ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 709 by chrisfen, Wed Nov 2 20:36:15 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1627 by gezelter, Tue Sep 13 22:05:04 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/fCutoffPolicy.h"
56 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 < #include "UseTheForce/DarkSide/fScreeningMethod.h"
58 < #include "UseTheForce/doForces_interface.h"
59 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
60 < #include "UseTheForce/notifyCutoffs_interface.h"
56 > #include "primitives/StuntDouble.hpp"
57   #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59   #include "selection/SelectionManager.hpp"
60 <
60 > #include "io/ForceFieldOptions.hpp"
61 > #include "UseTheForce/ForceField.hpp"
62 > #include "nonbonded/SwitchingFunction.hpp"
63   #ifdef IS_MPI
64 < #include "UseTheForce/mpiComponentPlan.h"
65 < #include "UseTheForce/DarkSide/simParallel_interface.h"
68 < #endif
64 > #include <mpi.h>
65 > #endif
66  
67 < namespace oopse {
68 <
69 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
70 <                   ForceField* ff, Globals* simParams) :
71 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
72 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
67 > using namespace std;
68 > namespace OpenMD {
69 >  
70 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
71 >    forceField_(ff), simParams_(simParams),
72 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
73      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
74      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
76 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
77 <    sman_(NULL), fortranInitialized_(false) {
78 <
82 <            
83 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
84 <      MoleculeStamp* molStamp;
85 <      int nMolWithSameStamp;
86 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
88 <      CutoffGroupStamp* cgStamp;    
89 <      RigidBodyStamp* rbStamp;
90 <      int nRigidAtoms = 0;
75 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
76 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
77 >    nConstraints_(0), sman_(NULL), topologyDone_(false),
78 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
79      
80 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
81 <        molStamp = i->first;
82 <        nMolWithSameStamp = i->second;
83 <        
84 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
85 <
86 <        //calculate atoms in molecules
87 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
88 <
89 <
90 <        //calculate atoms in cutoff groups
91 <        int nAtomsInGroups = 0;
92 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
93 <        
94 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
95 <          cgStamp = molStamp->getCutoffGroup(j);
96 <          nAtomsInGroups += cgStamp->getNMembers();
97 <        }
98 <
99 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
100 <
101 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
102 <
103 <        //calculate atoms in rigid bodies
104 <        int nAtomsInRigidBodies = 0;
105 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
118 <        
119 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
120 <          rbStamp = molStamp->getRigidBody(j);
121 <          nAtomsInRigidBodies += rbStamp->getNMembers();
122 <        }
123 <
124 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
125 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
126 <        
80 >    MoleculeStamp* molStamp;
81 >    int nMolWithSameStamp;
82 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
84 >    CutoffGroupStamp* cgStamp;    
85 >    RigidBodyStamp* rbStamp;
86 >    int nRigidAtoms = 0;
87 >    
88 >    vector<Component*> components = simParams->getComponents();
89 >    
90 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
91 >      molStamp = (*i)->getMoleculeStamp();
92 >      nMolWithSameStamp = (*i)->getNMol();
93 >      
94 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
95 >      
96 >      //calculate atoms in molecules
97 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
98 >      
99 >      //calculate atoms in cutoff groups
100 >      int nAtomsInGroups = 0;
101 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
102 >      
103 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
104 >        cgStamp = molStamp->getCutoffGroupStamp(j);
105 >        nAtomsInGroups += cgStamp->getNMembers();
106        }
107 <
108 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
109 <      //group therefore the total number of cutoff groups in the system is
110 <      //equal to the total number of atoms minus number of atoms belong to
111 <      //cutoff group defined in meta-data file plus the number of cutoff
112 <      //groups defined in meta-data file
113 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
114 <
115 <      //every free atom (atom does not belong to rigid bodies) is an
116 <      //integrable object therefore the total number of integrable objects
117 <      //in the system is equal to the total number of atoms minus number of
118 <      //atoms belong to rigid body defined in meta-data file plus the number
119 <      //of rigid bodies defined in meta-data file
120 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
121 <                                                + nGlobalRigidBodies_;
122 <  
123 <      nGlobalMols_ = molStampIds_.size();
145 <
146 < #ifdef IS_MPI    
147 <      molToProcMap_.resize(nGlobalMols_);
148 < #endif
149 <
107 >      
108 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
109 >      
110 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
111 >      
112 >      //calculate atoms in rigid bodies
113 >      int nAtomsInRigidBodies = 0;
114 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
115 >      
116 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
117 >        rbStamp = molStamp->getRigidBodyStamp(j);
118 >        nAtomsInRigidBodies += rbStamp->getNMembers();
119 >      }
120 >      
121 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
122 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
123 >      
124      }
125 +    
126 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
127 +    //group therefore the total number of cutoff groups in the system is
128 +    //equal to the total number of atoms minus number of atoms belong to
129 +    //cutoff group defined in meta-data file plus the number of cutoff
130 +    //groups defined in meta-data file
131  
132 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
133 +    
134 +    //every free atom (atom does not belong to rigid bodies) is an
135 +    //integrable object therefore the total number of integrable objects
136 +    //in the system is equal to the total number of atoms minus number of
137 +    //atoms belong to rigid body defined in meta-data file plus the number
138 +    //of rigid bodies defined in meta-data file
139 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
140 +      + nGlobalRigidBodies_;
141 +    
142 +    nGlobalMols_ = molStampIds_.size();
143 +    molToProcMap_.resize(nGlobalMols_);
144 +  }
145 +  
146    SimInfo::~SimInfo() {
147 <    std::map<int, Molecule*>::iterator i;
147 >    map<int, Molecule*>::iterator i;
148      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
149        delete i->second;
150      }
151      molecules_.clear();
152        
159    delete stamps_;
153      delete sman_;
154      delete simParams_;
155      delete forceField_;
156    }
157  
165  int SimInfo::getNGlobalConstraints() {
166    int nGlobalConstraints;
167 #ifdef IS_MPI
168    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
169                  MPI_COMM_WORLD);    
170 #else
171    nGlobalConstraints =  nConstraints_;
172 #endif
173    return nGlobalConstraints;
174  }
158  
159    bool SimInfo::addMolecule(Molecule* mol) {
160      MoleculeIterator i;
161 <
161 >    
162      i = molecules_.find(mol->getGlobalIndex());
163      if (i == molecules_.end() ) {
164 <
165 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
166 <        
164 >      
165 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
166 >      
167        nAtoms_ += mol->getNAtoms();
168        nBonds_ += mol->getNBonds();
169        nBends_ += mol->getNBends();
170        nTorsions_ += mol->getNTorsions();
171 +      nInversions_ += mol->getNInversions();
172        nRigidBodies_ += mol->getNRigidBodies();
173        nIntegrableObjects_ += mol->getNIntegrableObjects();
174        nCutoffGroups_ += mol->getNCutoffGroups();
175        nConstraints_ += mol->getNConstraintPairs();
176 <
177 <      addExcludePairs(mol);
178 <        
176 >      
177 >      addInteractionPairs(mol);
178 >      
179        return true;
180      } else {
181        return false;
182      }
183    }
184 <
184 >  
185    bool SimInfo::removeMolecule(Molecule* mol) {
186      MoleculeIterator i;
187      i = molecules_.find(mol->getGlobalIndex());
# Line 210 | Line 194 | namespace oopse {
194        nBonds_ -= mol->getNBonds();
195        nBends_ -= mol->getNBends();
196        nTorsions_ -= mol->getNTorsions();
197 +      nInversions_ -= mol->getNInversions();
198        nRigidBodies_ -= mol->getNRigidBodies();
199        nIntegrableObjects_ -= mol->getNIntegrableObjects();
200        nCutoffGroups_ -= mol->getNCutoffGroups();
201        nConstraints_ -= mol->getNConstraintPairs();
202  
203 <      removeExcludePairs(mol);
203 >      removeInteractionPairs(mol);
204        molecules_.erase(mol->getGlobalIndex());
205  
206        delete mol;
# Line 224 | Line 209 | namespace oopse {
209      } else {
210        return false;
211      }
227
228
212    }    
213  
214          
# Line 243 | Line 226 | namespace oopse {
226    void SimInfo::calcNdf() {
227      int ndf_local;
228      MoleculeIterator i;
229 <    std::vector<StuntDouble*>::iterator j;
229 >    vector<StuntDouble*>::iterator j;
230      Molecule* mol;
231      StuntDouble* integrableObject;
232  
# Line 263 | Line 246 | namespace oopse {
246            }
247          }
248              
249 <      }//end for (integrableObject)
250 <    }// end for (mol)
249 >      }
250 >    }
251      
252      // n_constraints is local, so subtract them on each processor
253      ndf_local -= nConstraints_;
# Line 281 | Line 264 | namespace oopse {
264  
265    }
266  
267 +  int SimInfo::getFdf() {
268 + #ifdef IS_MPI
269 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
270 + #else
271 +    fdf_ = fdf_local;
272 + #endif
273 +    return fdf_;
274 +  }
275 +  
276 +  unsigned int SimInfo::getNLocalCutoffGroups(){
277 +    int nLocalCutoffAtoms = 0;
278 +    Molecule* mol;
279 +    MoleculeIterator mi;
280 +    CutoffGroup* cg;
281 +    Molecule::CutoffGroupIterator ci;
282 +    
283 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
284 +      
285 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
286 +           cg = mol->nextCutoffGroup(ci)) {
287 +        nLocalCutoffAtoms += cg->getNumAtom();
288 +        
289 +      }        
290 +    }
291 +    
292 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
293 +  }
294 +    
295    void SimInfo::calcNdfRaw() {
296      int ndfRaw_local;
297  
298      MoleculeIterator i;
299 <    std::vector<StuntDouble*>::iterator j;
299 >    vector<StuntDouble*>::iterator j;
300      Molecule* mol;
301      StuntDouble* integrableObject;
302  
# Line 332 | Line 343 | namespace oopse {
343  
344    }
345  
346 <  void SimInfo::addExcludePairs(Molecule* mol) {
347 <    std::vector<Bond*>::iterator bondIter;
348 <    std::vector<Bend*>::iterator bendIter;
349 <    std::vector<Torsion*>::iterator torsionIter;
346 >  void SimInfo::addInteractionPairs(Molecule* mol) {
347 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
348 >    vector<Bond*>::iterator bondIter;
349 >    vector<Bend*>::iterator bendIter;
350 >    vector<Torsion*>::iterator torsionIter;
351 >    vector<Inversion*>::iterator inversionIter;
352      Bond* bond;
353      Bend* bend;
354      Torsion* torsion;
355 +    Inversion* inversion;
356      int a;
357      int b;
358      int c;
359      int d;
360 <    
361 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
360 >
361 >    // atomGroups can be used to add special interaction maps between
362 >    // groups of atoms that are in two separate rigid bodies.
363 >    // However, most site-site interactions between two rigid bodies
364 >    // are probably not special, just the ones between the physically
365 >    // bonded atoms.  Interactions *within* a single rigid body should
366 >    // always be excluded.  These are done at the bottom of this
367 >    // function.
368 >
369 >    map<int, set<int> > atomGroups;
370 >    Molecule::RigidBodyIterator rbIter;
371 >    RigidBody* rb;
372 >    Molecule::IntegrableObjectIterator ii;
373 >    StuntDouble* integrableObject;
374 >    
375 >    for (integrableObject = mol->beginIntegrableObject(ii);
376 >         integrableObject != NULL;
377 >         integrableObject = mol->nextIntegrableObject(ii)) {
378 >      
379 >      if (integrableObject->isRigidBody()) {
380 >        rb = static_cast<RigidBody*>(integrableObject);
381 >        vector<Atom*> atoms = rb->getAtoms();
382 >        set<int> rigidAtoms;
383 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
384 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
385 >        }
386 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
387 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
388 >        }      
389 >      } else {
390 >        set<int> oneAtomSet;
391 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
392 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
393 >      }
394 >    }  
395 >          
396 >    for (bond= mol->beginBond(bondIter); bond != NULL;
397 >         bond = mol->nextBond(bondIter)) {
398 >
399        a = bond->getAtomA()->getGlobalIndex();
400 <      b = bond->getAtomB()->getGlobalIndex();        
401 <      exclude_.addPair(a, b);
400 >      b = bond->getAtomB()->getGlobalIndex();  
401 >    
402 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
403 >        oneTwoInteractions_.addPair(a, b);
404 >      } else {
405 >        excludedInteractions_.addPair(a, b);
406 >      }
407      }
408  
409 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
409 >    for (bend= mol->beginBend(bendIter); bend != NULL;
410 >         bend = mol->nextBend(bendIter)) {
411 >
412        a = bend->getAtomA()->getGlobalIndex();
413        b = bend->getAtomB()->getGlobalIndex();        
414        c = bend->getAtomC()->getGlobalIndex();
415 +      
416 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
417 +        oneTwoInteractions_.addPair(a, b);      
418 +        oneTwoInteractions_.addPair(b, c);
419 +      } else {
420 +        excludedInteractions_.addPair(a, b);
421 +        excludedInteractions_.addPair(b, c);
422 +      }
423  
424 <      exclude_.addPair(a, b);
425 <      exclude_.addPair(a, c);
426 <      exclude_.addPair(b, c);        
424 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
425 >        oneThreeInteractions_.addPair(a, c);      
426 >      } else {
427 >        excludedInteractions_.addPair(a, c);
428 >      }
429      }
430  
431 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
431 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
432 >         torsion = mol->nextTorsion(torsionIter)) {
433 >
434        a = torsion->getAtomA()->getGlobalIndex();
435        b = torsion->getAtomB()->getGlobalIndex();        
436        c = torsion->getAtomC()->getGlobalIndex();        
437 <      d = torsion->getAtomD()->getGlobalIndex();        
437 >      d = torsion->getAtomD()->getGlobalIndex();      
438  
439 <      exclude_.addPair(a, b);
440 <      exclude_.addPair(a, c);
441 <      exclude_.addPair(a, d);
442 <      exclude_.addPair(b, c);
443 <      exclude_.addPair(b, d);
444 <      exclude_.addPair(c, d);        
439 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
440 >        oneTwoInteractions_.addPair(a, b);      
441 >        oneTwoInteractions_.addPair(b, c);
442 >        oneTwoInteractions_.addPair(c, d);
443 >      } else {
444 >        excludedInteractions_.addPair(a, b);
445 >        excludedInteractions_.addPair(b, c);
446 >        excludedInteractions_.addPair(c, d);
447 >      }
448 >
449 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
450 >        oneThreeInteractions_.addPair(a, c);      
451 >        oneThreeInteractions_.addPair(b, d);      
452 >      } else {
453 >        excludedInteractions_.addPair(a, c);
454 >        excludedInteractions_.addPair(b, d);
455 >      }
456 >
457 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
458 >        oneFourInteractions_.addPair(a, d);      
459 >      } else {
460 >        excludedInteractions_.addPair(a, d);
461 >      }
462      }
463  
464 <    Molecule::RigidBodyIterator rbIter;
465 <    RigidBody* rb;
466 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
467 <      std::vector<Atom*> atoms = rb->getAtoms();
468 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
469 <        for (int j = i + 1; j < atoms.size(); ++j) {
464 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
465 >         inversion = mol->nextInversion(inversionIter)) {
466 >
467 >      a = inversion->getAtomA()->getGlobalIndex();
468 >      b = inversion->getAtomB()->getGlobalIndex();        
469 >      c = inversion->getAtomC()->getGlobalIndex();        
470 >      d = inversion->getAtomD()->getGlobalIndex();        
471 >
472 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
473 >        oneTwoInteractions_.addPair(a, b);      
474 >        oneTwoInteractions_.addPair(a, c);
475 >        oneTwoInteractions_.addPair(a, d);
476 >      } else {
477 >        excludedInteractions_.addPair(a, b);
478 >        excludedInteractions_.addPair(a, c);
479 >        excludedInteractions_.addPair(a, d);
480 >      }
481 >
482 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
483 >        oneThreeInteractions_.addPair(b, c);    
484 >        oneThreeInteractions_.addPair(b, d);    
485 >        oneThreeInteractions_.addPair(c, d);      
486 >      } else {
487 >        excludedInteractions_.addPair(b, c);
488 >        excludedInteractions_.addPair(b, d);
489 >        excludedInteractions_.addPair(c, d);
490 >      }
491 >    }
492 >
493 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
494 >         rb = mol->nextRigidBody(rbIter)) {
495 >      vector<Atom*> atoms = rb->getAtoms();
496 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
497 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
498            a = atoms[i]->getGlobalIndex();
499            b = atoms[j]->getGlobalIndex();
500 <          exclude_.addPair(a, b);
500 >          excludedInteractions_.addPair(a, b);
501          }
502        }
503      }        
504  
505    }
506  
507 <  void SimInfo::removeExcludePairs(Molecule* mol) {
508 <    std::vector<Bond*>::iterator bondIter;
509 <    std::vector<Bend*>::iterator bendIter;
510 <    std::vector<Torsion*>::iterator torsionIter;
507 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
508 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
509 >    vector<Bond*>::iterator bondIter;
510 >    vector<Bend*>::iterator bendIter;
511 >    vector<Torsion*>::iterator torsionIter;
512 >    vector<Inversion*>::iterator inversionIter;
513      Bond* bond;
514      Bend* bend;
515      Torsion* torsion;
516 +    Inversion* inversion;
517      int a;
518      int b;
519      int c;
520      int d;
521 +
522 +    map<int, set<int> > atomGroups;
523 +    Molecule::RigidBodyIterator rbIter;
524 +    RigidBody* rb;
525 +    Molecule::IntegrableObjectIterator ii;
526 +    StuntDouble* integrableObject;
527      
528 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
528 >    for (integrableObject = mol->beginIntegrableObject(ii);
529 >         integrableObject != NULL;
530 >         integrableObject = mol->nextIntegrableObject(ii)) {
531 >      
532 >      if (integrableObject->isRigidBody()) {
533 >        rb = static_cast<RigidBody*>(integrableObject);
534 >        vector<Atom*> atoms = rb->getAtoms();
535 >        set<int> rigidAtoms;
536 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
537 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
538 >        }
539 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
540 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
541 >        }      
542 >      } else {
543 >        set<int> oneAtomSet;
544 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
545 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
546 >      }
547 >    }  
548 >
549 >    for (bond= mol->beginBond(bondIter); bond != NULL;
550 >         bond = mol->nextBond(bondIter)) {
551 >      
552        a = bond->getAtomA()->getGlobalIndex();
553 <      b = bond->getAtomB()->getGlobalIndex();        
554 <      exclude_.removePair(a, b);
553 >      b = bond->getAtomB()->getGlobalIndex();  
554 >    
555 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
556 >        oneTwoInteractions_.removePair(a, b);
557 >      } else {
558 >        excludedInteractions_.removePair(a, b);
559 >      }
560      }
561  
562 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
562 >    for (bend= mol->beginBend(bendIter); bend != NULL;
563 >         bend = mol->nextBend(bendIter)) {
564 >
565        a = bend->getAtomA()->getGlobalIndex();
566        b = bend->getAtomB()->getGlobalIndex();        
567        c = bend->getAtomC()->getGlobalIndex();
568 +      
569 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
570 +        oneTwoInteractions_.removePair(a, b);      
571 +        oneTwoInteractions_.removePair(b, c);
572 +      } else {
573 +        excludedInteractions_.removePair(a, b);
574 +        excludedInteractions_.removePair(b, c);
575 +      }
576  
577 <      exclude_.removePair(a, b);
578 <      exclude_.removePair(a, c);
579 <      exclude_.removePair(b, c);        
577 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
578 >        oneThreeInteractions_.removePair(a, c);      
579 >      } else {
580 >        excludedInteractions_.removePair(a, c);
581 >      }
582      }
583  
584 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
584 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
585 >         torsion = mol->nextTorsion(torsionIter)) {
586 >
587        a = torsion->getAtomA()->getGlobalIndex();
588        b = torsion->getAtomB()->getGlobalIndex();        
589        c = torsion->getAtomC()->getGlobalIndex();        
590 <      d = torsion->getAtomD()->getGlobalIndex();        
590 >      d = torsion->getAtomD()->getGlobalIndex();      
591 >  
592 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
593 >        oneTwoInteractions_.removePair(a, b);      
594 >        oneTwoInteractions_.removePair(b, c);
595 >        oneTwoInteractions_.removePair(c, d);
596 >      } else {
597 >        excludedInteractions_.removePair(a, b);
598 >        excludedInteractions_.removePair(b, c);
599 >        excludedInteractions_.removePair(c, d);
600 >      }
601  
602 <      exclude_.removePair(a, b);
603 <      exclude_.removePair(a, c);
604 <      exclude_.removePair(a, d);
605 <      exclude_.removePair(b, c);
606 <      exclude_.removePair(b, d);
607 <      exclude_.removePair(c, d);        
602 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
603 >        oneThreeInteractions_.removePair(a, c);      
604 >        oneThreeInteractions_.removePair(b, d);      
605 >      } else {
606 >        excludedInteractions_.removePair(a, c);
607 >        excludedInteractions_.removePair(b, d);
608 >      }
609 >
610 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
611 >        oneFourInteractions_.removePair(a, d);      
612 >      } else {
613 >        excludedInteractions_.removePair(a, d);
614 >      }
615      }
616  
617 <    Molecule::RigidBodyIterator rbIter;
618 <    RigidBody* rb;
619 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
620 <      std::vector<Atom*> atoms = rb->getAtoms();
621 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
622 <        for (int j = i + 1; j < atoms.size(); ++j) {
617 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
618 >         inversion = mol->nextInversion(inversionIter)) {
619 >
620 >      a = inversion->getAtomA()->getGlobalIndex();
621 >      b = inversion->getAtomB()->getGlobalIndex();        
622 >      c = inversion->getAtomC()->getGlobalIndex();        
623 >      d = inversion->getAtomD()->getGlobalIndex();        
624 >
625 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
626 >        oneTwoInteractions_.removePair(a, b);      
627 >        oneTwoInteractions_.removePair(a, c);
628 >        oneTwoInteractions_.removePair(a, d);
629 >      } else {
630 >        excludedInteractions_.removePair(a, b);
631 >        excludedInteractions_.removePair(a, c);
632 >        excludedInteractions_.removePair(a, d);
633 >      }
634 >
635 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
636 >        oneThreeInteractions_.removePair(b, c);    
637 >        oneThreeInteractions_.removePair(b, d);    
638 >        oneThreeInteractions_.removePair(c, d);      
639 >      } else {
640 >        excludedInteractions_.removePair(b, c);
641 >        excludedInteractions_.removePair(b, d);
642 >        excludedInteractions_.removePair(c, d);
643 >      }
644 >    }
645 >
646 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
647 >         rb = mol->nextRigidBody(rbIter)) {
648 >      vector<Atom*> atoms = rb->getAtoms();
649 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
650 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
651            a = atoms[i]->getGlobalIndex();
652            b = atoms[j]->getGlobalIndex();
653 <          exclude_.removePair(a, b);
653 >          excludedInteractions_.removePair(a, b);
654          }
655        }
656      }        
657 <
657 >    
658    }
659 <
660 <
659 >  
660 >  
661    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
662      int curStampId;
663 <
663 >    
664      //index from 0
665      curStampId = moleculeStamps_.size();
666  
# Line 457 | Line 668 | namespace oopse {
668      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
669    }
670  
460  void SimInfo::update() {
671  
672 <    setupSimType();
673 <
674 < #ifdef IS_MPI
675 <    setupFortranParallel();
676 < #endif
677 <
678 <    setupFortranSim();
679 <
680 <    //setup fortran force field
471 <    /** @deprecate */    
472 <    int isError = 0;
473 <    
474 <    setupElectrostaticSummationMethod( isError );
475 <
476 <    if(isError){
477 <      sprintf( painCave.errMsg,
478 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
479 <      painCave.isFatal = 1;
480 <      simError();
481 <    }
482 <  
483 <    
484 <    setupCutoff();
485 <
672 >  /**
673 >   * update
674 >   *
675 >   *  Performs the global checks and variable settings after the
676 >   *  objects have been created.
677 >   *
678 >   */
679 >  void SimInfo::update() {  
680 >    setupSimVariables();
681      calcNdf();
682      calcNdfRaw();
683      calcNdfTrans();
489
490    fortranInitialized_ = true;
684    }
685 <
686 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
685 >  
686 >  /**
687 >   * getSimulatedAtomTypes
688 >   *
689 >   * Returns an STL set of AtomType* that are actually present in this
690 >   * simulation.  Must query all processors to assemble this information.
691 >   *
692 >   */
693 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
694      SimInfo::MoleculeIterator mi;
695      Molecule* mol;
696      Molecule::AtomIterator ai;
697      Atom* atom;
698 <    std::set<AtomType*> atomTypes;
699 <
698 >    set<AtomType*> atomTypes;
699 >    
700      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
701 <
702 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
701 >      for(atom = mol->beginAtom(ai); atom != NULL;
702 >          atom = mol->nextAtom(ai)) {
703          atomTypes.insert(atom->getAtomType());
704 <      }
705 <        
706 <    }
704 >      }      
705 >    }    
706 >    
707 > #ifdef IS_MPI
708  
709 <    return atomTypes;        
710 <  }
510 <
511 <  void SimInfo::setupSimType() {
512 <    std::set<AtomType*>::iterator i;
513 <    std::set<AtomType*> atomTypes;
514 <    atomTypes = getUniqueAtomTypes();
709 >    // loop over the found atom types on this processor, and add their
710 >    // numerical idents to a vector:
711      
712 <    int useLennardJones = 0;
713 <    int useElectrostatic = 0;
714 <    int useEAM = 0;
715 <    int useCharge = 0;
520 <    int useDirectional = 0;
521 <    int useDipole = 0;
522 <    int useGayBerne = 0;
523 <    int useSticky = 0;
524 <    int useStickyPower = 0;
525 <    int useShape = 0;
526 <    int useFLARB = 0; //it is not in AtomType yet
527 <    int useDirectionalAtom = 0;    
528 <    int useElectrostatics = 0;
529 <    //usePBC and useRF are from simParams
530 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
531 <    int useRF;
532 <    int useDW;
533 <    std::string myMethod;
712 >    vector<int> foundTypes;
713 >    set<AtomType*>::iterator i;
714 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
715 >      foundTypes.push_back( (*i)->getIdent() );
716  
717 <    // set the useRF logical
718 <    useRF = 0;
537 <    useDW = 0;
717 >    // count_local holds the number of found types on this processor
718 >    int count_local = foundTypes.size();
719  
720 +    int nproc = MPI::COMM_WORLD.Get_size();
721  
722 <    if (simParams_->haveElectrostaticSummationMethod()) {
723 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
724 <      toUpper(myMethod);
725 <      if (myMethod == "REACTION_FIELD") {
726 <        useRF=1;
727 <      } else {
728 <        if (myMethod == "SHIFTED_POTENTIAL") {
729 <          useDW = 1;
730 <        }
731 <      }
722 >    // we need arrays to hold the counts and displacement vectors for
723 >    // all processors
724 >    vector<int> counts(nproc, 0);
725 >    vector<int> disps(nproc, 0);
726 >
727 >    // fill the counts array
728 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
729 >                              1, MPI::INT);
730 >  
731 >    // use the processor counts to compute the displacement array
732 >    disps[0] = 0;    
733 >    int totalCount = counts[0];
734 >    for (int iproc = 1; iproc < nproc; iproc++) {
735 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
736 >      totalCount += counts[iproc];
737      }
738  
739 <    //loop over all of the atom types
740 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
741 <      useLennardJones |= (*i)->isLennardJones();
742 <      useElectrostatic |= (*i)->isElectrostatic();
743 <      useEAM |= (*i)->isEAM();
744 <      useCharge |= (*i)->isCharge();
745 <      useDirectional |= (*i)->isDirectional();
559 <      useDipole |= (*i)->isDipole();
560 <      useGayBerne |= (*i)->isGayBerne();
561 <      useSticky |= (*i)->isSticky();
562 <      useStickyPower |= (*i)->isStickyPower();
563 <      useShape |= (*i)->isShape();
564 <    }
739 >    // we need a (possibly redundant) set of all found types:
740 >    vector<int> ftGlobal(totalCount);
741 >    
742 >    // now spray out the foundTypes to all the other processors:    
743 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
744 >                               &ftGlobal[0], &counts[0], &disps[0],
745 >                               MPI::INT);
746  
747 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
567 <      useDirectionalAtom = 1;
568 <    }
747 >    vector<int>::iterator j;
748  
749 <    if (useCharge || useDipole) {
750 <      useElectrostatics = 1;
751 <    }
749 >    // foundIdents is a stl set, so inserting an already found ident
750 >    // will have no effect.
751 >    set<int> foundIdents;
752  
753 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
754 +      foundIdents.insert((*j));
755 +    
756 +    // now iterate over the foundIdents and get the actual atom types
757 +    // that correspond to these:
758 +    set<int>::iterator it;
759 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
760 +      atomTypes.insert( forceField_->getAtomType((*it)) );
761 +
762 + #endif
763 +
764 +    return atomTypes;        
765 +  }
766 +
767 +  void SimInfo::setupSimVariables() {
768 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
769 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
770 +    calcBoxDipole_ = false;
771 +    if ( simParams_->haveAccumulateBoxDipole() )
772 +      if ( simParams_->getAccumulateBoxDipole() ) {
773 +        calcBoxDipole_ = true;      
774 +      }
775 +    
776 +    set<AtomType*>::iterator i;
777 +    set<AtomType*> atomTypes;
778 +    atomTypes = getSimulatedAtomTypes();    
779 +    int usesElectrostatic = 0;
780 +    int usesMetallic = 0;
781 +    int usesDirectional = 0;
782 +    //loop over all of the atom types
783 +    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
784 +      usesElectrostatic |= (*i)->isElectrostatic();
785 +      usesMetallic |= (*i)->isMetal();
786 +      usesDirectional |= (*i)->isDirectional();
787 +    }
788 +    
789   #ifdef IS_MPI    
790      int temp;
791 +    temp = usesDirectional;
792 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793 +    
794 +    temp = usesMetallic;
795 +    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
796 +    
797 +    temp = usesElectrostatic;
798 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
799 + #else
800  
801 <    temp = usePBC;
802 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
801 >    usesDirectionalAtoms_ = usesDirectional;
802 >    usesMetallicAtoms_ = usesMetallic;
803 >    usesElectrostaticAtoms_ = usesElectrostatic;
804  
805 <    temp = useDirectionalAtom;
806 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
805 > #endif
806 >    
807 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
808 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
809 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
810 >  }
811  
583    temp = useLennardJones;
584    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
812  
813 <    temp = useElectrostatics;
814 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813 >  vector<int> SimInfo::getGlobalAtomIndices() {
814 >    SimInfo::MoleculeIterator mi;
815 >    Molecule* mol;
816 >    Molecule::AtomIterator ai;
817 >    Atom* atom;
818  
819 <    temp = useCharge;
590 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
591 <
592 <    temp = useDipole;
593 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
594 <
595 <    temp = useSticky;
596 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
597 <
598 <    temp = useStickyPower;
599 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
819 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
820      
821 <    temp = useGayBerne;
822 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
821 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
822 >      
823 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
824 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
825 >      }
826 >    }
827 >    return GlobalAtomIndices;
828 >  }
829  
604    temp = useEAM;
605    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
830  
831 <    temp = useShape;
832 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
831 >  vector<int> SimInfo::getGlobalGroupIndices() {
832 >    SimInfo::MoleculeIterator mi;
833 >    Molecule* mol;
834 >    Molecule::CutoffGroupIterator ci;
835 >    CutoffGroup* cg;
836  
837 <    temp = useFLARB;
838 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
839 <
613 <    temp = useRF;
614 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
615 <
616 <    temp = useDW;
617 <    MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
618 <
619 < #endif
620 <
621 <    fInfo_.SIM_uses_PBC = usePBC;    
622 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
623 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
624 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
625 <    fInfo_.SIM_uses_Charges = useCharge;
626 <    fInfo_.SIM_uses_Dipoles = useDipole;
627 <    fInfo_.SIM_uses_Sticky = useSticky;
628 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
629 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
630 <    fInfo_.SIM_uses_EAM = useEAM;
631 <    fInfo_.SIM_uses_Shapes = useShape;
632 <    fInfo_.SIM_uses_FLARB = useFLARB;
633 <    fInfo_.SIM_uses_RF = useRF;
634 <    fInfo_.SIM_uses_DampedWolf = useDW;
635 <
636 <    if( myMethod == "REACTION_FIELD") {
837 >    vector<int> GlobalGroupIndices;
838 >    
839 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
840        
841 <      if (simParams_->haveDielectric()) {
842 <        fInfo_.dielect = simParams_->getDielectric();
843 <      } else {
844 <        sprintf(painCave.errMsg,
845 <                "SimSetup Error: No Dielectric constant was set.\n"
846 <                "\tYou are trying to use Reaction Field without"
644 <                "\tsetting a dielectric constant!\n");
645 <        painCave.isFatal = 1;
646 <        simError();
647 <      }      
841 >      //local index of cutoff group is trivial, it only depends on the
842 >      //order of travesing
843 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
844 >           cg = mol->nextCutoffGroup(ci)) {
845 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
846 >      }        
847      }
848 <
848 >    return GlobalGroupIndices;
849    }
850  
652  void SimInfo::setupFortranSim() {
653    int isError;
654    int nExclude;
655    std::vector<int> fortranGlobalGroupMembership;
656    
657    nExclude = exclude_.getSize();
658    isError = 0;
851  
852 <    //globalGroupMembership_ is filled by SimCreator    
853 <    for (int i = 0; i < nGlobalAtoms_; i++) {
662 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
663 <    }
852 >  void SimInfo::prepareTopology() {
853 >    int nExclude, nOneTwo, nOneThree, nOneFour;
854  
855      //calculate mass ratio of cutoff group
666    std::vector<double> mfact;
856      SimInfo::MoleculeIterator mi;
857      Molecule* mol;
858      Molecule::CutoffGroupIterator ci;
859      CutoffGroup* cg;
860      Molecule::AtomIterator ai;
861      Atom* atom;
862 <    double totalMass;
862 >    RealType totalMass;
863  
864 <    //to avoid memory reallocation, reserve enough space for mfact
865 <    mfact.reserve(getNCutoffGroups());
864 >    /**
865 >     * The mass factor is the relative mass of an atom to the total
866 >     * mass of the cutoff group it belongs to.  By default, all atoms
867 >     * are their own cutoff groups, and therefore have mass factors of
868 >     * 1.  We need some special handling for massless atoms, which
869 >     * will be treated as carrying the entire mass of the cutoff
870 >     * group.
871 >     */
872 >    massFactors_.clear();
873 >    massFactors_.resize(getNAtoms(), 1.0);
874      
875      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
876 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
876 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
877 >           cg = mol->nextCutoffGroup(ci)) {
878  
879          totalMass = cg->getMass();
880          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
881            // Check for massless groups - set mfact to 1 if true
882 <          if (totalMass != 0)
883 <            mfact.push_back(atom->getMass()/totalMass);
882 >          if (totalMass != 0)
883 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
884            else
885 <            mfact.push_back( 1.0 );
885 >            massFactors_[atom->getLocalIndex()] = 1.0;
886          }
689
887        }      
888      }
889  
890 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
694 <    std::vector<int> identArray;
890 >    // Build the identArray_
891  
892 <    //to avoid memory reallocation, reserve enough space identArray
893 <    identArray.reserve(getNAtoms());
698 <    
892 >    identArray_.clear();
893 >    identArray_.reserve(getNAtoms());    
894      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
895        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
896 <        identArray.push_back(atom->getIdent());
896 >        identArray_.push_back(atom->getIdent());
897        }
898      }    
704
705    //fill molMembershipArray
706    //molMembershipArray is filled by SimCreator    
707    std::vector<int> molMembershipArray(nGlobalAtoms_);
708    for (int i = 0; i < nGlobalAtoms_; i++) {
709      molMembershipArray[i] = globalMolMembership_[i] + 1;
710    }
899      
900 <    //setup fortran simulation
713 <    int nGlobalExcludes = 0;
714 <    int* globalExcludes = NULL;
715 <    int* excludeList = exclude_.getExcludeList();
716 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
717 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
718 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
900 >    //scan topology
901  
902 <    if( isError ){
902 >    nExclude = excludedInteractions_.getSize();
903 >    nOneTwo = oneTwoInteractions_.getSize();
904 >    nOneThree = oneThreeInteractions_.getSize();
905 >    nOneFour = oneFourInteractions_.getSize();
906  
907 <      sprintf( painCave.errMsg,
908 <               "There was an error setting the simulation information in fortran.\n" );
909 <      painCave.isFatal = 1;
910 <      painCave.severity = OOPSE_ERROR;
726 <      simError();
727 <    }
728 <
729 < #ifdef IS_MPI
730 <    sprintf( checkPointMsg,
731 <             "succesfully sent the simulation information to fortran.\n");
732 <    MPIcheckPoint();
733 < #endif // is_mpi
734 <  }
735 <
736 <
737 < #ifdef IS_MPI
738 <  void SimInfo::setupFortranParallel() {
739 <    
740 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
741 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
742 <    std::vector<int> localToGlobalCutoffGroupIndex;
743 <    SimInfo::MoleculeIterator mi;
744 <    Molecule::AtomIterator ai;
745 <    Molecule::CutoffGroupIterator ci;
746 <    Molecule* mol;
747 <    Atom* atom;
748 <    CutoffGroup* cg;
749 <    mpiSimData parallelData;
750 <    int isError;
751 <
752 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
753 <
754 <      //local index(index in DataStorge) of atom is important
755 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
756 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
757 <      }
758 <
759 <      //local index of cutoff group is trivial, it only depends on the order of travesing
760 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
761 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
762 <      }        
763 <        
764 <    }
765 <
766 <    //fill up mpiSimData struct
767 <    parallelData.nMolGlobal = getNGlobalMolecules();
768 <    parallelData.nMolLocal = getNMolecules();
769 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
770 <    parallelData.nAtomsLocal = getNAtoms();
771 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
772 <    parallelData.nGroupsLocal = getNCutoffGroups();
773 <    parallelData.myNode = worldRank;
774 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
775 <
776 <    //pass mpiSimData struct and index arrays to fortran
777 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
778 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
779 <                    &localToGlobalCutoffGroupIndex[0], &isError);
780 <
781 <    if (isError) {
782 <      sprintf(painCave.errMsg,
783 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
784 <      painCave.isFatal = 1;
785 <      simError();
786 <    }
787 <
788 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
789 <    MPIcheckPoint();
790 <
791 <
792 <  }
793 <
794 < #endif
795 <
796 <  double SimInfo::calcMaxCutoffRadius() {
797 <
907 >    int* excludeList = excludedInteractions_.getPairList();
908 >    int* oneTwoList = oneTwoInteractions_.getPairList();
909 >    int* oneThreeList = oneThreeInteractions_.getPairList();
910 >    int* oneFourList = oneFourInteractions_.getPairList();
911  
912 <    std::set<AtomType*> atomTypes;
800 <    std::set<AtomType*>::iterator i;
801 <    std::vector<double> cutoffRadius;
802 <
803 <    //get the unique atom types
804 <    atomTypes = getUniqueAtomTypes();
805 <
806 <    //query the max cutoff radius among these atom types
807 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
808 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
809 <    }
810 <
811 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
812 < #ifdef IS_MPI
813 <    //pick the max cutoff radius among the processors
814 < #endif
815 <
816 <    return maxCutoffRadius;
817 <  }
818 <
819 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
820 <    
821 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
822 <        
823 <      if (!simParams_->haveCutoffRadius()){
824 <        sprintf(painCave.errMsg,
825 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
826 <                "\tOOPSE will use a default value of 15.0 angstroms"
827 <                "\tfor the cutoffRadius.\n");
828 <        painCave.isFatal = 0;
829 <        simError();
830 <        rcut = 15.0;
831 <      } else{
832 <        rcut = simParams_->getCutoffRadius();
833 <      }
834 <
835 <      if (!simParams_->haveSwitchingRadius()){
836 <        sprintf(painCave.errMsg,
837 <                "SimCreator Warning: No value was set for switchingRadius.\n"
838 <                "\tOOPSE will use a default value of\n"
839 <                "\t0.85 * cutoffRadius for the switchingRadius\n");
840 <        painCave.isFatal = 0;
841 <        simError();
842 <        rsw = 0.85 * rcut;
843 <      } else{
844 <        rsw = simParams_->getSwitchingRadius();
845 <      }
846 <
847 <    } else {
848 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
849 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
850 <        
851 <      if (simParams_->haveCutoffRadius()) {
852 <        rcut = simParams_->getCutoffRadius();
853 <      } else {
854 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
855 <        rcut = calcMaxCutoffRadius();
856 <      }
857 <
858 <      if (simParams_->haveSwitchingRadius()) {
859 <        rsw  = simParams_->getSwitchingRadius();
860 <      } else {
861 <        rsw = rcut;
862 <      }
863 <    
864 <    }
865 <  }
866 <
867 <  void SimInfo::setupCutoff() {    
868 <    getCutoff(rcut_, rsw_);    
869 <    double rnblist = rcut_ + 1; // skin of neighbor list
870 <
871 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
872 <    
873 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
874 <    if (simParams_->haveCutoffPolicy()) {
875 <      std::string myPolicy = simParams_->getCutoffPolicy();
876 <      toUpper(myPolicy);
877 <      if (myPolicy == "MIX") {
878 <        cp = MIX_CUTOFF_POLICY;
879 <      } else {
880 <        if (myPolicy == "MAX") {
881 <          cp = MAX_CUTOFF_POLICY;
882 <        } else {
883 <          if (myPolicy == "TRADITIONAL") {            
884 <            cp = TRADITIONAL_CUTOFF_POLICY;
885 <          } else {
886 <            // throw error        
887 <            sprintf( painCave.errMsg,
888 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
889 <            painCave.isFatal = 1;
890 <            simError();
891 <          }    
892 <        }          
893 <      }
894 <    }
895 <
896 <
897 <    if (simParams_->haveSkinThickness()) {
898 <      double skinThickness = simParams_->getSkinThickness();
899 <    }
900 <
901 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
902 <    // also send cutoff notification to electrostatics
903 <    setElectrostaticCutoffRadius(&rcut_, &rsw_);
904 <  }
905 <
906 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
907 <    
908 <    int errorOut;
909 <    int esm =  NONE;
910 <    int sm = UNDAMPED;
911 <    double alphaVal;
912 <    double dielectric;
913 <
914 <    errorOut = isError;
915 <    alphaVal = simParams_->getDampingAlpha();
916 <    dielectric = simParams_->getDielectric();
917 <
918 <    if (simParams_->haveElectrostaticSummationMethod()) {
919 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
920 <      toUpper(myMethod);
921 <      if (myMethod == "NONE") {
922 <        esm = NONE;
923 <      } else {
924 <        if (myMethod == "SWITCHING_FUNCTION") {
925 <          esm = SWITCHING_FUNCTION;
926 <        } else {
927 <          if (myMethod == "SHIFTED_POTENTIAL") {
928 <            esm = SHIFTED_POTENTIAL;
929 <          } else {
930 <            if (myMethod == "SHIFTED_FORCE") {            
931 <              esm = SHIFTED_FORCE;
932 <            } else {
933 <              if (myMethod == "REACTION_FIELD") {            
934 <                esm = REACTION_FIELD;
935 <              } else {
936 <                // throw error        
937 <                sprintf( painCave.errMsg,
938 <                         "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
939 <                painCave.isFatal = 1;
940 <                simError();
941 <              }    
942 <            }          
943 <          }
944 <        }
945 <      }
946 <    }
947 <    
948 <    if (simParams_->haveScreeningMethod()) {
949 <      std::string myScreen = simParams_->getScreeningMethod();
950 <      toUpper(myScreen);
951 <      if (myScreen == "UNDAMPED") {
952 <        sm = UNDAMPED;
953 <      } else {
954 <        if (myScreen == "DAMPED") {
955 <          sm = DAMPED;
956 <          if (!simParams_->haveDampingAlpha()) {
957 <            //throw error
958 <            sprintf( painCave.errMsg,
959 <                     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
960 <            painCave.isFatal = 0;
961 <            simError();
962 <          } else {
963 <            // throw error        
964 <            sprintf( painCave.errMsg,
965 <                     "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
966 <            painCave.isFatal = 1;
967 <            simError();
968 <          }
969 <        }
970 <      }
971 <    }
972 <    // let's pass some summation method variables to fortran
973 <    setElectrostaticSummationMethod( &esm );
974 <    setScreeningMethod( &sm );
975 <    setDampingAlpha( &alphaVal );
976 <    setReactionFieldDielectric( &dielectric );
977 <    initFortranFF( &esm, &errorOut );
912 >    topologyDone_ = true;
913    }
914  
915    void SimInfo::addProperty(GenericData* genData) {
916      properties_.addProperty(genData);  
917    }
918  
919 <  void SimInfo::removeProperty(const std::string& propName) {
919 >  void SimInfo::removeProperty(const string& propName) {
920      properties_.removeProperty(propName);  
921    }
922  
# Line 989 | Line 924 | namespace oopse {
924      properties_.clearProperties();
925    }
926  
927 <  std::vector<std::string> SimInfo::getPropertyNames() {
927 >  vector<string> SimInfo::getPropertyNames() {
928      return properties_.getPropertyNames();  
929    }
930        
931 <  std::vector<GenericData*> SimInfo::getProperties() {
931 >  vector<GenericData*> SimInfo::getProperties() {
932      return properties_.getProperties();
933    }
934  
935 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
935 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
936      return properties_.getPropertyByName(propName);
937    }
938  
# Line 1011 | Line 946 | namespace oopse {
946      Molecule* mol;
947      RigidBody* rb;
948      Atom* atom;
949 +    CutoffGroup* cg;
950      SimInfo::MoleculeIterator mi;
951      Molecule::RigidBodyIterator rbIter;
952 <    Molecule::AtomIterator atomIter;;
952 >    Molecule::AtomIterator atomIter;
953 >    Molecule::CutoffGroupIterator cgIter;
954  
955      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
956          
# Line 1024 | Line 961 | namespace oopse {
961        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
962          rb->setSnapshotManager(sman_);
963        }
964 +
965 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
966 +        cg->setSnapshotManager(sman_);
967 +      }
968      }    
969      
970    }
# Line 1033 | Line 974 | namespace oopse {
974      Molecule* mol;
975  
976      Vector3d comVel(0.0);
977 <    double totalMass = 0.0;
977 >    RealType totalMass = 0.0;
978      
979  
980      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
981 <      double mass = mol->getMass();
981 >      RealType mass = mol->getMass();
982        totalMass += mass;
983        comVel += mass * mol->getComVel();
984      }  
985  
986   #ifdef IS_MPI
987 <    double tmpMass = totalMass;
987 >    RealType tmpMass = totalMass;
988      Vector3d tmpComVel(comVel);    
989 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
990 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
989 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
990 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
991   #endif
992  
993      comVel /= totalMass;
# Line 1059 | Line 1000 | namespace oopse {
1000      Molecule* mol;
1001  
1002      Vector3d com(0.0);
1003 <    double totalMass = 0.0;
1003 >    RealType totalMass = 0.0;
1004      
1005      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1006 <      double mass = mol->getMass();
1006 >      RealType mass = mol->getMass();
1007        totalMass += mass;
1008        com += mass * mol->getCom();
1009      }  
1010  
1011   #ifdef IS_MPI
1012 <    double tmpMass = totalMass;
1012 >    RealType tmpMass = totalMass;
1013      Vector3d tmpCom(com);    
1014 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1015 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1014 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1015 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1016   #endif
1017  
1018      com /= totalMass;
# Line 1080 | Line 1021 | namespace oopse {
1021  
1022    }        
1023  
1024 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1024 >  ostream& operator <<(ostream& o, SimInfo& info) {
1025  
1026      return o;
1027    }
# Line 1095 | Line 1036 | namespace oopse {
1036        Molecule* mol;
1037        
1038      
1039 <      double totalMass = 0.0;
1039 >      RealType totalMass = 0.0;
1040      
1041  
1042        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1043 <         double mass = mol->getMass();
1043 >         RealType mass = mol->getMass();
1044           totalMass += mass;
1045           com += mass * mol->getCom();
1046           comVel += mass * mol->getComVel();          
1047        }  
1048        
1049   #ifdef IS_MPI
1050 <      double tmpMass = totalMass;
1050 >      RealType tmpMass = totalMass;
1051        Vector3d tmpCom(com);  
1052        Vector3d tmpComVel(comVel);
1053 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1054 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1055 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1053 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1054 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1055 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1056   #endif
1057        
1058        com /= totalMass;
# Line 1123 | Line 1064 | namespace oopse {
1064  
1065  
1066         [  Ixx -Ixy  -Ixz ]
1067 <  J =| -Iyx  Iyy  -Iyz |
1067 >    J =| -Iyx  Iyy  -Iyz |
1068         [ -Izx -Iyz   Izz ]
1069      */
1070  
1071     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1072        
1073  
1074 <      double xx = 0.0;
1075 <      double yy = 0.0;
1076 <      double zz = 0.0;
1077 <      double xy = 0.0;
1078 <      double xz = 0.0;
1079 <      double yz = 0.0;
1074 >      RealType xx = 0.0;
1075 >      RealType yy = 0.0;
1076 >      RealType zz = 0.0;
1077 >      RealType xy = 0.0;
1078 >      RealType xz = 0.0;
1079 >      RealType yz = 0.0;
1080        Vector3d com(0.0);
1081        Vector3d comVel(0.0);
1082        
# Line 1147 | Line 1088 | namespace oopse {
1088        Vector3d thisq(0.0);
1089        Vector3d thisv(0.0);
1090  
1091 <      double thisMass = 0.0;
1091 >      RealType thisMass = 0.0;
1092      
1093        
1094        
# Line 1185 | Line 1126 | namespace oopse {
1126   #ifdef IS_MPI
1127        Mat3x3d tmpI(inertiaTensor);
1128        Vector3d tmpAngMom;
1129 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1130 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1129 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1130 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1131   #endif
1132                
1133        return;
# Line 1207 | Line 1148 | namespace oopse {
1148        Vector3d thisr(0.0);
1149        Vector3d thisp(0.0);
1150        
1151 <      double thisMass;
1151 >      RealType thisMass;
1152        
1153        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1154          thisMass = mol->getMass();
# Line 1220 | Line 1161 | namespace oopse {
1161        
1162   #ifdef IS_MPI
1163        Vector3d tmpAngMom;
1164 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1164 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1165   #endif
1166        
1167        return angularMomentum;
1168     }
1169    
1170 <  
1171 < }//end namespace oopse
1170 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1171 >    return IOIndexToIntegrableObject.at(index);
1172 >  }
1173 >  
1174 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1175 >    IOIndexToIntegrableObject= v;
1176 >  }
1177  
1178 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1179 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1180 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1181 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1182 +  */
1183 +  void SimInfo::getGyrationalVolume(RealType &volume){
1184 +    Mat3x3d intTensor;
1185 +    RealType det;
1186 +    Vector3d dummyAngMom;
1187 +    RealType sysconstants;
1188 +    RealType geomCnst;
1189 +
1190 +    geomCnst = 3.0/2.0;
1191 +    /* Get the inertial tensor and angular momentum for free*/
1192 +    getInertiaTensor(intTensor,dummyAngMom);
1193 +    
1194 +    det = intTensor.determinant();
1195 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1196 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1197 +    return;
1198 +  }
1199 +
1200 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1201 +    Mat3x3d intTensor;
1202 +    Vector3d dummyAngMom;
1203 +    RealType sysconstants;
1204 +    RealType geomCnst;
1205 +
1206 +    geomCnst = 3.0/2.0;
1207 +    /* Get the inertial tensor and angular momentum for free*/
1208 +    getInertiaTensor(intTensor,dummyAngMom);
1209 +    
1210 +    detI = intTensor.determinant();
1211 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1212 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1213 +    return;
1214 +  }
1215 + /*
1216 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1217 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1218 +      sdByGlobalIndex_ = v;
1219 +    }
1220 +
1221 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1222 +      //assert(index < nAtoms_ + nRigidBodies_);
1223 +      return sdByGlobalIndex_.at(index);
1224 +    }  
1225 + */  
1226 +  int SimInfo::getNGlobalConstraints() {
1227 +    int nGlobalConstraints;
1228 + #ifdef IS_MPI
1229 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1230 +                  MPI_COMM_WORLD);    
1231 + #else
1232 +    nGlobalConstraints =  nConstraints_;
1233 + #endif
1234 +    return nGlobalConstraints;
1235 +  }
1236 +
1237 + }//end namespace OpenMD
1238 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 709 by chrisfen, Wed Nov 2 20:36:15 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1627 by gezelter, Tue Sep 13 22:05:04 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines