36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
55 |
|
#include "math/Vector3.hpp" |
56 |
|
#include "primitives/Molecule.hpp" |
57 |
|
#include "primitives/StuntDouble.hpp" |
57 |
– |
#include "UseTheForce/doForces_interface.h" |
58 |
– |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
58 |
|
#include "utils/MemoryUtils.hpp" |
59 |
|
#include "utils/simError.h" |
60 |
|
#include "selection/SelectionManager.hpp" |
61 |
|
#include "io/ForceFieldOptions.hpp" |
62 |
< |
#include "UseTheForce/ForceField.hpp" |
62 |
> |
#include "brains/ForceField.hpp" |
63 |
|
#include "nonbonded/SwitchingFunction.hpp" |
65 |
– |
|
66 |
– |
|
64 |
|
#ifdef IS_MPI |
65 |
< |
#include "UseTheForce/mpiComponentPlan.h" |
66 |
< |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
70 |
< |
#endif |
65 |
> |
#include <mpi.h> |
66 |
> |
#endif |
67 |
|
|
68 |
|
using namespace std; |
69 |
|
namespace OpenMD { |
72 |
|
forceField_(ff), simParams_(simParams), |
73 |
|
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
74 |
|
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
75 |
< |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
75 |
> |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
77 |
|
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
78 |
< |
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
78 |
> |
nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 |
|
calcBoxDipole_(false), useAtomicVirial_(true) { |
80 |
|
|
81 |
|
MoleculeStamp* molStamp; |
129 |
|
//equal to the total number of atoms minus number of atoms belong to |
130 |
|
//cutoff group defined in meta-data file plus the number of cutoff |
131 |
|
//groups defined in meta-data file |
132 |
+ |
|
133 |
|
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
134 |
|
|
135 |
|
//every free atom (atom does not belong to rigid bodies) is an |
225 |
|
|
226 |
|
|
227 |
|
void SimInfo::calcNdf() { |
228 |
< |
int ndf_local; |
228 |
> |
int ndf_local, nfq_local; |
229 |
|
MoleculeIterator i; |
230 |
|
vector<StuntDouble*>::iterator j; |
231 |
+ |
vector<Atom*>::iterator k; |
232 |
+ |
|
233 |
|
Molecule* mol; |
234 |
|
StuntDouble* integrableObject; |
235 |
+ |
Atom* atom; |
236 |
|
|
237 |
|
ndf_local = 0; |
238 |
+ |
nfq_local = 0; |
239 |
|
|
240 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
241 |
|
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
250 |
|
ndf_local += 3; |
251 |
|
} |
252 |
|
} |
252 |
– |
|
253 |
|
} |
254 |
+ |
for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
255 |
+ |
atom = mol->nextFluctuatingCharge(k)) { |
256 |
+ |
if (atom->isFluctuatingCharge()) { |
257 |
+ |
nfq_local++; |
258 |
+ |
} |
259 |
+ |
} |
260 |
|
} |
261 |
|
|
262 |
+ |
ndfLocal_ = ndf_local; |
263 |
+ |
|
264 |
|
// n_constraints is local, so subtract them on each processor |
265 |
|
ndf_local -= nConstraints_; |
266 |
|
|
267 |
|
#ifdef IS_MPI |
268 |
|
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
269 |
+ |
MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
270 |
|
#else |
271 |
|
ndf_ = ndf_local; |
272 |
+ |
nGlobalFluctuatingCharges_ = nfq_local; |
273 |
|
#endif |
274 |
|
|
275 |
|
// nZconstraints_ is global, as are the 3 COM translations for the |
286 |
|
#endif |
287 |
|
return fdf_; |
288 |
|
} |
289 |
+ |
|
290 |
+ |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
291 |
+ |
int nLocalCutoffAtoms = 0; |
292 |
+ |
Molecule* mol; |
293 |
+ |
MoleculeIterator mi; |
294 |
+ |
CutoffGroup* cg; |
295 |
+ |
Molecule::CutoffGroupIterator ci; |
296 |
|
|
297 |
+ |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
298 |
+ |
|
299 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
300 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
301 |
+ |
nLocalCutoffAtoms += cg->getNumAtom(); |
302 |
+ |
|
303 |
+ |
} |
304 |
+ |
} |
305 |
+ |
|
306 |
+ |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
307 |
+ |
} |
308 |
+ |
|
309 |
|
void SimInfo::calcNdfRaw() { |
310 |
|
int ndfRaw_local; |
311 |
|
|
686 |
|
/** |
687 |
|
* update |
688 |
|
* |
689 |
< |
* Performs the global checks and variable settings after the objects have been |
690 |
< |
* created. |
689 |
> |
* Performs the global checks and variable settings after the |
690 |
> |
* objects have been created. |
691 |
|
* |
692 |
|
*/ |
693 |
< |
void SimInfo::update() { |
665 |
< |
|
693 |
> |
void SimInfo::update() { |
694 |
|
setupSimVariables(); |
667 |
– |
setupCutoffs(); |
668 |
– |
setupSwitching(); |
669 |
– |
setupElectrostatics(); |
670 |
– |
setupNeighborlists(); |
671 |
– |
|
672 |
– |
#ifdef IS_MPI |
673 |
– |
setupFortranParallel(); |
674 |
– |
#endif |
675 |
– |
setupFortranSim(); |
676 |
– |
fortranInitialized_ = true; |
677 |
– |
|
695 |
|
calcNdf(); |
696 |
|
calcNdfRaw(); |
697 |
|
calcNdfTrans(); |
698 |
|
} |
699 |
|
|
700 |
+ |
/** |
701 |
+ |
* getSimulatedAtomTypes |
702 |
+ |
* |
703 |
+ |
* Returns an STL set of AtomType* that are actually present in this |
704 |
+ |
* simulation. Must query all processors to assemble this information. |
705 |
+ |
* |
706 |
+ |
*/ |
707 |
|
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
708 |
|
SimInfo::MoleculeIterator mi; |
709 |
|
Molecule* mol; |
711 |
|
Atom* atom; |
712 |
|
set<AtomType*> atomTypes; |
713 |
|
|
714 |
< |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
715 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
714 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
715 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
716 |
> |
atom = mol->nextAtom(ai)) { |
717 |
|
atomTypes.insert(atom->getAtomType()); |
718 |
|
} |
719 |
|
} |
720 |
< |
return atomTypes; |
721 |
< |
} |
720 |
> |
|
721 |
> |
#ifdef IS_MPI |
722 |
|
|
723 |
< |
/** |
724 |
< |
* setupCutoffs |
700 |
< |
* |
701 |
< |
* Sets the values of cutoffRadius and cutoffMethod |
702 |
< |
* |
703 |
< |
* cutoffRadius : realType |
704 |
< |
* If the cutoffRadius was explicitly set, use that value. |
705 |
< |
* If the cutoffRadius was not explicitly set: |
706 |
< |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
707 |
< |
* No electrostatic atoms? Poll the atom types present in the |
708 |
< |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
709 |
< |
* Use the maximum suggested value that was found. |
710 |
< |
* |
711 |
< |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL) |
712 |
< |
* If cutoffMethod was explicitly set, use that choice. |
713 |
< |
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
714 |
< |
*/ |
715 |
< |
void SimInfo::setupCutoffs() { |
723 |
> |
// loop over the found atom types on this processor, and add their |
724 |
> |
// numerical idents to a vector: |
725 |
|
|
726 |
< |
if (simParams_->haveCutoffRadius()) { |
727 |
< |
cutoffRadius_ = simParams_->getCutoffRadius(); |
728 |
< |
} else { |
729 |
< |
if (usesElectrostaticAtoms_) { |
721 |
< |
sprintf(painCave.errMsg, |
722 |
< |
"SimInfo: No value was set for the cutoffRadius.\n" |
723 |
< |
"\tOpenMD will use a default value of 12.0 angstroms" |
724 |
< |
"\tfor the cutoffRadius.\n"); |
725 |
< |
painCave.isFatal = 0; |
726 |
< |
painCave.severity = OPENMD_INFO; |
727 |
< |
simError(); |
728 |
< |
cutoffRadius_ = 12.0; |
729 |
< |
} else { |
730 |
< |
RealType thisCut; |
731 |
< |
set<AtomType*>::iterator i; |
732 |
< |
set<AtomType*> atomTypes; |
733 |
< |
atomTypes = getSimulatedAtomTypes(); |
734 |
< |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
735 |
< |
thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i)); |
736 |
< |
cutoffRadius_ = max(thisCut, cutoffRadius_); |
737 |
< |
} |
738 |
< |
sprintf(painCave.errMsg, |
739 |
< |
"SimInfo: No value was set for the cutoffRadius.\n" |
740 |
< |
"\tOpenMD will use %lf angstroms.\n", |
741 |
< |
cutoffRadius_); |
742 |
< |
painCave.isFatal = 0; |
743 |
< |
painCave.severity = OPENMD_INFO; |
744 |
< |
simError(); |
745 |
< |
} |
746 |
< |
} |
726 |
> |
vector<int> foundTypes; |
727 |
> |
set<AtomType*>::iterator i; |
728 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
729 |
> |
foundTypes.push_back( (*i)->getIdent() ); |
730 |
|
|
731 |
< |
InteractionManager::Instance()->setCutoffRadius(cutoffRadius_); |
731 |
> |
// count_local holds the number of found types on this processor |
732 |
> |
int count_local = foundTypes.size(); |
733 |
|
|
734 |
< |
map<string, CutoffMethod> stringToCutoffMethod; |
751 |
< |
stringToCutoffMethod["HARD"] = HARD; |
752 |
< |
stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION; |
753 |
< |
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
754 |
< |
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
755 |
< |
|
756 |
< |
if (simParams_->haveCutoffMethod()) { |
757 |
< |
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
758 |
< |
map<string, CutoffMethod>::iterator i; |
759 |
< |
i = stringToCutoffMethod.find(cutMeth); |
760 |
< |
if (i == stringToCutoffMethod.end()) { |
761 |
< |
sprintf(painCave.errMsg, |
762 |
< |
"SimInfo: Could not find chosen cutoffMethod %s\n" |
763 |
< |
"\tShould be one of: " |
764 |
< |
"HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", |
765 |
< |
cutMeth.c_str()); |
766 |
< |
painCave.isFatal = 1; |
767 |
< |
painCave.severity = OPENMD_ERROR; |
768 |
< |
simError(); |
769 |
< |
} else { |
770 |
< |
cutoffMethod_ = i->second; |
771 |
< |
} |
772 |
< |
} else { |
773 |
< |
sprintf(painCave.errMsg, |
774 |
< |
"SimInfo: No value was set for the cutoffMethod.\n" |
775 |
< |
"\tOpenMD will use SHIFTED_FORCE.\n"); |
776 |
< |
painCave.isFatal = 0; |
777 |
< |
painCave.severity = OPENMD_INFO; |
778 |
< |
simError(); |
779 |
< |
cutoffMethod_ = SHIFTED_FORCE; |
780 |
< |
} |
734 |
> |
int nproc = MPI::COMM_WORLD.Get_size(); |
735 |
|
|
736 |
< |
InteractionManager::Instance()->setCutoffMethod(cutoffMethod_); |
737 |
< |
} |
738 |
< |
|
739 |
< |
/** |
740 |
< |
* setupSwitching |
741 |
< |
* |
742 |
< |
* Sets the values of switchingRadius and |
743 |
< |
* If the switchingRadius was explicitly set, use that value (but check it) |
790 |
< |
* If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ |
791 |
< |
*/ |
792 |
< |
void SimInfo::setupSwitching() { |
793 |
< |
|
794 |
< |
if (simParams_->haveSwitchingRadius()) { |
795 |
< |
switchingRadius_ = simParams_->getSwitchingRadius(); |
796 |
< |
if (switchingRadius_ > cutoffRadius_) { |
797 |
< |
sprintf(painCave.errMsg, |
798 |
< |
"SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n", |
799 |
< |
switchingRadius_, cutoffRadius_); |
800 |
< |
painCave.isFatal = 1; |
801 |
< |
painCave.severity = OPENMD_ERROR; |
802 |
< |
simError(); |
803 |
< |
} |
804 |
< |
} else { |
805 |
< |
switchingRadius_ = 0.85 * cutoffRadius_; |
806 |
< |
sprintf(painCave.errMsg, |
807 |
< |
"SimInfo: No value was set for the switchingRadius.\n" |
808 |
< |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
809 |
< |
"\tswitchingRadius = %f. for this simulation\n", switchingRadius_); |
810 |
< |
painCave.isFatal = 0; |
811 |
< |
painCave.severity = OPENMD_WARNING; |
812 |
< |
simError(); |
813 |
< |
} |
736 |
> |
// we need arrays to hold the counts and displacement vectors for |
737 |
> |
// all processors |
738 |
> |
vector<int> counts(nproc, 0); |
739 |
> |
vector<int> disps(nproc, 0); |
740 |
> |
|
741 |
> |
// fill the counts array |
742 |
> |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
743 |
> |
1, MPI::INT); |
744 |
|
|
745 |
< |
InteractionManager::Instance()->setSwitchingRadius(switchingRadius_); |
745 |
> |
// use the processor counts to compute the displacement array |
746 |
> |
disps[0] = 0; |
747 |
> |
int totalCount = counts[0]; |
748 |
> |
for (int iproc = 1; iproc < nproc; iproc++) { |
749 |
> |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
750 |
> |
totalCount += counts[iproc]; |
751 |
> |
} |
752 |
|
|
753 |
< |
SwitchingFunctionType ft; |
753 |
> |
// we need a (possibly redundant) set of all found types: |
754 |
> |
vector<int> ftGlobal(totalCount); |
755 |
|
|
756 |
< |
if (simParams_->haveSwitchingFunctionType()) { |
757 |
< |
string funcType = simParams_->getSwitchingFunctionType(); |
758 |
< |
toUpper(funcType); |
759 |
< |
if (funcType == "CUBIC") { |
823 |
< |
ft = cubic; |
824 |
< |
} else { |
825 |
< |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
826 |
< |
ft = fifth_order_poly; |
827 |
< |
} else { |
828 |
< |
// throw error |
829 |
< |
sprintf( painCave.errMsg, |
830 |
< |
"SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n" |
831 |
< |
"\tswitchingFunctionType must be one of: " |
832 |
< |
"\"cubic\" or \"fifth_order_polynomial\".", |
833 |
< |
funcType.c_str() ); |
834 |
< |
painCave.isFatal = 1; |
835 |
< |
painCave.severity = OPENMD_ERROR; |
836 |
< |
simError(); |
837 |
< |
} |
838 |
< |
} |
839 |
< |
} |
756 |
> |
// now spray out the foundTypes to all the other processors: |
757 |
> |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
758 |
> |
&ftGlobal[0], &counts[0], &disps[0], |
759 |
> |
MPI::INT); |
760 |
|
|
761 |
< |
InteractionManager::Instance()->setSwitchingFunctionType(ft); |
842 |
< |
} |
761 |
> |
vector<int>::iterator j; |
762 |
|
|
763 |
< |
/** |
764 |
< |
* setupSkinThickness |
765 |
< |
* |
766 |
< |
* If the skinThickness was explicitly set, use that value (but check it) |
767 |
< |
* If the skinThickness was not explicitly set: use 1.0 angstroms |
768 |
< |
*/ |
769 |
< |
void SimInfo::setupSkinThickness() { |
770 |
< |
if (simParams_->haveSkinThickness()) { |
771 |
< |
skinThickness_ = simParams_->getSkinThickness(); |
772 |
< |
} else { |
773 |
< |
skinThickness_ = 1.0; |
774 |
< |
sprintf(painCave.errMsg, |
775 |
< |
"SimInfo Warning: No value was set for the skinThickness.\n" |
776 |
< |
"\tOpenMD will use a default value of %f Angstroms\n" |
777 |
< |
"\tfor this simulation\n", skinThickness_); |
778 |
< |
painCave.isFatal = 0; |
860 |
< |
simError(); |
861 |
< |
} |
763 |
> |
// foundIdents is a stl set, so inserting an already found ident |
764 |
> |
// will have no effect. |
765 |
> |
set<int> foundIdents; |
766 |
> |
|
767 |
> |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
768 |
> |
foundIdents.insert((*j)); |
769 |
> |
|
770 |
> |
// now iterate over the foundIdents and get the actual atom types |
771 |
> |
// that correspond to these: |
772 |
> |
set<int>::iterator it; |
773 |
> |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
774 |
> |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
775 |
> |
|
776 |
> |
#endif |
777 |
> |
|
778 |
> |
return atomTypes; |
779 |
|
} |
780 |
|
|
781 |
< |
void SimInfo::setupSimType() { |
781 |
> |
void SimInfo::setupSimVariables() { |
782 |
> |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
783 |
> |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
784 |
> |
calcBoxDipole_ = false; |
785 |
> |
if ( simParams_->haveAccumulateBoxDipole() ) |
786 |
> |
if ( simParams_->getAccumulateBoxDipole() ) { |
787 |
> |
calcBoxDipole_ = true; |
788 |
> |
} |
789 |
> |
|
790 |
|
set<AtomType*>::iterator i; |
791 |
|
set<AtomType*> atomTypes; |
792 |
< |
atomTypes = getSimulatedAtomTypes(); |
793 |
< |
|
794 |
< |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
795 |
< |
|
796 |
< |
int usesElectrostatic = 0; |
872 |
< |
int usesMetallic = 0; |
873 |
< |
int usesDirectional = 0; |
792 |
> |
atomTypes = getSimulatedAtomTypes(); |
793 |
> |
bool usesElectrostatic = false; |
794 |
> |
bool usesMetallic = false; |
795 |
> |
bool usesDirectional = false; |
796 |
> |
bool usesFluctuatingCharges = false; |
797 |
|
//loop over all of the atom types |
798 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
799 |
|
usesElectrostatic |= (*i)->isElectrostatic(); |
800 |
|
usesMetallic |= (*i)->isMetal(); |
801 |
|
usesDirectional |= (*i)->isDirectional(); |
802 |
+ |
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
803 |
|
} |
804 |
|
|
805 |
< |
#ifdef IS_MPI |
806 |
< |
int temp; |
805 |
> |
#ifdef IS_MPI |
806 |
> |
bool temp; |
807 |
|
temp = usesDirectional; |
808 |
< |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
809 |
< |
|
808 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, |
809 |
> |
MPI::LOR); |
810 |
> |
|
811 |
|
temp = usesMetallic; |
812 |
< |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
813 |
< |
|
812 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, |
813 |
> |
MPI::LOR); |
814 |
> |
|
815 |
|
temp = usesElectrostatic; |
816 |
< |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
816 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, |
817 |
> |
MPI::LOR); |
818 |
> |
|
819 |
> |
temp = usesFluctuatingCharges; |
820 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, |
821 |
> |
MPI::LOR); |
822 |
> |
#else |
823 |
> |
|
824 |
> |
usesDirectionalAtoms_ = usesDirectional; |
825 |
> |
usesMetallicAtoms_ = usesMetallic; |
826 |
> |
usesElectrostaticAtoms_ = usesElectrostatic; |
827 |
> |
usesFluctuatingCharges_ = usesFluctuatingCharges; |
828 |
> |
|
829 |
|
#endif |
830 |
< |
fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
831 |
< |
fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
832 |
< |
fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
833 |
< |
fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
896 |
< |
fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
897 |
< |
fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
830 |
> |
|
831 |
> |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
832 |
> |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
833 |
> |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
834 |
|
} |
835 |
|
|
836 |
< |
void SimInfo::setupFortranSim() { |
837 |
< |
int isError; |
838 |
< |
int nExclude, nOneTwo, nOneThree, nOneFour; |
839 |
< |
vector<int> fortranGlobalGroupMembership; |
836 |
> |
|
837 |
> |
vector<int> SimInfo::getGlobalAtomIndices() { |
838 |
> |
SimInfo::MoleculeIterator mi; |
839 |
> |
Molecule* mol; |
840 |
> |
Molecule::AtomIterator ai; |
841 |
> |
Atom* atom; |
842 |
> |
|
843 |
> |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
844 |
|
|
845 |
< |
notifyFortranSkinThickness(&skinThickness_); |
845 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
846 |
> |
|
847 |
> |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
848 |
> |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
849 |
> |
} |
850 |
> |
} |
851 |
> |
return GlobalAtomIndices; |
852 |
> |
} |
853 |
|
|
907 |
– |
int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0; |
908 |
– |
int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0; |
909 |
– |
notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf); |
854 |
|
|
855 |
< |
isError = 0; |
855 |
> |
vector<int> SimInfo::getGlobalGroupIndices() { |
856 |
> |
SimInfo::MoleculeIterator mi; |
857 |
> |
Molecule* mol; |
858 |
> |
Molecule::CutoffGroupIterator ci; |
859 |
> |
CutoffGroup* cg; |
860 |
|
|
861 |
< |
//globalGroupMembership_ is filled by SimCreator |
862 |
< |
for (int i = 0; i < nGlobalAtoms_; i++) { |
863 |
< |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
861 |
> |
vector<int> GlobalGroupIndices; |
862 |
> |
|
863 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
864 |
> |
|
865 |
> |
//local index of cutoff group is trivial, it only depends on the |
866 |
> |
//order of travesing |
867 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
868 |
> |
cg = mol->nextCutoffGroup(ci)) { |
869 |
> |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
870 |
> |
} |
871 |
|
} |
872 |
+ |
return GlobalGroupIndices; |
873 |
+ |
} |
874 |
|
|
875 |
+ |
|
876 |
+ |
void SimInfo::prepareTopology() { |
877 |
+ |
int nExclude, nOneTwo, nOneThree, nOneFour; |
878 |
+ |
|
879 |
|
//calculate mass ratio of cutoff group |
919 |
– |
vector<RealType> mfact; |
880 |
|
SimInfo::MoleculeIterator mi; |
881 |
|
Molecule* mol; |
882 |
|
Molecule::CutoffGroupIterator ci; |
885 |
|
Atom* atom; |
886 |
|
RealType totalMass; |
887 |
|
|
888 |
< |
//to avoid memory reallocation, reserve enough space for mfact |
889 |
< |
mfact.reserve(getNCutoffGroups()); |
888 |
> |
/** |
889 |
> |
* The mass factor is the relative mass of an atom to the total |
890 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
891 |
> |
* are their own cutoff groups, and therefore have mass factors of |
892 |
> |
* 1. We need some special handling for massless atoms, which |
893 |
> |
* will be treated as carrying the entire mass of the cutoff |
894 |
> |
* group. |
895 |
> |
*/ |
896 |
> |
massFactors_.clear(); |
897 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
898 |
|
|
899 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
900 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
900 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
901 |
> |
cg = mol->nextCutoffGroup(ci)) { |
902 |
|
|
903 |
|
totalMass = cg->getMass(); |
904 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
905 |
|
// Check for massless groups - set mfact to 1 if true |
906 |
< |
if (totalMass != 0) |
907 |
< |
mfact.push_back(atom->getMass()/totalMass); |
906 |
> |
if (totalMass != 0) |
907 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
908 |
|
else |
909 |
< |
mfact.push_back( 1.0 ); |
909 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
910 |
|
} |
911 |
|
} |
912 |
|
} |
913 |
|
|
914 |
< |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
946 |
< |
vector<int> identArray; |
914 |
> |
// Build the identArray_ |
915 |
|
|
916 |
< |
//to avoid memory reallocation, reserve enough space identArray |
917 |
< |
identArray.reserve(getNAtoms()); |
950 |
< |
|
916 |
> |
identArray_.clear(); |
917 |
> |
identArray_.reserve(getNAtoms()); |
918 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
919 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
920 |
< |
identArray.push_back(atom->getIdent()); |
920 |
> |
identArray_.push_back(atom->getIdent()); |
921 |
|
} |
922 |
|
} |
956 |
– |
|
957 |
– |
//fill molMembershipArray |
958 |
– |
//molMembershipArray is filled by SimCreator |
959 |
– |
vector<int> molMembershipArray(nGlobalAtoms_); |
960 |
– |
for (int i = 0; i < nGlobalAtoms_; i++) { |
961 |
– |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
962 |
– |
} |
923 |
|
|
924 |
< |
//setup fortran simulation |
924 |
> |
//scan topology |
925 |
|
|
926 |
|
nExclude = excludedInteractions_.getSize(); |
927 |
|
nOneTwo = oneTwoInteractions_.getSize(); |
933 |
|
int* oneThreeList = oneThreeInteractions_.getPairList(); |
934 |
|
int* oneFourList = oneFourInteractions_.getPairList(); |
935 |
|
|
936 |
< |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
977 |
< |
&nExclude, excludeList, |
978 |
< |
&nOneTwo, oneTwoList, |
979 |
< |
&nOneThree, oneThreeList, |
980 |
< |
&nOneFour, oneFourList, |
981 |
< |
&molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
982 |
< |
&fortranGlobalGroupMembership[0], &isError); |
983 |
< |
|
984 |
< |
if( isError ){ |
985 |
< |
|
986 |
< |
sprintf( painCave.errMsg, |
987 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
988 |
< |
painCave.isFatal = 1; |
989 |
< |
painCave.severity = OPENMD_ERROR; |
990 |
< |
simError(); |
991 |
< |
} |
992 |
< |
|
993 |
< |
|
994 |
< |
sprintf( checkPointMsg, |
995 |
< |
"succesfully sent the simulation information to fortran.\n"); |
996 |
< |
|
997 |
< |
errorCheckPoint(); |
998 |
< |
|
999 |
< |
// Setup number of neighbors in neighbor list if present |
1000 |
< |
if (simParams_->haveNeighborListNeighbors()) { |
1001 |
< |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
1002 |
< |
setNeighbors(&nlistNeighbors); |
1003 |
< |
} |
1004 |
< |
|
1005 |
< |
|
936 |
> |
topologyDone_ = true; |
937 |
|
} |
938 |
|
|
1008 |
– |
|
1009 |
– |
void SimInfo::setupFortranParallel() { |
1010 |
– |
#ifdef IS_MPI |
1011 |
– |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
1012 |
– |
vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
1013 |
– |
vector<int> localToGlobalCutoffGroupIndex; |
1014 |
– |
SimInfo::MoleculeIterator mi; |
1015 |
– |
Molecule::AtomIterator ai; |
1016 |
– |
Molecule::CutoffGroupIterator ci; |
1017 |
– |
Molecule* mol; |
1018 |
– |
Atom* atom; |
1019 |
– |
CutoffGroup* cg; |
1020 |
– |
mpiSimData parallelData; |
1021 |
– |
int isError; |
1022 |
– |
|
1023 |
– |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1024 |
– |
|
1025 |
– |
//local index(index in DataStorge) of atom is important |
1026 |
– |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
1027 |
– |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
1028 |
– |
} |
1029 |
– |
|
1030 |
– |
//local index of cutoff group is trivial, it only depends on the order of travesing |
1031 |
– |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
1032 |
– |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
1033 |
– |
} |
1034 |
– |
|
1035 |
– |
} |
1036 |
– |
|
1037 |
– |
//fill up mpiSimData struct |
1038 |
– |
parallelData.nMolGlobal = getNGlobalMolecules(); |
1039 |
– |
parallelData.nMolLocal = getNMolecules(); |
1040 |
– |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
1041 |
– |
parallelData.nAtomsLocal = getNAtoms(); |
1042 |
– |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
1043 |
– |
parallelData.nGroupsLocal = getNCutoffGroups(); |
1044 |
– |
parallelData.myNode = worldRank; |
1045 |
– |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
1046 |
– |
|
1047 |
– |
//pass mpiSimData struct and index arrays to fortran |
1048 |
– |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
1049 |
– |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
1050 |
– |
&localToGlobalCutoffGroupIndex[0], &isError); |
1051 |
– |
|
1052 |
– |
if (isError) { |
1053 |
– |
sprintf(painCave.errMsg, |
1054 |
– |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
1055 |
– |
painCave.isFatal = 1; |
1056 |
– |
simError(); |
1057 |
– |
} |
1058 |
– |
|
1059 |
– |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
1060 |
– |
errorCheckPoint(); |
1061 |
– |
|
1062 |
– |
#endif |
1063 |
– |
} |
1064 |
– |
|
1065 |
– |
|
1066 |
– |
void SimInfo::setupSwitchingFunction() { |
1067 |
– |
|
1068 |
– |
} |
1069 |
– |
|
1070 |
– |
void SimInfo::setupAccumulateBoxDipole() { |
1071 |
– |
|
1072 |
– |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1073 |
– |
if ( simParams_->haveAccumulateBoxDipole() ) |
1074 |
– |
if ( simParams_->getAccumulateBoxDipole() ) { |
1075 |
– |
calcBoxDipole_ = true; |
1076 |
– |
} |
1077 |
– |
|
1078 |
– |
} |
1079 |
– |
|
939 |
|
void SimInfo::addProperty(GenericData* genData) { |
940 |
|
properties_.addProperty(genData); |
941 |
|
} |
970 |
|
Molecule* mol; |
971 |
|
RigidBody* rb; |
972 |
|
Atom* atom; |
973 |
+ |
CutoffGroup* cg; |
974 |
|
SimInfo::MoleculeIterator mi; |
975 |
|
Molecule::RigidBodyIterator rbIter; |
976 |
< |
Molecule::AtomIterator atomIter;; |
976 |
> |
Molecule::AtomIterator atomIter; |
977 |
> |
Molecule::CutoffGroupIterator cgIter; |
978 |
|
|
979 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
980 |
|
|
985 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
986 |
|
rb->setSnapshotManager(sman_); |
987 |
|
} |
988 |
+ |
|
989 |
+ |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
990 |
+ |
cg->setSnapshotManager(sman_); |
991 |
+ |
} |
992 |
|
} |
993 |
|
|
994 |
|
} |
995 |
|
|
1131 |
– |
Vector3d SimInfo::getComVel(){ |
1132 |
– |
SimInfo::MoleculeIterator i; |
1133 |
– |
Molecule* mol; |
996 |
|
|
1135 |
– |
Vector3d comVel(0.0); |
1136 |
– |
RealType totalMass = 0.0; |
1137 |
– |
|
1138 |
– |
|
1139 |
– |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1140 |
– |
RealType mass = mol->getMass(); |
1141 |
– |
totalMass += mass; |
1142 |
– |
comVel += mass * mol->getComVel(); |
1143 |
– |
} |
1144 |
– |
|
1145 |
– |
#ifdef IS_MPI |
1146 |
– |
RealType tmpMass = totalMass; |
1147 |
– |
Vector3d tmpComVel(comVel); |
1148 |
– |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1149 |
– |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1150 |
– |
#endif |
1151 |
– |
|
1152 |
– |
comVel /= totalMass; |
1153 |
– |
|
1154 |
– |
return comVel; |
1155 |
– |
} |
1156 |
– |
|
1157 |
– |
Vector3d SimInfo::getCom(){ |
1158 |
– |
SimInfo::MoleculeIterator i; |
1159 |
– |
Molecule* mol; |
1160 |
– |
|
1161 |
– |
Vector3d com(0.0); |
1162 |
– |
RealType totalMass = 0.0; |
1163 |
– |
|
1164 |
– |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1165 |
– |
RealType mass = mol->getMass(); |
1166 |
– |
totalMass += mass; |
1167 |
– |
com += mass * mol->getCom(); |
1168 |
– |
} |
1169 |
– |
|
1170 |
– |
#ifdef IS_MPI |
1171 |
– |
RealType tmpMass = totalMass; |
1172 |
– |
Vector3d tmpCom(com); |
1173 |
– |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1174 |
– |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1175 |
– |
#endif |
1176 |
– |
|
1177 |
– |
com /= totalMass; |
1178 |
– |
|
1179 |
– |
return com; |
1180 |
– |
|
1181 |
– |
} |
1182 |
– |
|
997 |
|
ostream& operator <<(ostream& o, SimInfo& info) { |
998 |
|
|
999 |
|
return o; |
1000 |
|
} |
1001 |
|
|
1002 |
< |
|
1189 |
< |
/* |
1190 |
< |
Returns center of mass and center of mass velocity in one function call. |
1191 |
< |
*/ |
1192 |
< |
|
1193 |
< |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1194 |
< |
SimInfo::MoleculeIterator i; |
1195 |
< |
Molecule* mol; |
1196 |
< |
|
1197 |
< |
|
1198 |
< |
RealType totalMass = 0.0; |
1199 |
< |
|
1200 |
< |
|
1201 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1202 |
< |
RealType mass = mol->getMass(); |
1203 |
< |
totalMass += mass; |
1204 |
< |
com += mass * mol->getCom(); |
1205 |
< |
comVel += mass * mol->getComVel(); |
1206 |
< |
} |
1207 |
< |
|
1208 |
< |
#ifdef IS_MPI |
1209 |
< |
RealType tmpMass = totalMass; |
1210 |
< |
Vector3d tmpCom(com); |
1211 |
< |
Vector3d tmpComVel(comVel); |
1212 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1213 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1214 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1215 |
< |
#endif |
1216 |
< |
|
1217 |
< |
com /= totalMass; |
1218 |
< |
comVel /= totalMass; |
1219 |
< |
} |
1220 |
< |
|
1221 |
< |
/* |
1222 |
< |
Return intertia tensor for entire system and angular momentum Vector. |
1223 |
< |
|
1224 |
< |
|
1225 |
< |
[ Ixx -Ixy -Ixz ] |
1226 |
< |
J =| -Iyx Iyy -Iyz | |
1227 |
< |
[ -Izx -Iyz Izz ] |
1228 |
< |
*/ |
1229 |
< |
|
1230 |
< |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1231 |
< |
|
1232 |
< |
|
1233 |
< |
RealType xx = 0.0; |
1234 |
< |
RealType yy = 0.0; |
1235 |
< |
RealType zz = 0.0; |
1236 |
< |
RealType xy = 0.0; |
1237 |
< |
RealType xz = 0.0; |
1238 |
< |
RealType yz = 0.0; |
1239 |
< |
Vector3d com(0.0); |
1240 |
< |
Vector3d comVel(0.0); |
1241 |
< |
|
1242 |
< |
getComAll(com, comVel); |
1243 |
< |
|
1244 |
< |
SimInfo::MoleculeIterator i; |
1245 |
< |
Molecule* mol; |
1246 |
< |
|
1247 |
< |
Vector3d thisq(0.0); |
1248 |
< |
Vector3d thisv(0.0); |
1249 |
< |
|
1250 |
< |
RealType thisMass = 0.0; |
1251 |
< |
|
1252 |
< |
|
1253 |
< |
|
1254 |
< |
|
1255 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1256 |
< |
|
1257 |
< |
thisq = mol->getCom()-com; |
1258 |
< |
thisv = mol->getComVel()-comVel; |
1259 |
< |
thisMass = mol->getMass(); |
1260 |
< |
// Compute moment of intertia coefficients. |
1261 |
< |
xx += thisq[0]*thisq[0]*thisMass; |
1262 |
< |
yy += thisq[1]*thisq[1]*thisMass; |
1263 |
< |
zz += thisq[2]*thisq[2]*thisMass; |
1264 |
< |
|
1265 |
< |
// compute products of intertia |
1266 |
< |
xy += thisq[0]*thisq[1]*thisMass; |
1267 |
< |
xz += thisq[0]*thisq[2]*thisMass; |
1268 |
< |
yz += thisq[1]*thisq[2]*thisMass; |
1269 |
< |
|
1270 |
< |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1271 |
< |
|
1272 |
< |
} |
1273 |
< |
|
1274 |
< |
|
1275 |
< |
inertiaTensor(0,0) = yy + zz; |
1276 |
< |
inertiaTensor(0,1) = -xy; |
1277 |
< |
inertiaTensor(0,2) = -xz; |
1278 |
< |
inertiaTensor(1,0) = -xy; |
1279 |
< |
inertiaTensor(1,1) = xx + zz; |
1280 |
< |
inertiaTensor(1,2) = -yz; |
1281 |
< |
inertiaTensor(2,0) = -xz; |
1282 |
< |
inertiaTensor(2,1) = -yz; |
1283 |
< |
inertiaTensor(2,2) = xx + yy; |
1284 |
< |
|
1285 |
< |
#ifdef IS_MPI |
1286 |
< |
Mat3x3d tmpI(inertiaTensor); |
1287 |
< |
Vector3d tmpAngMom; |
1288 |
< |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1289 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1290 |
< |
#endif |
1291 |
< |
|
1292 |
< |
return; |
1293 |
< |
} |
1294 |
< |
|
1295 |
< |
//Returns the angular momentum of the system |
1296 |
< |
Vector3d SimInfo::getAngularMomentum(){ |
1297 |
< |
|
1298 |
< |
Vector3d com(0.0); |
1299 |
< |
Vector3d comVel(0.0); |
1300 |
< |
Vector3d angularMomentum(0.0); |
1301 |
< |
|
1302 |
< |
getComAll(com,comVel); |
1303 |
< |
|
1304 |
< |
SimInfo::MoleculeIterator i; |
1305 |
< |
Molecule* mol; |
1306 |
< |
|
1307 |
< |
Vector3d thisr(0.0); |
1308 |
< |
Vector3d thisp(0.0); |
1309 |
< |
|
1310 |
< |
RealType thisMass; |
1311 |
< |
|
1312 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1313 |
< |
thisMass = mol->getMass(); |
1314 |
< |
thisr = mol->getCom()-com; |
1315 |
< |
thisp = (mol->getComVel()-comVel)*thisMass; |
1316 |
< |
|
1317 |
< |
angularMomentum += cross( thisr, thisp ); |
1318 |
< |
|
1319 |
< |
} |
1320 |
< |
|
1321 |
< |
#ifdef IS_MPI |
1322 |
< |
Vector3d tmpAngMom; |
1323 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1324 |
< |
#endif |
1325 |
< |
|
1326 |
< |
return angularMomentum; |
1327 |
< |
} |
1328 |
< |
|
1002 |
> |
|
1003 |
|
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1004 |
|
return IOIndexToIntegrableObject.at(index); |
1005 |
|
} |
1007 |
|
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1008 |
|
IOIndexToIntegrableObject= v; |
1009 |
|
} |
1336 |
– |
|
1337 |
– |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1338 |
– |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1339 |
– |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1340 |
– |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1341 |
– |
*/ |
1342 |
– |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1343 |
– |
Mat3x3d intTensor; |
1344 |
– |
RealType det; |
1345 |
– |
Vector3d dummyAngMom; |
1346 |
– |
RealType sysconstants; |
1347 |
– |
RealType geomCnst; |
1348 |
– |
|
1349 |
– |
geomCnst = 3.0/2.0; |
1350 |
– |
/* Get the inertial tensor and angular momentum for free*/ |
1351 |
– |
getInertiaTensor(intTensor,dummyAngMom); |
1352 |
– |
|
1353 |
– |
det = intTensor.determinant(); |
1354 |
– |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1355 |
– |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1356 |
– |
return; |
1357 |
– |
} |
1358 |
– |
|
1359 |
– |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1360 |
– |
Mat3x3d intTensor; |
1361 |
– |
Vector3d dummyAngMom; |
1362 |
– |
RealType sysconstants; |
1363 |
– |
RealType geomCnst; |
1364 |
– |
|
1365 |
– |
geomCnst = 3.0/2.0; |
1366 |
– |
/* Get the inertial tensor and angular momentum for free*/ |
1367 |
– |
getInertiaTensor(intTensor,dummyAngMom); |
1368 |
– |
|
1369 |
– |
detI = intTensor.determinant(); |
1370 |
– |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1371 |
– |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1372 |
– |
return; |
1373 |
– |
} |
1010 |
|
/* |
1011 |
|
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1012 |
|
assert( v.size() == nAtoms_ + nRigidBodies_); |