ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1725 by gezelter, Sat May 26 18:13:43 2012 UTC vs.
Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40   * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
# Line 88 | Line 88 | namespace OpenMD {
88      
89      vector<Component*> components = simParams->getComponents();
90      
91 <    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93        molStamp = (*i)->getMoleculeStamp();
94        nMolWithSameStamp = (*i)->getNMol();
95        
# Line 231 | Line 232 | namespace OpenMD {
232      vector<Atom*>::iterator k;
233  
234      Molecule* mol;
235 <    StuntDouble* integrableObject;
235 >    StuntDouble* sd;
236      Atom* atom;
237  
238      ndf_local = 0;
239      nfq_local = 0;
240      
241      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
242           integrableObject = mol->nextIntegrableObject(j)) {
242  
243 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
244 +           sd = mol->nextIntegrableObject(j)) {
245 +
246          ndf_local += 3;
247  
248 <        if (integrableObject->isDirectional()) {
249 <          if (integrableObject->isLinear()) {
248 >        if (sd->isDirectional()) {
249 >          if (sd->isLinear()) {
250              ndf_local += 2;
251            } else {
252              ndf_local += 3;
253            }
254          }
255        }
256 +
257        for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
258             atom = mol->nextFluctuatingCharge(k)) {
259          if (atom->isFluctuatingCharge()) {
# Line 259 | Line 262 | namespace OpenMD {
262        }
263      }
264      
265 +    ndfLocal_ = ndf_local;
266 +
267      // n_constraints is local, so subtract them on each processor
268      ndf_local -= nConstraints_;
269  
270   #ifdef IS_MPI
271 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
272 <    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
271 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
272 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
273 >                              MPI::INT, MPI::SUM);
274   #else
275      ndf_ = ndf_local;
276      nGlobalFluctuatingCharges_ = nfq_local;
# Line 278 | Line 284 | namespace OpenMD {
284  
285    int SimInfo::getFdf() {
286   #ifdef IS_MPI
287 <    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
288   #else
289      fdf_ = fdf_local;
290   #endif
# Line 310 | Line 316 | namespace OpenMD {
316      MoleculeIterator i;
317      vector<StuntDouble*>::iterator j;
318      Molecule* mol;
319 <    StuntDouble* integrableObject;
319 >    StuntDouble* sd;
320  
321      // Raw degrees of freedom that we have to set
322      ndfRaw_local = 0;
323      
324      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
319      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
320           integrableObject = mol->nextIntegrableObject(j)) {
325  
326 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
327 +           sd = mol->nextIntegrableObject(j)) {
328 +
329          ndfRaw_local += 3;
330  
331 <        if (integrableObject->isDirectional()) {
332 <          if (integrableObject->isLinear()) {
331 >        if (sd->isDirectional()) {
332 >          if (sd->isLinear()) {
333              ndfRaw_local += 2;
334            } else {
335              ndfRaw_local += 3;
# Line 333 | Line 340 | namespace OpenMD {
340      }
341      
342   #ifdef IS_MPI
343 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
343 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
344   #else
345      ndfRaw_ = ndfRaw_local;
346   #endif
# Line 346 | Line 353 | namespace OpenMD {
353  
354  
355   #ifdef IS_MPI
356 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
356 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
357 >                              MPI::INT, MPI::SUM);
358   #else
359      ndfTrans_ = ndfTrans_local;
360   #endif
# Line 382 | Line 390 | namespace OpenMD {
390      Molecule::RigidBodyIterator rbIter;
391      RigidBody* rb;
392      Molecule::IntegrableObjectIterator ii;
393 <    StuntDouble* integrableObject;
393 >    StuntDouble* sd;
394      
395 <    for (integrableObject = mol->beginIntegrableObject(ii);
396 <         integrableObject != NULL;
389 <         integrableObject = mol->nextIntegrableObject(ii)) {
395 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
396 >         sd = mol->nextIntegrableObject(ii)) {
397        
398 <      if (integrableObject->isRigidBody()) {
399 <        rb = static_cast<RigidBody*>(integrableObject);
398 >      if (sd->isRigidBody()) {
399 >        rb = static_cast<RigidBody*>(sd);
400          vector<Atom*> atoms = rb->getAtoms();
401          set<int> rigidAtoms;
402          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 400 | Line 407 | namespace OpenMD {
407          }      
408        } else {
409          set<int> oneAtomSet;
410 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
411 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
410 >        oneAtomSet.insert(sd->getGlobalIndex());
411 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
412        }
413      }  
414            
# Line 535 | Line 542 | namespace OpenMD {
542      Molecule::RigidBodyIterator rbIter;
543      RigidBody* rb;
544      Molecule::IntegrableObjectIterator ii;
545 <    StuntDouble* integrableObject;
545 >    StuntDouble* sd;
546      
547 <    for (integrableObject = mol->beginIntegrableObject(ii);
548 <         integrableObject != NULL;
542 <         integrableObject = mol->nextIntegrableObject(ii)) {
547 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
548 >         sd = mol->nextIntegrableObject(ii)) {
549        
550 <      if (integrableObject->isRigidBody()) {
551 <        rb = static_cast<RigidBody*>(integrableObject);
550 >      if (sd->isRigidBody()) {
551 >        rb = static_cast<RigidBody*>(sd);
552          vector<Atom*> atoms = rb->getAtoms();
553          set<int> rigidAtoms;
554          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 553 | Line 559 | namespace OpenMD {
559          }      
560        } else {
561          set<int> oneAtomSet;
562 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
563 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
562 >        oneAtomSet.insert(sd->getGlobalIndex());
563 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
564        }
565      }  
566  
# Line 774 | Line 780 | namespace OpenMD {
780   #endif
781  
782      return atomTypes;        
783 +  }
784 +
785 +
786 +  int getGlobalCountOfType(AtomType* atype) {
787 +    /*
788 +    set<AtomType*> atypes = getSimulatedAtomTypes();
789 +    map<AtomType*, int> counts_;
790 +
791 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
792 +      for(atom = mol->beginAtom(ai); atom != NULL;
793 +          atom = mol->nextAtom(ai)) {
794 +        atom->getAtomType();
795 +      }      
796 +    }    
797 +    */
798 +    return 0;
799    }
800  
801    void SimInfo::setupSimVariables() {
802      useAtomicVirial_ = simParams_->getUseAtomicVirial();
803 <    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
803 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
804 >    // parameter is true
805      calcBoxDipole_ = false;
806      if ( simParams_->haveAccumulateBoxDipole() )
807        if ( simParams_->getAccumulateBoxDipole() ) {
# Line 788 | Line 811 | namespace OpenMD {
811      set<AtomType*>::iterator i;
812      set<AtomType*> atomTypes;
813      atomTypes = getSimulatedAtomTypes();    
814 <    int usesElectrostatic = 0;
815 <    int usesMetallic = 0;
816 <    int usesDirectional = 0;
817 <    int usesFluctuatingCharges =  0;
814 >    bool usesElectrostatic = false;
815 >    bool usesMetallic = false;
816 >    bool usesDirectional = false;
817 >    bool usesFluctuatingCharges =  false;
818      //loop over all of the atom types
819      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
820        usesElectrostatic |= (*i)->isElectrostatic();
# Line 799 | Line 822 | namespace OpenMD {
822        usesDirectional |= (*i)->isDirectional();
823        usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
824      }
825 <    
826 < #ifdef IS_MPI    
827 <    int temp;
825 >
826 > #ifdef IS_MPI
827 >    bool temp;
828      temp = usesDirectional;
829 <    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
830 <    
829 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
830 >                              MPI::LOR);
831 >        
832      temp = usesMetallic;
833 <    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
833 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
834 >                              MPI::LOR);
835      
836      temp = usesElectrostatic;
837 <    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
837 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
838 >                              MPI::LOR);
839  
840      temp = usesFluctuatingCharges;
841 <    MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
841 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
842 >                              MPI::LOR);
843   #else
844  
845      usesDirectionalAtoms_ = usesDirectional;
# Line 868 | Line 895 | namespace OpenMD {
895  
896  
897    void SimInfo::prepareTopology() {
871    int nExclude, nOneTwo, nOneThree, nOneFour;
898  
899      //calculate mass ratio of cutoff group
900      SimInfo::MoleculeIterator mi;
# Line 915 | Line 941 | namespace OpenMD {
941        }
942      }    
943      
918    //scan topology
919
920    nExclude = excludedInteractions_.getSize();
921    nOneTwo = oneTwoInteractions_.getSize();
922    nOneThree = oneThreeInteractions_.getSize();
923    nOneFour = oneFourInteractions_.getSize();
924
925    int* excludeList = excludedInteractions_.getPairList();
926    int* oneTwoList = oneTwoInteractions_.getPairList();
927    int* oneThreeList = oneThreeInteractions_.getPairList();
928    int* oneFourList = oneFourInteractions_.getPairList();
929
944      topologyDone_ = true;
945    }
946  
# Line 972 | Line 986 | namespace OpenMD {
986  
987      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
988          
989 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
989 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
990 >           atom = mol->nextAtom(atomIter)) {
991          atom->setSnapshotManager(sman_);
992        }
993          
994 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
994 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
995 >           rb = mol->nextRigidBody(rbIter)) {
996          rb->setSnapshotManager(sman_);
997        }
998  
999 <      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
999 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
1000 >           cg = mol->nextCutoffGroup(cgIter)) {
1001          cg->setSnapshotManager(sman_);
1002        }
1003      }    
1004      
1005    }
1006  
990  Vector3d SimInfo::getComVel(){
991    SimInfo::MoleculeIterator i;
992    Molecule* mol;
1007  
994    Vector3d comVel(0.0);
995    RealType totalMass = 0.0;
996    
997
998    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
999      RealType mass = mol->getMass();
1000      totalMass += mass;
1001      comVel += mass * mol->getComVel();
1002    }  
1003
1004 #ifdef IS_MPI
1005    RealType tmpMass = totalMass;
1006    Vector3d tmpComVel(comVel);    
1007    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1008    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1009 #endif
1010
1011    comVel /= totalMass;
1012
1013    return comVel;
1014  }
1015
1016  Vector3d SimInfo::getCom(){
1017    SimInfo::MoleculeIterator i;
1018    Molecule* mol;
1019
1020    Vector3d com(0.0);
1021    RealType totalMass = 0.0;
1022    
1023    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1024      RealType mass = mol->getMass();
1025      totalMass += mass;
1026      com += mass * mol->getCom();
1027    }  
1028
1029 #ifdef IS_MPI
1030    RealType tmpMass = totalMass;
1031    Vector3d tmpCom(com);    
1032    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1033    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1034 #endif
1035
1036    com /= totalMass;
1037
1038    return com;
1039
1040  }        
1041
1008    ostream& operator <<(ostream& o, SimInfo& info) {
1009  
1010      return o;
1011    }
1046  
1047  
1048   /*
1049   Returns center of mass and center of mass velocity in one function call.
1050   */
1051  
1052   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1053      SimInfo::MoleculeIterator i;
1054      Molecule* mol;
1055      
1056    
1057      RealType totalMass = 0.0;
1058    
1059
1060      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1061         RealType mass = mol->getMass();
1062         totalMass += mass;
1063         com += mass * mol->getCom();
1064         comVel += mass * mol->getComVel();          
1065      }  
1066      
1067 #ifdef IS_MPI
1068      RealType tmpMass = totalMass;
1069      Vector3d tmpCom(com);  
1070      Vector3d tmpComVel(comVel);
1071      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1072      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1073      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1074 #endif
1075      
1076      com /= totalMass;
1077      comVel /= totalMass;
1078   }        
1012    
1013 <   /*
1081 <   Return intertia tensor for entire system and angular momentum Vector.
1082 <
1083 <
1084 <       [  Ixx -Ixy  -Ixz ]
1085 <    J =| -Iyx  Iyy  -Iyz |
1086 <       [ -Izx -Iyz   Izz ]
1087 <    */
1088 <
1089 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1090 <      
1091 <
1092 <      RealType xx = 0.0;
1093 <      RealType yy = 0.0;
1094 <      RealType zz = 0.0;
1095 <      RealType xy = 0.0;
1096 <      RealType xz = 0.0;
1097 <      RealType yz = 0.0;
1098 <      Vector3d com(0.0);
1099 <      Vector3d comVel(0.0);
1100 <      
1101 <      getComAll(com, comVel);
1102 <      
1103 <      SimInfo::MoleculeIterator i;
1104 <      Molecule* mol;
1105 <      
1106 <      Vector3d thisq(0.0);
1107 <      Vector3d thisv(0.0);
1108 <
1109 <      RealType thisMass = 0.0;
1110 <    
1111 <      
1112 <      
1113 <  
1114 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1115 <        
1116 <         thisq = mol->getCom()-com;
1117 <         thisv = mol->getComVel()-comVel;
1118 <         thisMass = mol->getMass();
1119 <         // Compute moment of intertia coefficients.
1120 <         xx += thisq[0]*thisq[0]*thisMass;
1121 <         yy += thisq[1]*thisq[1]*thisMass;
1122 <         zz += thisq[2]*thisq[2]*thisMass;
1123 <        
1124 <         // compute products of intertia
1125 <         xy += thisq[0]*thisq[1]*thisMass;
1126 <         xz += thisq[0]*thisq[2]*thisMass;
1127 <         yz += thisq[1]*thisq[2]*thisMass;
1128 <            
1129 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1130 <            
1131 <      }  
1132 <      
1133 <      
1134 <      inertiaTensor(0,0) = yy + zz;
1135 <      inertiaTensor(0,1) = -xy;
1136 <      inertiaTensor(0,2) = -xz;
1137 <      inertiaTensor(1,0) = -xy;
1138 <      inertiaTensor(1,1) = xx + zz;
1139 <      inertiaTensor(1,2) = -yz;
1140 <      inertiaTensor(2,0) = -xz;
1141 <      inertiaTensor(2,1) = -yz;
1142 <      inertiaTensor(2,2) = xx + yy;
1143 <      
1144 < #ifdef IS_MPI
1145 <      Mat3x3d tmpI(inertiaTensor);
1146 <      Vector3d tmpAngMom;
1147 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1148 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1149 < #endif
1150 <              
1151 <      return;
1152 <   }
1153 <
1154 <   //Returns the angular momentum of the system
1155 <   Vector3d SimInfo::getAngularMomentum(){
1156 <      
1157 <      Vector3d com(0.0);
1158 <      Vector3d comVel(0.0);
1159 <      Vector3d angularMomentum(0.0);
1160 <      
1161 <      getComAll(com,comVel);
1162 <      
1163 <      SimInfo::MoleculeIterator i;
1164 <      Molecule* mol;
1165 <      
1166 <      Vector3d thisr(0.0);
1167 <      Vector3d thisp(0.0);
1168 <      
1169 <      RealType thisMass;
1170 <      
1171 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1172 <        thisMass = mol->getMass();
1173 <        thisr = mol->getCom()-com;
1174 <        thisp = (mol->getComVel()-comVel)*thisMass;
1175 <        
1176 <        angularMomentum += cross( thisr, thisp );
1177 <        
1178 <      }  
1179 <      
1180 < #ifdef IS_MPI
1181 <      Vector3d tmpAngMom;
1182 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1183 < #endif
1184 <      
1185 <      return angularMomentum;
1186 <   }
1187 <  
1013 >  
1014    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1015 <    return IOIndexToIntegrableObject.at(index);
1015 >    if (index >= int(IOIndexToIntegrableObject.size())) {
1016 >      sprintf(painCave.errMsg,
1017 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1018 >              "\tindex exceeds number of known objects!\n");
1019 >      painCave.isFatal = 1;
1020 >      simError();
1021 >      return NULL;
1022 >    } else
1023 >      return IOIndexToIntegrableObject.at(index);
1024    }
1025    
1026    void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1027      IOIndexToIntegrableObject= v;
1028    }
1029  
1196  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1197     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1198     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1199     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1200  */
1201  void SimInfo::getGyrationalVolume(RealType &volume){
1202    Mat3x3d intTensor;
1203    RealType det;
1204    Vector3d dummyAngMom;
1205    RealType sysconstants;
1206    RealType geomCnst;
1207
1208    geomCnst = 3.0/2.0;
1209    /* Get the inertial tensor and angular momentum for free*/
1210    getInertiaTensor(intTensor,dummyAngMom);
1211    
1212    det = intTensor.determinant();
1213    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1214    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
1215    return;
1216  }
1217
1218  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1219    Mat3x3d intTensor;
1220    Vector3d dummyAngMom;
1221    RealType sysconstants;
1222    RealType geomCnst;
1223
1224    geomCnst = 3.0/2.0;
1225    /* Get the inertial tensor and angular momentum for free*/
1226    getInertiaTensor(intTensor,dummyAngMom);
1227    
1228    detI = intTensor.determinant();
1229    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1230    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
1231    return;
1232  }
1233 /*
1234   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1235      assert( v.size() == nAtoms_ + nRigidBodies_);
1236      sdByGlobalIndex_ = v;
1237    }
1238
1239    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1240      //assert(index < nAtoms_ + nRigidBodies_);
1241      return sdByGlobalIndex_.at(index);
1242    }  
1243 */  
1030    int SimInfo::getNGlobalConstraints() {
1031      int nGlobalConstraints;
1032   #ifdef IS_MPI
1033 <    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1034 <                  MPI_COMM_WORLD);    
1033 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1034 >                              MPI::INT, MPI::SUM);
1035   #else
1036      nGlobalConstraints =  nConstraints_;
1037   #endif

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines