bend*>::iterator bendIter;
525 +    vector<Torsion*>::iterator torsionIter;
526 +    vector<Inversion*>::iterator inversionIter;
527 +    Bond* bond;
528 +    Bend* bend;
529 +    Torsion* torsion;
530 +    Inversion* inversion;
531 +    int a;
532 +    int b;
533 +    int c;
534 +    int d;
535  
536 < int SimInfo::getNDF(){
537 <  int ndf_local;
538 <
539 <  ndf_local = 0;
540 <  
541 <  for(int i = 0; i < integrableObjects.size(); i++){
542 <    ndf_local += 3;
543 <    if (integrableObjects[i]->isDirectional()) {
544 <      if (integrableObjects[i]->isLinear())
545 <        ndf_local += 2;
546 <      else
547 <        ndf_local += 3;
536 >    map<int, set<int> > atomGroups;
537 >    Molecule::RigidBodyIterator rbIter;
538 >    RigidBody* rb;
539 >    Molecule::IntegrableObjectIterator ii;
540 >    StuntDouble* integrableObject;
541 >    
542 >    for (integrableObject = mol->beginIntegrableObject(ii);
543 >         integrableObject != NULL;
544 >         integrableObject = mol->nextIntegrableObject(ii)) {
545 >      
546 >      if (integrableObject->isRigidBody()) {
547 >        rb = static_cast<RigidBody*>(integrableObject);
548 >        vector<Atom*> atoms = rb->getAtoms();
549 >        set<int> rigidAtoms;
550 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
551 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
552 >        }
553 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
554 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
555 >        }      
556 >      } else {
557 >        set<int> oneAtomSet;
558 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
559 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
560 >      }
561 >    }  
562 >
563 >    for (bond= mol->beginBond(bondIter); bond != NULL;
564 >         bond = mol->nextBond(bondIter)) {
565 >      
566 >      a = bond->getAtomA()->getGlobalIndex();
567 >      b = bond->getAtomB()->getGlobalIndex();  
568 >    
569 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
570 >        oneTwoInteractions_.removePair(a, b);
571 >      } else {
572 >        excludedInteractions_.removePair(a, b);
573 >      }
574      }
342  }
575  
576 <  // n_constraints is local, so subtract them on each processor:
576 >    for (bend= mol->beginBend(bendIter); bend != NULL;
577 >         bend = mol->nextBend(bendIter)) {
578  
579 <  ndf_local -= n_constraints;
579 >      a = bend->getAtomA()->getGlobalIndex();
580 >      b = bend->getAtomB()->getGlobalIndex();        
581 >      c = bend->getAtomC()->getGlobalIndex();
582 >      
583 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
584 >        oneTwoInteractions_.removePair(a, b);      
585 >        oneTwoInteractions_.removePair(b, c);
586 >      } else {
587 >        excludedInteractions_.removePair(a, b);
588 >        excludedInteractions_.removePair(b, c);
589 >      }
590  
591 < #ifdef IS_MPI
592 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
593 < #else
594 <  ndf = ndf_local;
595 < #endif
591 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
592 >        oneThreeInteractions_.removePair(a, c);      
593 >      } else {
594 >        excludedInteractions_.removePair(a, c);
595 >      }
596 >    }
597  
598 <  // nZconstraints is global, as are the 3 COM translations for the
599 <  // entire system:
598 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
599 >         torsion = mol->nextTorsion(torsionIter)) {
600  
601 <  ndf = ndf - 3 - nZconstraints;
601 >      a = torsion->getAtomA()->getGlobalIndex();
602 >      b = torsion->getAtomB()->getGlobalIndex();        
603 >      c = torsion->getAtomC()->getGlobalIndex();        
604 >      d = torsion->getAtomD()->getGlobalIndex();      
605 >  
606 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
607 >        oneTwoInteractions_.removePair(a, b);      
608 >        oneTwoInteractions_.removePair(b, c);
609 >        oneTwoInteractions_.removePair(c, d);
610 >      } else {
611 >        excludedInteractions_.removePair(a, b);
612 >        excludedInteractions_.removePair(b, c);
613 >        excludedInteractions_.removePair(c, d);
614 >      }
615  
616 <  return ndf;
617 < }
616 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
617 >        oneThreeInteractions_.removePair(a, c);      
618 >        oneThreeInteractions_.removePair(b, d);      
619 >      } else {
620 >        excludedInteractions_.removePair(a, c);
621 >        excludedInteractions_.removePair(b, d);
622 >      }
623  
624 < int SimInfo::getNDFraw() {
625 <  int ndfRaw_local;
624 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
625 >        oneFourInteractions_.removePair(a, d);      
626 >      } else {
627 >        excludedInteractions_.removePair(a, d);
628 >      }
629 >    }
630  
631 <  // Raw degrees of freedom that we have to set
632 <  ndfRaw_local = 0;
631 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
632 >         inversion = mol->nextInversion(inversionIter)) {
633  
634 <  for(int i = 0; i < integrableObjects.size(); i++){
635 <    ndfRaw_local += 3;
636 <    if (integrableObjects[i]->isDirectional()) {
637 <       if (integrableObjects[i]->isLinear())
638 <        ndfRaw_local += 2;
639 <      else
640 <        ndfRaw_local += 3;
634 >      a = inversion->getAtomA()->getGlobalIndex();
635 >      b = inversion->getAtomB()->getGlobalIndex();        
636 >      c = inversion->getAtomC()->getGlobalIndex();        
637 >      d = inversion->getAtomD()->getGlobalIndex();        
638 >
639 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
640 >        oneTwoInteractions_.removePair(a, b);      
641 >        oneTwoInteractions_.removePair(a, c);
642 >        oneTwoInteractions_.removePair(a, d);
643 >      } else {
644 >        excludedInteractions_.removePair(a, b);
645 >        excludedInteractions_.removePair(a, c);
646 >        excludedInteractions_.removePair(a, d);
647 >      }
648 >
649 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
650 >        oneThreeInteractions_.removePair(b, c);    
651 >        oneThreeInteractions_.removePair(b, d);    
652 >        oneThreeInteractions_.removePair(c, d);      
653 >      } else {
654 >        excludedInteractions_.removePair(b, c);
655 >        excludedInteractions_.removePair(b, d);
656 >        excludedInteractions_.removePair(c, d);
657 >      }
658      }
659 +
660 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
661 +         rb = mol->nextRigidBody(rbIter)) {
662 +      vector<Atom*> atoms = rb->getAtoms();
663 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
664 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
665 +          a = atoms[i]->getGlobalIndex();
666 +          b = atoms[j]->getGlobalIndex();
667 +          excludedInteractions_.removePair(a, b);
668 +        }
669 +      }
670 +    }        
671 +    
672    }
673 +  
674 +  
675 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
676 +    int curStampId;
677      
678 +    //index from 0
679 +    curStampId = moleculeStamps_.size();
680 +
681 +    moleculeStamps_.push_back(molStamp);
682 +    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
683 +  }
684 +
685 +
686 +  /**
687 +   * update
688 +   *
689 +   *  Performs the global checks and variable settings after the
690 +   *  objects have been created.
691 +   *
692 +   */
693 +  void SimInfo::update() {  
694 +    setupSimVariables();
695 +    calcNdf();
696 +    calcNdfRaw();
697 +    calcNdfTrans();
698 +  }
699 +  
700 +  /**
701 +   * getSimulatedAtomTypes
702 +   *
703 +   * Returns an STL set of AtomType* that are actually present in this
704 +   * simulation.  Must query all processors to assemble this information.
705 +   *
706 +   */
707 +  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
708 +    SimInfo::MoleculeIterator mi;
709 +    Molecule* mol;
710 +    Molecule::AtomIterator ai;
711 +    Atom* atom;
712 +    set<AtomType*> atomTypes;
713 +    
714 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
715 +      for(atom = mol->beginAtom(ai); atom != NULL;
716 +          atom = mol->nextAtom(ai)) {
717 +        atomTypes.insert(atom->getAtomType());
718 +      }      
719 +    }    
720 +    
721   #ifdef IS_MPI
379  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
380 #else
381  ndfRaw = ndfRaw_local;
382 #endif
722  
723 <  return ndfRaw;
724 < }
723 >    // loop over the found atom types on this processor, and add their
724 >    // numerical idents to a vector:
725 >    
726 >    vector<int> foundTypes;
727 >    set<AtomType*>::iterator i;
728 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
729 >      foundTypes.push_back( (*i)->getIdent() );
730  
731 < int SimInfo::getNDFtranslational() {
732 <  int ndfTrans_local;
731 >    // count_local holds the number of found types on this processor
732 >    int count_local = foundTypes.size();
733  
734 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
734 >    int nproc = MPI::COMM_WORLD.Get_size();
735  
736 +    // we need arrays to hold the counts and displacement vectors for
737 +    // all processors
738 +    vector<int> counts(nproc, 0);
739 +    vector<int> disps(nproc, 0);
740  
741 < #ifdef IS_MPI
742 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
743 < #else
744 <  ndfTrans = ndfTrans_local;
745 < #endif
741 >    // fill the counts array
742 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
743 >                              1, MPI::INT);
744 >  
745 >    // use the processor counts to compute the displacement array
746 >    disps[0] = 0;    
747 >    int totalCount = counts[0];
748 >    for (int iproc = 1; iproc < nproc; iproc++) {
749 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
750 >      totalCount += counts[iproc];
751 >    }
752  
753 <  ndfTrans = ndfTrans - 3 - nZconstraints;
753 >    // we need a (possibly redundant) set of all found types:
754 >    vector<int> ftGlobal(totalCount);
755 >    
756 >    // now spray out the foundTypes to all the other processors:    
757 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
758 >                               &ftGlobal[0], &counts[0], &disps[0],
759 >                               MPI::INT);
760  
761 <  return ndfTrans;
402 < }
761 >    vector<int>::iterator j;
762  
763 < int SimInfo::getTotIntegrableObjects() {
764 <  int nObjs_local;
765 <  int nObjs;
763 >    // foundIdents is a stl set, so inserting an already found ident
764 >    // will have no effect.
765 >    set<int> foundIdents;
766  
767 <  nObjs_local =  integrableObjects.size();
767 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
768 >      foundIdents.insert((*j));
769 >    
770 >    // now iterate over the foundIdents and get the actual atom types
771 >    // that correspond to these:
772 >    set<int>::iterator it;
773 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
774 >      atomTypes.insert( forceField_->getAtomType((*it)) );
775 >
776 > #endif
777  
778 +    return atomTypes;        
779 +  }
780  
781 +  void SimInfo::setupSimVariables() {
782 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
783 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
784 +    calcBoxDipole_ = false;
785 +    if ( simParams_->haveAccumulateBoxDipole() )
786 +      if ( simParams_->getAccumulateBoxDipole() ) {
787 +        calcBoxDipole_ = true;      
788 +      }
789 +    
790 +    set<AtomType*>::iterator i;
791 +    set<AtomType*> atomTypes;
792 +    atomTypes = getSimulatedAtomTypes();    
793 +    bool usesElectrostatic = false;
794 +    bool usesMetallic = false;
795 +    bool usesDirectional = false;
796 +    bool usesFluctuatingCharges =  false;
797 +    //loop over all of the atom types
798 +    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
799 +      usesElectrostatic |= (*i)->isElectrostatic();
800 +      usesMetallic |= (*i)->isMetal();
801 +      usesDirectional |= (*i)->isDirectional();
802 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
803 +    }
804 +
805   #ifdef IS_MPI
806 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
806 >    bool temp;
807 >    temp = usesDirectional;
808 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
809 >                              MPI::LOR);
810 >        
811 >    temp = usesMetallic;
812 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
813 >                              MPI::LOR);
814 >    
815 >    temp = usesElectrostatic;
816 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
817 >                              MPI::LOR);
818 >
819 >    temp = usesFluctuatingCharges;
820 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
821 >                              MPI::LOR);
822   #else
823 <  nObjs = nObjs_local;
823 >
824 >    usesDirectionalAtoms_ = usesDirectional;
825 >    usesMetallicAtoms_ = usesMetallic;
826 >    usesElectrostaticAtoms_ = usesElectrostatic;
827 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
828 >
829   #endif
830 +    
831 +    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
832 +    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
833 +    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
834 +  }
835  
836  
837 <  return nObjs;
838 < }
837 >  vector<int> SimInfo::getGlobalAtomIndices() {
838 >    SimInfo::MoleculeIterator mi;
839 >    Molecule* mol;
840 >    Molecule::AtomIterator ai;
841 >    Atom* atom;
842  
843 < void SimInfo::refreshSim(){
843 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
844 >    
845 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
846 >      
847 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
848 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
849 >      }
850 >    }
851 >    return GlobalAtomIndices;
852 >  }
853  
423  simtype fInfo;
424  int isError;
425  int n_global;
426  int* excl;
854  
855 <  fInfo.dielect = 0.0;
855 >  vector<int> SimInfo::getGlobalGroupIndices() {
856 >    SimInfo::MoleculeIterator mi;
857 >    Molecule* mol;
858 >    Molecule::CutoffGroupIterator ci;
859 >    CutoffGroup* cg;
860  
861 <  if( useDipoles ){
862 <    if( useReactionField )fInfo.dielect = dielectric;
861 >    vector<int> GlobalGroupIndices;
862 >    
863 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
864 >      
865 >      //local index of cutoff group is trivial, it only depends on the
866 >      //order of travesing
867 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
868 >           cg = mol->nextCutoffGroup(ci)) {
869 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
870 >      }        
871 >    }
872 >    return GlobalGroupIndices;
873    }
874  
434  fInfo.SIM_uses_PBC = usePBC;
435  //fInfo.SIM_uses_LJ = 0;
436  fInfo.SIM_uses_LJ = useLJ;
437  fInfo.SIM_uses_sticky = useSticky;
438  //fInfo.SIM_uses_sticky = 0;
439  fInfo.SIM_uses_charges = useCharges;
440  fInfo.SIM_uses_dipoles = useDipoles;
441  //fInfo.SIM_uses_dipoles = 0;
442  fInfo.SIM_uses_RF = useReactionField;
443  //fInfo.SIM_uses_RF = 0;
444  fInfo.SIM_uses_GB = useGB;
445  fInfo.SIM_uses_EAM = useEAM;
875  
876 <  n_exclude = excludes->getSize();
877 <  excl = excludes->getFortranArray();
449 <  
450 < #ifdef IS_MPI
451 <  n_global = mpiSim->getNAtomsGlobal();
452 < #else
453 <  n_global = n_atoms;
454 < #endif
455 <  
456 <  isError = 0;
457 <  
458 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459 <  //it may not be a good idea to pass the address of first element in vector
460 <  //since c++ standard does not require vector to be stored continuously in meomory
461 <  //Most of the compilers will organize the memory of vector continuously
462 <  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
876 >  void SimInfo::prepareTopology() {
877 >    int nExclude, nOneTwo, nOneThree, nOneFour;
878  
879 <  if( isError ){
879 >    //calculate mass ratio of cutoff group
880 >    SimInfo::MoleculeIterator mi;
881 >    Molecule* mol;
882 >    Molecule::CutoffGroupIterator ci;
883 >    CutoffGroup* cg;
884 >    Molecule::AtomIterator ai;
885 >    Atom* atom;
886 >    RealType totalMass;
887 >
888 >    /**
889 >     * The mass factor is the relative mass of an atom to the total
890 >     * mass of the cutoff group it belongs to.  By default, all atoms
891 >     * are their own cutoff groups, and therefore have mass factors of
892 >     * 1.  We need some special handling for massless atoms, which
893 >     * will be treated as carrying the entire mass of the cutoff
894 >     * group.
895 >     */
896 >    massFactors_.clear();
897 >    massFactors_.resize(getNAtoms(), 1.0);
898      
899 <    sprintf( painCave.errMsg,
900 <             "There was an error setting the simulation information in fortran.\n" );
901 <    painCave.isFatal = 1;
471 <    painCave.severity = OOPSE_ERROR;
472 <    simError();
473 <  }
474 <  
475 < #ifdef IS_MPI
476 <  sprintf( checkPointMsg,
477 <           "succesfully sent the simulation information to fortran.\n");
478 <  MPIcheckPoint();
479 < #endif // is_mpi
480 <  
481 <  this->ndf = this->getNDF();
482 <  this->ndfRaw = this->getNDFraw();
483 <  this->ndfTrans = this->getNDFtranslational();
484 < }
899 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
900 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
901 >           cg = mol->nextCutoffGroup(ci)) {
902  
903 < void SimInfo::setDefaultRcut( double theRcut ){
904 <  
905 <  haveRcut = 1;
906 <  rCut = theRcut;
907 <  rList = rCut + 1.0;
908 <  
909 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
910 < }
903 >        totalMass = cg->getMass();
904 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
905 >          // Check for massless groups - set mfact to 1 if true
906 >          if (totalMass != 0)
907 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
908 >          else
909 >            massFactors_[atom->getLocalIndex()] = 1.0;
910 >        }
911 >      }      
912 >    }
913  
914 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
914 >    // Build the identArray_
915  
916 <  rSw = theRsw;
917 <  setDefaultRcut( theRcut );
918 < }
916 >    identArray_.clear();
917 >    identArray_.reserve(getNAtoms());    
918 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
919 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
920 >        identArray_.push_back(atom->getIdent());
921 >      }
922 >    }    
923 >    
924 >    //scan topology
925  
926 +    nExclude = excludedInteractions_.getSize();
927 +    nOneTwo = oneTwoInteractions_.getSize();
928 +    nOneThree = oneThreeInteractions_.getSize();
929 +    nOneFour = oneFourInteractions_.getSize();
930  
931 < void SimInfo::checkCutOffs( void ){
932 <  
933 <  if( boxIsInit ){
934 <    
935 <    //we need to check cutOffs against the box
936 <    
508 <    if( rCut > maxCutoff ){
509 <      sprintf( painCave.errMsg,
510 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
523 <      painCave.isFatal = 1;
524 <      simError();
525 <    }    
526 <  } else {
527 <    // initialize this stuff before using it, OK?
528 <    sprintf( painCave.errMsg,
529 <             "Trying to check cutoffs without a box.\n"
530 <             "\tOOPSE should have better programmers than that.\n" );
531 <    painCave.severity = OOPSE_ERROR;
532 <    painCave.isFatal = 1;
533 <    simError();      
931 >    int* excludeList = excludedInteractions_.getPairList();
932 >    int* oneTwoList = oneTwoInteractions_.getPairList();
933 >    int* oneThreeList = oneThreeInteractions_.getPairList();
934 >    int* oneFourList = oneFourInteractions_.getPairList();
935 >
936 >    topologyDone_ = true;
937    }
535  
536 }
938  
939 < void SimInfo::addProperty(GenericData* prop){
939 >  void SimInfo::addProperty(GenericData* genData) {
940 >    properties_.addProperty(genData);  
941 >  }
942  
943 <  map<string, GenericData*>::iterator result;
944 <  result = properties.find(prop->getID());
542 <  
543 <  //we can't simply use  properties[prop->getID()] = prop,
544 <  //it will cause memory leak if we already contain a propery which has the same name of prop
545 <  
546 <  if(result != properties.end()){
547 <    
548 <    delete (*result).second;
549 <    (*result).second = prop;
550 <      
943 >  void SimInfo::removeProperty(const string& propName) {
944 >    properties_.removeProperty(propName);  
945    }
552  else{
946  
947 <    properties[prop->getID()] = prop;
947 >  void SimInfo::clearProperties() {
948 >    properties_.clearProperties();
949 >  }
950  
951 +  vector<string> SimInfo::getPropertyNames() {
952 +    return properties_.getPropertyNames();  
953    }
954 <    
955 < }
954 >      
955 >  vector<GenericData*> SimInfo::getProperties() {
956 >    return properties_.getProperties();
957 >  }
958  
959 < GenericData* SimInfo::getProperty(const string& propName){
959 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
960 >    return properties_.getPropertyByName(propName);
961 >  }
962 >
963 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
964 >    if (sman_ == sman) {
965 >      return;
966 >    }    
967 >    delete sman_;
968 >    sman_ = sman;
969 >
970 >    Molecule* mol;
971 >    RigidBody* rb;
972 >    Atom* atom;
973 >    CutoffGroup* cg;
974 >    SimInfo::MoleculeIterator mi;
975 >    Molecule::RigidBodyIterator rbIter;
976 >    Molecule::AtomIterator atomIter;
977 >    Molecule::CutoffGroupIterator cgIter;
978  
979 <  map<string, GenericData*>::iterator result;
980 <  
981 <  //string lowerCaseName = ();
982 <  
983 <  result = properties.find(propName);
984 <  
985 <  if(result != properties.end())
986 <    return (*result).second;  
987 <  else  
571 <    return NULL;  
572 < }
979 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
980 >        
981 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
982 >        atom->setSnapshotManager(sman_);
983 >      }
984 >        
985 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
986 >        rb->setSnapshotManager(sman_);
987 >      }
988  
989 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
990 +        cg->setSnapshotManager(sman_);
991 +      }
992 +    }    
993 +    
994 +  }
995  
996 < void SimInfo::getFortranGroupArrays(SimInfo* info,
997 <                                    vector<int>& FglobalGroupMembership,
998 <                                    vector<double>& mfact){
996 >
997 >  ostream& operator <<(ostream& o, SimInfo& info) {
998 >
999 >    return o;
1000 >  }
1001 >  
1002    
1003 <  Molecule* myMols;
1004 <  Atom** myAtoms;
1005 <  int numAtom;
582 <  double mtot;
583 <  int numMol;
584 <  int numCutoffGroups;
585 <  CutoffGroup* myCutoffGroup;
586 <  vector<CutoffGroup*>::iterator iterCutoff;
587 <  Atom* cutoffAtom;
588 <  vector<Atom*>::iterator iterAtom;
589 <  int atomIndex;
590 <  double totalMass;
1003 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1004 >    return IOIndexToIntegrableObject.at(index);
1005 >  }
1006    
1007 <  mfact.clear();
1008 <  FglobalGroupMembership.clear();
1009 <  
1007 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1008 >    IOIndexToIntegrableObject= v;
1009 >  }
1010 > /*
1011 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1012 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1013 >      sdByGlobalIndex_ = v;
1014 >    }
1015  
1016 <  // Fix the silly fortran indexing problem
1016 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1017 >      //assert(index < nAtoms_ + nRigidBodies_);
1018 >      return sdByGlobalIndex_.at(index);
1019 >    }  
1020 > */  
1021 >  int SimInfo::getNGlobalConstraints() {
1022 >    int nGlobalConstraints;
1023   #ifdef IS_MPI
1024 <  numAtom = mpiSim->getNAtomsGlobal();
1024 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1025 >                  MPI_COMM_WORLD);    
1026   #else
1027 <  numAtom = n_atoms;
1027 >    nGlobalConstraints =  nConstraints_;
1028   #endif
1029 <  for (int i = 0; i < numAtom; i++)
603 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604 <  
605 <
606 <  myMols = info->molecules;
607 <  numMol = info->n_mol;
608 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
613 <
614 <      totalMass = myCutoffGroup->getMass();
615 <      
616 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
617 <          cutoffAtom != NULL;
618 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
619 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
620 <      }  
621 <    }
1029 >    return nGlobalConstraints;
1030    }
1031  
1032 < }
1032 > }//end namespace OpenMD
1033 >

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1767 by gezelter, Fri Jul 6 22:01:58 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines