ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 334 by tim, Mon Feb 14 17:57:01 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1627 by gezelter, Tue Sep 13 22:05:04 2011 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/doForces_interface.h"
56 < #include "UseTheForce/notifyCutoffs_interface.h"
56 > #include "primitives/StuntDouble.hpp"
57   #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59   #include "selection/SelectionManager.hpp"
60 <
60 > #include "io/ForceFieldOptions.hpp"
61 > #include "UseTheForce/ForceField.hpp"
62 > #include "nonbonded/SwitchingFunction.hpp"
63   #ifdef IS_MPI
64 < #include "UseTheForce/mpiComponentPlan.h"
65 < #include "UseTheForce/DarkSide/simParallel_interface.h"
64 < #endif
64 > #include <mpi.h>
65 > #endif
66  
67 < namespace oopse {
68 <
69 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
70 <                                ForceField* ff, Globals* simParams) :
71 <                                forceField_(ff), simParams_(simParams),
72 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
73 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
74 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
76 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
77 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
78 <
79 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
67 > using namespace std;
68 > namespace OpenMD {
69 >  
70 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
71 >    forceField_(ff), simParams_(simParams),
72 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
73 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
74 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
76 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
77 >    nConstraints_(0), sman_(NULL), topologyDone_(false),
78 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
79 >    
80      MoleculeStamp* molStamp;
81      int nMolWithSameStamp;
82      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
83 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
84      CutoffGroupStamp* cgStamp;    
85      RigidBodyStamp* rbStamp;
86      int nRigidAtoms = 0;
87      
88 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89 <        molStamp = i->first;
90 <        nMolWithSameStamp = i->second;
91 <        
92 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
93 <
94 <        //calculate atoms in molecules
95 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
96 <
97 <
98 <        //calculate atoms in cutoff groups
99 <        int nAtomsInGroups = 0;
100 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101 <        
102 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
103 <            cgStamp = molStamp->getCutoffGroup(j);
104 <            nAtomsInGroups += cgStamp->getNMembers();
105 <        }
106 <
107 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
109 <
110 <        //calculate atoms in rigid bodies
111 <        int nAtomsInRigidBodies = 0;
112 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
113 <        
114 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
115 <            rbStamp = molStamp->getRigidBody(j);
116 <            nAtomsInRigidBodies += rbStamp->getNMembers();
117 <        }
118 <
119 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
121 <        
88 >    vector<Component*> components = simParams->getComponents();
89 >    
90 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
91 >      molStamp = (*i)->getMoleculeStamp();
92 >      nMolWithSameStamp = (*i)->getNMol();
93 >      
94 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
95 >      
96 >      //calculate atoms in molecules
97 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
98 >      
99 >      //calculate atoms in cutoff groups
100 >      int nAtomsInGroups = 0;
101 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
102 >      
103 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
104 >        cgStamp = molStamp->getCutoffGroupStamp(j);
105 >        nAtomsInGroups += cgStamp->getNMembers();
106 >      }
107 >      
108 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
109 >      
110 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
111 >      
112 >      //calculate atoms in rigid bodies
113 >      int nAtomsInRigidBodies = 0;
114 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
115 >      
116 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
117 >        rbStamp = molStamp->getRigidBodyStamp(j);
118 >        nAtomsInRigidBodies += rbStamp->getNMembers();
119 >      }
120 >      
121 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
122 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
123 >      
124      }
125 +    
126 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
127 +    //group therefore the total number of cutoff groups in the system is
128 +    //equal to the total number of atoms minus number of atoms belong to
129 +    //cutoff group defined in meta-data file plus the number of cutoff
130 +    //groups defined in meta-data file
131  
124    //every free atom (atom does not belong to cutoff groups) is a cutoff group
125    //therefore the total number of cutoff groups in the system is equal to
126    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127    //file plus the number of cutoff groups defined in meta-data file
132      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
133 <
134 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
135 <    //therefore the total number of  integrable objects in the system is equal to
136 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
137 <    //file plus the number of  rigid bodies defined in meta-data file
138 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
139 <
133 >    
134 >    //every free atom (atom does not belong to rigid bodies) is an
135 >    //integrable object therefore the total number of integrable objects
136 >    //in the system is equal to the total number of atoms minus number of
137 >    //atoms belong to rigid body defined in meta-data file plus the number
138 >    //of rigid bodies defined in meta-data file
139 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
140 >      + nGlobalRigidBodies_;
141 >    
142      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
143      molToProcMap_.resize(nGlobalMols_);
144 < #endif
145 <
146 <    selectMan_ = new SelectionManager(this);
147 <    selectMan_->selectAll();
148 < }
149 <
150 < SimInfo::~SimInfo() {
151 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
152 <
149 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
150 <    
144 >  }
145 >  
146 >  SimInfo::~SimInfo() {
147 >    map<int, Molecule*>::iterator i;
148 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
149 >      delete i->second;
150 >    }
151 >    molecules_.clear();
152 >      
153      delete sman_;
154      delete simParams_;
155      delete forceField_;
156 <    delete selectMan_;
155 < }
156 >  }
157  
157 int SimInfo::getNGlobalConstraints() {
158    int nGlobalConstraints;
159 #ifdef IS_MPI
160    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161                  MPI_COMM_WORLD);    
162 #else
163    nGlobalConstraints =  nConstraints_;
164 #endif
165    return nGlobalConstraints;
166 }
158  
159 < bool SimInfo::addMolecule(Molecule* mol) {
159 >  bool SimInfo::addMolecule(Molecule* mol) {
160      MoleculeIterator i;
161 <
161 >    
162      i = molecules_.find(mol->getGlobalIndex());
163      if (i == molecules_.end() ) {
164 <
165 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
166 <        
167 <        nAtoms_ += mol->getNAtoms();
168 <        nBonds_ += mol->getNBonds();
169 <        nBends_ += mol->getNBends();
170 <        nTorsions_ += mol->getNTorsions();
171 <        nRigidBodies_ += mol->getNRigidBodies();
172 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
173 <        nCutoffGroups_ += mol->getNCutoffGroups();
174 <        nConstraints_ += mol->getNConstraintPairs();
175 <
176 <        addExcludePairs(mol);
177 <        
178 <        return true;
179 <    } else {
180 <        return false;
164 >      
165 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
166 >      
167 >      nAtoms_ += mol->getNAtoms();
168 >      nBonds_ += mol->getNBonds();
169 >      nBends_ += mol->getNBends();
170 >      nTorsions_ += mol->getNTorsions();
171 >      nInversions_ += mol->getNInversions();
172 >      nRigidBodies_ += mol->getNRigidBodies();
173 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
174 >      nCutoffGroups_ += mol->getNCutoffGroups();
175 >      nConstraints_ += mol->getNConstraintPairs();
176 >      
177 >      addInteractionPairs(mol);
178 >      
179 >      return true;
180 >    } else {
181 >      return false;
182      }
183 < }
184 <
185 < bool SimInfo::removeMolecule(Molecule* mol) {
183 >  }
184 >  
185 >  bool SimInfo::removeMolecule(Molecule* mol) {
186      MoleculeIterator i;
187      i = molecules_.find(mol->getGlobalIndex());
188  
189      if (i != molecules_.end() ) {
190  
191 <        assert(mol == i->second);
191 >      assert(mol == i->second);
192          
193 <        nAtoms_ -= mol->getNAtoms();
194 <        nBonds_ -= mol->getNBonds();
195 <        nBends_ -= mol->getNBends();
196 <        nTorsions_ -= mol->getNTorsions();
197 <        nRigidBodies_ -= mol->getNRigidBodies();
198 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
199 <        nCutoffGroups_ -= mol->getNCutoffGroups();
200 <        nConstraints_ -= mol->getNConstraintPairs();
193 >      nAtoms_ -= mol->getNAtoms();
194 >      nBonds_ -= mol->getNBonds();
195 >      nBends_ -= mol->getNBends();
196 >      nTorsions_ -= mol->getNTorsions();
197 >      nInversions_ -= mol->getNInversions();
198 >      nRigidBodies_ -= mol->getNRigidBodies();
199 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
200 >      nCutoffGroups_ -= mol->getNCutoffGroups();
201 >      nConstraints_ -= mol->getNConstraintPairs();
202  
203 <        removeExcludePairs(mol);
204 <        molecules_.erase(mol->getGlobalIndex());
203 >      removeInteractionPairs(mol);
204 >      molecules_.erase(mol->getGlobalIndex());
205  
206 <        delete mol;
206 >      delete mol;
207          
208 <        return true;
208 >      return true;
209      } else {
210 <        return false;
210 >      return false;
211      }
212 +  }    
213  
220
221 }    
222
214          
215 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
215 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
216      i = molecules_.begin();
217      return i == molecules_.end() ? NULL : i->second;
218 < }    
218 >  }    
219  
220 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
220 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
221      ++i;
222      return i == molecules_.end() ? NULL : i->second;    
223 < }
223 >  }
224  
225  
226 < void SimInfo::calcNdf() {
226 >  void SimInfo::calcNdf() {
227      int ndf_local;
228      MoleculeIterator i;
229 <    std::vector<StuntDouble*>::iterator j;
229 >    vector<StuntDouble*>::iterator j;
230      Molecule* mol;
231      StuntDouble* integrableObject;
232  
233      ndf_local = 0;
234      
235      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
236 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
237 <               integrableObject = mol->nextIntegrableObject(j)) {
236 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
237 >           integrableObject = mol->nextIntegrableObject(j)) {
238  
239 <            ndf_local += 3;
239 >        ndf_local += 3;
240  
241 <            if (integrableObject->isDirectional()) {
242 <                if (integrableObject->isLinear()) {
243 <                    ndf_local += 2;
244 <                } else {
245 <                    ndf_local += 3;
246 <                }
247 <            }
241 >        if (integrableObject->isDirectional()) {
242 >          if (integrableObject->isLinear()) {
243 >            ndf_local += 2;
244 >          } else {
245 >            ndf_local += 3;
246 >          }
247 >        }
248              
249 <        }//end for (integrableObject)
250 <    }// end for (mol)
249 >      }
250 >    }
251      
252      // n_constraints is local, so subtract them on each processor
253      ndf_local -= nConstraints_;
# Line 271 | Line 262 | void SimInfo::calcNdf() {
262      // entire system:
263      ndf_ = ndf_ - 3 - nZconstraint_;
264  
265 < }
265 >  }
266  
267 < void SimInfo::calcNdfRaw() {
267 >  int SimInfo::getFdf() {
268 > #ifdef IS_MPI
269 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
270 > #else
271 >    fdf_ = fdf_local;
272 > #endif
273 >    return fdf_;
274 >  }
275 >  
276 >  unsigned int SimInfo::getNLocalCutoffGroups(){
277 >    int nLocalCutoffAtoms = 0;
278 >    Molecule* mol;
279 >    MoleculeIterator mi;
280 >    CutoffGroup* cg;
281 >    Molecule::CutoffGroupIterator ci;
282 >    
283 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
284 >      
285 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
286 >           cg = mol->nextCutoffGroup(ci)) {
287 >        nLocalCutoffAtoms += cg->getNumAtom();
288 >        
289 >      }        
290 >    }
291 >    
292 >    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
293 >  }
294 >    
295 >  void SimInfo::calcNdfRaw() {
296      int ndfRaw_local;
297  
298      MoleculeIterator i;
299 <    std::vector<StuntDouble*>::iterator j;
299 >    vector<StuntDouble*>::iterator j;
300      Molecule* mol;
301      StuntDouble* integrableObject;
302  
# Line 285 | Line 304 | void SimInfo::calcNdfRaw() {
304      ndfRaw_local = 0;
305      
306      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
307 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
308 <               integrableObject = mol->nextIntegrableObject(j)) {
307 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
308 >           integrableObject = mol->nextIntegrableObject(j)) {
309  
310 <            ndfRaw_local += 3;
310 >        ndfRaw_local += 3;
311  
312 <            if (integrableObject->isDirectional()) {
313 <                if (integrableObject->isLinear()) {
314 <                    ndfRaw_local += 2;
315 <                } else {
316 <                    ndfRaw_local += 3;
317 <                }
318 <            }
312 >        if (integrableObject->isDirectional()) {
313 >          if (integrableObject->isLinear()) {
314 >            ndfRaw_local += 2;
315 >          } else {
316 >            ndfRaw_local += 3;
317 >          }
318 >        }
319              
320 <        }
320 >      }
321      }
322      
323   #ifdef IS_MPI
# Line 306 | Line 325 | void SimInfo::calcNdfRaw() {
325   #else
326      ndfRaw_ = ndfRaw_local;
327   #endif
328 < }
328 >  }
329  
330 < void SimInfo::calcNdfTrans() {
330 >  void SimInfo::calcNdfTrans() {
331      int ndfTrans_local;
332  
333      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 322 | Line 341 | void SimInfo::calcNdfTrans() {
341  
342      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
343  
344 < }
344 >  }
345  
346 < void SimInfo::addExcludePairs(Molecule* mol) {
347 <    std::vector<Bond*>::iterator bondIter;
348 <    std::vector<Bend*>::iterator bendIter;
349 <    std::vector<Torsion*>::iterator torsionIter;
346 >  void SimInfo::addInteractionPairs(Molecule* mol) {
347 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
348 >    vector<Bond*>::iterator bondIter;
349 >    vector<Bend*>::iterator bendIter;
350 >    vector<Torsion*>::iterator torsionIter;
351 >    vector<Inversion*>::iterator inversionIter;
352      Bond* bond;
353      Bend* bend;
354      Torsion* torsion;
355 +    Inversion* inversion;
356      int a;
357      int b;
358      int c;
359      int d;
338    
339    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340        a = bond->getAtomA()->getGlobalIndex();
341        b = bond->getAtomB()->getGlobalIndex();        
342        exclude_.addPair(a, b);
343    }
360  
361 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
362 <        a = bend->getAtomA()->getGlobalIndex();
363 <        b = bend->getAtomB()->getGlobalIndex();        
364 <        c = bend->getAtomC()->getGlobalIndex();
361 >    // atomGroups can be used to add special interaction maps between
362 >    // groups of atoms that are in two separate rigid bodies.
363 >    // However, most site-site interactions between two rigid bodies
364 >    // are probably not special, just the ones between the physically
365 >    // bonded atoms.  Interactions *within* a single rigid body should
366 >    // always be excluded.  These are done at the bottom of this
367 >    // function.
368  
369 <        exclude_.addPair(a, b);
370 <        exclude_.addPair(a, c);
371 <        exclude_.addPair(b, c);        
372 <    }
373 <
374 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
375 <        a = torsion->getAtomA()->getGlobalIndex();
376 <        b = torsion->getAtomB()->getGlobalIndex();        
377 <        c = torsion->getAtomC()->getGlobalIndex();        
378 <        d = torsion->getAtomD()->getGlobalIndex();        
369 >    map<int, set<int> > atomGroups;
370 >    Molecule::RigidBodyIterator rbIter;
371 >    RigidBody* rb;
372 >    Molecule::IntegrableObjectIterator ii;
373 >    StuntDouble* integrableObject;
374 >    
375 >    for (integrableObject = mol->beginIntegrableObject(ii);
376 >         integrableObject != NULL;
377 >         integrableObject = mol->nextIntegrableObject(ii)) {
378 >      
379 >      if (integrableObject->isRigidBody()) {
380 >        rb = static_cast<RigidBody*>(integrableObject);
381 >        vector<Atom*> atoms = rb->getAtoms();
382 >        set<int> rigidAtoms;
383 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
384 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
385 >        }
386 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
387 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
388 >        }      
389 >      } else {
390 >        set<int> oneAtomSet;
391 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
392 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
393 >      }
394 >    }  
395 >          
396 >    for (bond= mol->beginBond(bondIter); bond != NULL;
397 >         bond = mol->nextBond(bondIter)) {
398  
399 <        exclude_.addPair(a, b);
400 <        exclude_.addPair(a, c);
401 <        exclude_.addPair(a, d);
402 <        exclude_.addPair(b, c);
403 <        exclude_.addPair(b, d);
404 <        exclude_.addPair(c, d);        
399 >      a = bond->getAtomA()->getGlobalIndex();
400 >      b = bond->getAtomB()->getGlobalIndex();  
401 >    
402 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
403 >        oneTwoInteractions_.addPair(a, b);
404 >      } else {
405 >        excludedInteractions_.addPair(a, b);
406 >      }
407      }
408  
409 <    
410 < }
409 >    for (bend= mol->beginBend(bendIter); bend != NULL;
410 >         bend = mol->nextBend(bendIter)) {
411  
412 < void SimInfo::removeExcludePairs(Molecule* mol) {
413 <    std::vector<Bond*>::iterator bondIter;
414 <    std::vector<Bend*>::iterator bendIter;
415 <    std::vector<Torsion*>::iterator torsionIter;
412 >      a = bend->getAtomA()->getGlobalIndex();
413 >      b = bend->getAtomB()->getGlobalIndex();        
414 >      c = bend->getAtomC()->getGlobalIndex();
415 >      
416 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
417 >        oneTwoInteractions_.addPair(a, b);      
418 >        oneTwoInteractions_.addPair(b, c);
419 >      } else {
420 >        excludedInteractions_.addPair(a, b);
421 >        excludedInteractions_.addPair(b, c);
422 >      }
423 >
424 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
425 >        oneThreeInteractions_.addPair(a, c);      
426 >      } else {
427 >        excludedInteractions_.addPair(a, c);
428 >      }
429 >    }
430 >
431 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
432 >         torsion = mol->nextTorsion(torsionIter)) {
433 >
434 >      a = torsion->getAtomA()->getGlobalIndex();
435 >      b = torsion->getAtomB()->getGlobalIndex();        
436 >      c = torsion->getAtomC()->getGlobalIndex();        
437 >      d = torsion->getAtomD()->getGlobalIndex();      
438 >
439 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
440 >        oneTwoInteractions_.addPair(a, b);      
441 >        oneTwoInteractions_.addPair(b, c);
442 >        oneTwoInteractions_.addPair(c, d);
443 >      } else {
444 >        excludedInteractions_.addPair(a, b);
445 >        excludedInteractions_.addPair(b, c);
446 >        excludedInteractions_.addPair(c, d);
447 >      }
448 >
449 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
450 >        oneThreeInteractions_.addPair(a, c);      
451 >        oneThreeInteractions_.addPair(b, d);      
452 >      } else {
453 >        excludedInteractions_.addPair(a, c);
454 >        excludedInteractions_.addPair(b, d);
455 >      }
456 >
457 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
458 >        oneFourInteractions_.addPair(a, d);      
459 >      } else {
460 >        excludedInteractions_.addPair(a, d);
461 >      }
462 >    }
463 >
464 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
465 >         inversion = mol->nextInversion(inversionIter)) {
466 >
467 >      a = inversion->getAtomA()->getGlobalIndex();
468 >      b = inversion->getAtomB()->getGlobalIndex();        
469 >      c = inversion->getAtomC()->getGlobalIndex();        
470 >      d = inversion->getAtomD()->getGlobalIndex();        
471 >
472 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
473 >        oneTwoInteractions_.addPair(a, b);      
474 >        oneTwoInteractions_.addPair(a, c);
475 >        oneTwoInteractions_.addPair(a, d);
476 >      } else {
477 >        excludedInteractions_.addPair(a, b);
478 >        excludedInteractions_.addPair(a, c);
479 >        excludedInteractions_.addPair(a, d);
480 >      }
481 >
482 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
483 >        oneThreeInteractions_.addPair(b, c);    
484 >        oneThreeInteractions_.addPair(b, d);    
485 >        oneThreeInteractions_.addPair(c, d);      
486 >      } else {
487 >        excludedInteractions_.addPair(b, c);
488 >        excludedInteractions_.addPair(b, d);
489 >        excludedInteractions_.addPair(c, d);
490 >      }
491 >    }
492 >
493 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
494 >         rb = mol->nextRigidBody(rbIter)) {
495 >      vector<Atom*> atoms = rb->getAtoms();
496 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
497 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
498 >          a = atoms[i]->getGlobalIndex();
499 >          b = atoms[j]->getGlobalIndex();
500 >          excludedInteractions_.addPair(a, b);
501 >        }
502 >      }
503 >    }        
504 >
505 >  }
506 >
507 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
508 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
509 >    vector<Bond*>::iterator bondIter;
510 >    vector<Bend*>::iterator bendIter;
511 >    vector<Torsion*>::iterator torsionIter;
512 >    vector<Inversion*>::iterator inversionIter;
513      Bond* bond;
514      Bend* bend;
515      Torsion* torsion;
516 +    Inversion* inversion;
517      int a;
518      int b;
519      int c;
520      int d;
521 +
522 +    map<int, set<int> > atomGroups;
523 +    Molecule::RigidBodyIterator rbIter;
524 +    RigidBody* rb;
525 +    Molecule::IntegrableObjectIterator ii;
526 +    StuntDouble* integrableObject;
527      
528 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
529 <        a = bond->getAtomA()->getGlobalIndex();
530 <        b = bond->getAtomB()->getGlobalIndex();        
531 <        exclude_.removePair(a, b);
528 >    for (integrableObject = mol->beginIntegrableObject(ii);
529 >         integrableObject != NULL;
530 >         integrableObject = mol->nextIntegrableObject(ii)) {
531 >      
532 >      if (integrableObject->isRigidBody()) {
533 >        rb = static_cast<RigidBody*>(integrableObject);
534 >        vector<Atom*> atoms = rb->getAtoms();
535 >        set<int> rigidAtoms;
536 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
537 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
538 >        }
539 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
540 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
541 >        }      
542 >      } else {
543 >        set<int> oneAtomSet;
544 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
545 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
546 >      }
547 >    }  
548 >
549 >    for (bond= mol->beginBond(bondIter); bond != NULL;
550 >         bond = mol->nextBond(bondIter)) {
551 >      
552 >      a = bond->getAtomA()->getGlobalIndex();
553 >      b = bond->getAtomB()->getGlobalIndex();  
554 >    
555 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
556 >        oneTwoInteractions_.removePair(a, b);
557 >      } else {
558 >        excludedInteractions_.removePair(a, b);
559 >      }
560      }
561  
562 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
563 <        a = bend->getAtomA()->getGlobalIndex();
392 <        b = bend->getAtomB()->getGlobalIndex();        
393 <        c = bend->getAtomC()->getGlobalIndex();
562 >    for (bend= mol->beginBend(bendIter); bend != NULL;
563 >         bend = mol->nextBend(bendIter)) {
564  
565 <        exclude_.removePair(a, b);
566 <        exclude_.removePair(a, c);
567 <        exclude_.removePair(b, c);        
565 >      a = bend->getAtomA()->getGlobalIndex();
566 >      b = bend->getAtomB()->getGlobalIndex();        
567 >      c = bend->getAtomC()->getGlobalIndex();
568 >      
569 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
570 >        oneTwoInteractions_.removePair(a, b);      
571 >        oneTwoInteractions_.removePair(b, c);
572 >      } else {
573 >        excludedInteractions_.removePair(a, b);
574 >        excludedInteractions_.removePair(b, c);
575 >      }
576 >
577 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
578 >        oneThreeInteractions_.removePair(a, c);      
579 >      } else {
580 >        excludedInteractions_.removePair(a, c);
581 >      }
582      }
583  
584 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
585 <        a = torsion->getAtomA()->getGlobalIndex();
402 <        b = torsion->getAtomB()->getGlobalIndex();        
403 <        c = torsion->getAtomC()->getGlobalIndex();        
404 <        d = torsion->getAtomD()->getGlobalIndex();        
584 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
585 >         torsion = mol->nextTorsion(torsionIter)) {
586  
587 <        exclude_.removePair(a, b);
588 <        exclude_.removePair(a, c);
589 <        exclude_.removePair(a, d);
590 <        exclude_.removePair(b, c);
591 <        exclude_.removePair(b, d);
592 <        exclude_.removePair(c, d);        
587 >      a = torsion->getAtomA()->getGlobalIndex();
588 >      b = torsion->getAtomB()->getGlobalIndex();        
589 >      c = torsion->getAtomC()->getGlobalIndex();        
590 >      d = torsion->getAtomD()->getGlobalIndex();      
591 >  
592 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
593 >        oneTwoInteractions_.removePair(a, b);      
594 >        oneTwoInteractions_.removePair(b, c);
595 >        oneTwoInteractions_.removePair(c, d);
596 >      } else {
597 >        excludedInteractions_.removePair(a, b);
598 >        excludedInteractions_.removePair(b, c);
599 >        excludedInteractions_.removePair(c, d);
600 >      }
601 >
602 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
603 >        oneThreeInteractions_.removePair(a, c);      
604 >        oneThreeInteractions_.removePair(b, d);      
605 >      } else {
606 >        excludedInteractions_.removePair(a, c);
607 >        excludedInteractions_.removePair(b, d);
608 >      }
609 >
610 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
611 >        oneFourInteractions_.removePair(a, d);      
612 >      } else {
613 >        excludedInteractions_.removePair(a, d);
614 >      }
615      }
616  
617 < }
617 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
618 >         inversion = mol->nextInversion(inversionIter)) {
619  
620 +      a = inversion->getAtomA()->getGlobalIndex();
621 +      b = inversion->getAtomB()->getGlobalIndex();        
622 +      c = inversion->getAtomC()->getGlobalIndex();        
623 +      d = inversion->getAtomD()->getGlobalIndex();        
624  
625 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
626 <    int curStampId;
625 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
626 >        oneTwoInteractions_.removePair(a, b);      
627 >        oneTwoInteractions_.removePair(a, c);
628 >        oneTwoInteractions_.removePair(a, d);
629 >      } else {
630 >        excludedInteractions_.removePair(a, b);
631 >        excludedInteractions_.removePair(a, c);
632 >        excludedInteractions_.removePair(a, d);
633 >      }
634  
635 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
636 +        oneThreeInteractions_.removePair(b, c);    
637 +        oneThreeInteractions_.removePair(b, d);    
638 +        oneThreeInteractions_.removePair(c, d);      
639 +      } else {
640 +        excludedInteractions_.removePair(b, c);
641 +        excludedInteractions_.removePair(b, d);
642 +        excludedInteractions_.removePair(c, d);
643 +      }
644 +    }
645 +
646 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
647 +         rb = mol->nextRigidBody(rbIter)) {
648 +      vector<Atom*> atoms = rb->getAtoms();
649 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
650 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
651 +          a = atoms[i]->getGlobalIndex();
652 +          b = atoms[j]->getGlobalIndex();
653 +          excludedInteractions_.removePair(a, b);
654 +        }
655 +      }
656 +    }        
657 +    
658 +  }
659 +  
660 +  
661 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
662 +    int curStampId;
663 +    
664      //index from 0
665      curStampId = moleculeStamps_.size();
666  
667      moleculeStamps_.push_back(molStamp);
668      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
669 < }
669 >  }
670  
427 void SimInfo::update() {
671  
672 <    setupSimType();
673 <
674 < #ifdef IS_MPI
675 <    setupFortranParallel();
676 < #endif
677 <
678 <    setupFortranSim();
679 <
680 <    //setup fortran force field
438 <    /** @deprecate */    
439 <    int isError = 0;
440 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
441 <    if(isError){
442 <        sprintf( painCave.errMsg,
443 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
444 <        painCave.isFatal = 1;
445 <        simError();
446 <    }
447 <  
448 <    
449 <    setupCutoff();
450 <
672 >  /**
673 >   * update
674 >   *
675 >   *  Performs the global checks and variable settings after the
676 >   *  objects have been created.
677 >   *
678 >   */
679 >  void SimInfo::update() {  
680 >    setupSimVariables();
681      calcNdf();
682      calcNdfRaw();
683      calcNdfTrans();
684 <
685 <    fortranInitialized_ = true;
686 < }
687 <
688 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
684 >  }
685 >  
686 >  /**
687 >   * getSimulatedAtomTypes
688 >   *
689 >   * Returns an STL set of AtomType* that are actually present in this
690 >   * simulation.  Must query all processors to assemble this information.
691 >   *
692 >   */
693 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
694      SimInfo::MoleculeIterator mi;
695      Molecule* mol;
696      Molecule::AtomIterator ai;
697      Atom* atom;
698 <    std::set<AtomType*> atomTypes;
699 <
698 >    set<AtomType*> atomTypes;
699 >    
700      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
701 +      for(atom = mol->beginAtom(ai); atom != NULL;
702 +          atom = mol->nextAtom(ai)) {
703 +        atomTypes.insert(atom->getAtomType());
704 +      }      
705 +    }    
706 +    
707 + #ifdef IS_MPI
708  
709 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
710 <            atomTypes.insert(atom->getAtomType());
711 <        }
712 <        
709 >    // loop over the found atom types on this processor, and add their
710 >    // numerical idents to a vector:
711 >    
712 >    vector<int> foundTypes;
713 >    set<AtomType*>::iterator i;
714 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
715 >      foundTypes.push_back( (*i)->getIdent() );
716 >
717 >    // count_local holds the number of found types on this processor
718 >    int count_local = foundTypes.size();
719 >
720 >    int nproc = MPI::COMM_WORLD.Get_size();
721 >
722 >    // we need arrays to hold the counts and displacement vectors for
723 >    // all processors
724 >    vector<int> counts(nproc, 0);
725 >    vector<int> disps(nproc, 0);
726 >
727 >    // fill the counts array
728 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
729 >                              1, MPI::INT);
730 >  
731 >    // use the processor counts to compute the displacement array
732 >    disps[0] = 0;    
733 >    int totalCount = counts[0];
734 >    for (int iproc = 1; iproc < nproc; iproc++) {
735 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
736 >      totalCount += counts[iproc];
737      }
738  
739 <    return atomTypes;        
740 < }
739 >    // we need a (possibly redundant) set of all found types:
740 >    vector<int> ftGlobal(totalCount);
741 >    
742 >    // now spray out the foundTypes to all the other processors:    
743 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
744 >                               &ftGlobal[0], &counts[0], &disps[0],
745 >                               MPI::INT);
746  
747 < void SimInfo::setupSimType() {
748 <    std::set<AtomType*>::iterator i;
749 <    std::set<AtomType*> atomTypes;
750 <    atomTypes = getUniqueAtomTypes();
747 >    vector<int>::iterator j;
748 >
749 >    // foundIdents is a stl set, so inserting an already found ident
750 >    // will have no effect.
751 >    set<int> foundIdents;
752 >
753 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
754 >      foundIdents.insert((*j));
755      
756 <    int useLennardJones = 0;
757 <    int useElectrostatic = 0;
758 <    int useEAM = 0;
759 <    int useCharge = 0;
760 <    int useDirectional = 0;
761 <    int useDipole = 0;
762 <    int useGayBerne = 0;
488 <    int useSticky = 0;
489 <    int useShape = 0;
490 <    int useFLARB = 0; //it is not in AtomType yet
491 <    int useDirectionalAtom = 0;    
492 <    int useElectrostatics = 0;
493 <    //usePBC and useRF are from simParams
494 <    int usePBC = simParams_->getPBC();
495 <    int useRF = simParams_->getUseRF();
756 >    // now iterate over the foundIdents and get the actual atom types
757 >    // that correspond to these:
758 >    set<int>::iterator it;
759 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
760 >      atomTypes.insert( forceField_->getAtomType((*it)) );
761 >
762 > #endif
763  
764 +    return atomTypes;        
765 +  }
766 +
767 +  void SimInfo::setupSimVariables() {
768 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
769 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
770 +    calcBoxDipole_ = false;
771 +    if ( simParams_->haveAccumulateBoxDipole() )
772 +      if ( simParams_->getAccumulateBoxDipole() ) {
773 +        calcBoxDipole_ = true;      
774 +      }
775 +    
776 +    set<AtomType*>::iterator i;
777 +    set<AtomType*> atomTypes;
778 +    atomTypes = getSimulatedAtomTypes();    
779 +    int usesElectrostatic = 0;
780 +    int usesMetallic = 0;
781 +    int usesDirectional = 0;
782      //loop over all of the atom types
783      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
784 <        useLennardJones |= (*i)->isLennardJones();
785 <        useElectrostatic |= (*i)->isElectrostatic();
786 <        useEAM |= (*i)->isEAM();
502 <        useCharge |= (*i)->isCharge();
503 <        useDirectional |= (*i)->isDirectional();
504 <        useDipole |= (*i)->isDipole();
505 <        useGayBerne |= (*i)->isGayBerne();
506 <        useSticky |= (*i)->isSticky();
507 <        useShape |= (*i)->isShape();
784 >      usesElectrostatic |= (*i)->isElectrostatic();
785 >      usesMetallic |= (*i)->isMetal();
786 >      usesDirectional |= (*i)->isDirectional();
787      }
788 <
510 <    if (useSticky || useDipole || useGayBerne || useShape) {
511 <        useDirectionalAtom = 1;
512 <    }
513 <
514 <    if (useCharge || useDipole) {
515 <        useElectrostatics = 1;
516 <    }
517 <
788 >    
789   #ifdef IS_MPI    
790      int temp;
791 +    temp = usesDirectional;
792 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793 +    
794 +    temp = usesMetallic;
795 +    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
796 +    
797 +    temp = usesElectrostatic;
798 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
799 + #else
800  
801 <    temp = usePBC;
802 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
801 >    usesDirectionalAtoms_ = usesDirectional;
802 >    usesMetallicAtoms_ = usesMetallic;
803 >    usesElectrostaticAtoms_ = usesElectrostatic;
804  
805 <    temp = useDirectionalAtom;
806 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
805 > #endif
806 >    
807 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
808 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
809 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
810 >  }
811  
527    temp = useLennardJones;
528    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
812  
813 <    temp = useElectrostatics;
814 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813 >  vector<int> SimInfo::getGlobalAtomIndices() {
814 >    SimInfo::MoleculeIterator mi;
815 >    Molecule* mol;
816 >    Molecule::AtomIterator ai;
817 >    Atom* atom;
818  
819 <    temp = useCharge;
534 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
535 <
536 <    temp = useDipole;
537 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
538 <
539 <    temp = useSticky;
540 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
541 <
542 <    temp = useGayBerne;
543 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
544 <
545 <    temp = useEAM;
546 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
547 <
548 <    temp = useShape;
549 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
550 <
551 <    temp = useFLARB;
552 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553 <
554 <    temp = useRF;
555 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
819 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
820      
821 < #endif
821 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
822 >      
823 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
824 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
825 >      }
826 >    }
827 >    return GlobalAtomIndices;
828 >  }
829  
559    fInfo_.SIM_uses_PBC = usePBC;    
560    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
561    fInfo_.SIM_uses_LennardJones = useLennardJones;
562    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
563    fInfo_.SIM_uses_Charges = useCharge;
564    fInfo_.SIM_uses_Dipoles = useDipole;
565    fInfo_.SIM_uses_Sticky = useSticky;
566    fInfo_.SIM_uses_GayBerne = useGayBerne;
567    fInfo_.SIM_uses_EAM = useEAM;
568    fInfo_.SIM_uses_Shapes = useShape;
569    fInfo_.SIM_uses_FLARB = useFLARB;
570    fInfo_.SIM_uses_RF = useRF;
830  
831 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
831 >  vector<int> SimInfo::getGlobalGroupIndices() {
832 >    SimInfo::MoleculeIterator mi;
833 >    Molecule* mol;
834 >    Molecule::CutoffGroupIterator ci;
835 >    CutoffGroup* cg;
836  
837 <        if (simParams_->haveDielectric()) {
838 <            fInfo_.dielect = simParams_->getDielectric();
839 <        } else {
840 <            sprintf(painCave.errMsg,
841 <                    "SimSetup Error: No Dielectric constant was set.\n"
842 <                    "\tYou are trying to use Reaction Field without"
843 <                    "\tsetting a dielectric constant!\n");
844 <            painCave.isFatal = 1;
845 <            simError();
846 <        }
584 <        
585 <    } else {
586 <        fInfo_.dielect = 0.0;
837 >    vector<int> GlobalGroupIndices;
838 >    
839 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
840 >      
841 >      //local index of cutoff group is trivial, it only depends on the
842 >      //order of travesing
843 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
844 >           cg = mol->nextCutoffGroup(ci)) {
845 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
846 >      }        
847      }
848 +    return GlobalGroupIndices;
849 +  }
850  
589 }
851  
852 < void SimInfo::setupFortranSim() {
853 <    int isError;
593 <    int nExclude;
594 <    std::vector<int> fortranGlobalGroupMembership;
595 <    
596 <    nExclude = exclude_.getSize();
597 <    isError = 0;
852 >  void SimInfo::prepareTopology() {
853 >    int nExclude, nOneTwo, nOneThree, nOneFour;
854  
599    //globalGroupMembership_ is filled by SimCreator    
600    for (int i = 0; i < nGlobalAtoms_; i++) {
601        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
602    }
603
855      //calculate mass ratio of cutoff group
605    std::vector<double> mfact;
856      SimInfo::MoleculeIterator mi;
857      Molecule* mol;
858      Molecule::CutoffGroupIterator ci;
859      CutoffGroup* cg;
860      Molecule::AtomIterator ai;
861      Atom* atom;
862 <    double totalMass;
862 >    RealType totalMass;
863  
864 <    //to avoid memory reallocation, reserve enough space for mfact
865 <    mfact.reserve(getNCutoffGroups());
864 >    /**
865 >     * The mass factor is the relative mass of an atom to the total
866 >     * mass of the cutoff group it belongs to.  By default, all atoms
867 >     * are their own cutoff groups, and therefore have mass factors of
868 >     * 1.  We need some special handling for massless atoms, which
869 >     * will be treated as carrying the entire mass of the cutoff
870 >     * group.
871 >     */
872 >    massFactors_.clear();
873 >    massFactors_.resize(getNAtoms(), 1.0);
874      
875      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
876 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
876 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
877 >           cg = mol->nextCutoffGroup(ci)) {
878  
879 <            totalMass = cg->getMass();
880 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
881 <                        mfact.push_back(atom->getMass()/totalMass);
882 <            }
883 <
884 <        }      
879 >        totalMass = cg->getMass();
880 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
881 >          // Check for massless groups - set mfact to 1 if true
882 >          if (totalMass != 0)
883 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
884 >          else
885 >            massFactors_[atom->getLocalIndex()] = 1.0;
886 >        }
887 >      }      
888      }
889  
890 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
629 <    std::vector<int> identArray;
890 >    // Build the identArray_
891  
892 <    //to avoid memory reallocation, reserve enough space identArray
893 <    identArray.reserve(getNAtoms());
633 <    
892 >    identArray_.clear();
893 >    identArray_.reserve(getNAtoms());    
894      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
895 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
896 <            identArray.push_back(atom->getIdent());
897 <        }
895 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
896 >        identArray_.push_back(atom->getIdent());
897 >      }
898      }    
639
640    //fill molMembershipArray
641    //molMembershipArray is filled by SimCreator    
642    std::vector<int> molMembershipArray(nGlobalAtoms_);
643    for (int i = 0; i < nGlobalAtoms_; i++) {
644        molMembershipArray[i] = globalMolMembership_[i] + 1;
645    }
899      
900 <    //setup fortran simulation
648 <    //gloalExcludes and molMembershipArray should go away (They are never used)
649 <    //why the hell fortran need to know molecule?
650 <    //OOPSE = Object-Obfuscated Parallel Simulation Engine
651 <    int nGlobalExcludes = 0;
652 <    int* globalExcludes = NULL;
653 <    int* excludeList = exclude_.getExcludeList();
654 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
655 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
656 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
900 >    //scan topology
901  
902 <    if( isError ){
902 >    nExclude = excludedInteractions_.getSize();
903 >    nOneTwo = oneTwoInteractions_.getSize();
904 >    nOneThree = oneThreeInteractions_.getSize();
905 >    nOneFour = oneFourInteractions_.getSize();
906  
907 <        sprintf( painCave.errMsg,
908 <                 "There was an error setting the simulation information in fortran.\n" );
909 <        painCave.isFatal = 1;
910 <        painCave.severity = OOPSE_ERROR;
664 <        simError();
665 <    }
907 >    int* excludeList = excludedInteractions_.getPairList();
908 >    int* oneTwoList = oneTwoInteractions_.getPairList();
909 >    int* oneThreeList = oneThreeInteractions_.getPairList();
910 >    int* oneFourList = oneFourInteractions_.getPairList();
911  
912 < #ifdef IS_MPI
913 <    sprintf( checkPointMsg,
669 <       "succesfully sent the simulation information to fortran.\n");
670 <    MPIcheckPoint();
671 < #endif // is_mpi
672 < }
912 >    topologyDone_ = true;
913 >  }
914  
915 +  void SimInfo::addProperty(GenericData* genData) {
916 +    properties_.addProperty(genData);  
917 +  }
918  
919 < #ifdef IS_MPI
920 < void SimInfo::setupFortranParallel() {
921 <    
678 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
679 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
680 <    std::vector<int> localToGlobalCutoffGroupIndex;
681 <    SimInfo::MoleculeIterator mi;
682 <    Molecule::AtomIterator ai;
683 <    Molecule::CutoffGroupIterator ci;
684 <    Molecule* mol;
685 <    Atom* atom;
686 <    CutoffGroup* cg;
687 <    mpiSimData parallelData;
688 <    int isError;
919 >  void SimInfo::removeProperty(const string& propName) {
920 >    properties_.removeProperty(propName);  
921 >  }
922  
923 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
923 >  void SimInfo::clearProperties() {
924 >    properties_.clearProperties();
925 >  }
926  
927 <        //local index(index in DataStorge) of atom is important
928 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
929 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
930 <        }
927 >  vector<string> SimInfo::getPropertyNames() {
928 >    return properties_.getPropertyNames();  
929 >  }
930 >      
931 >  vector<GenericData*> SimInfo::getProperties() {
932 >    return properties_.getProperties();
933 >  }
934  
935 <        //local index of cutoff group is trivial, it only depends on the order of travesing
936 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
937 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
700 <        }        
701 <        
702 <    }
935 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
936 >    return properties_.getPropertyByName(propName);
937 >  }
938  
939 <    //fill up mpiSimData struct
940 <    parallelData.nMolGlobal = getNGlobalMolecules();
941 <    parallelData.nMolLocal = getNMolecules();
942 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
943 <    parallelData.nAtomsLocal = getNAtoms();
709 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
710 <    parallelData.nGroupsLocal = getNCutoffGroups();
711 <    parallelData.myNode = worldRank;
712 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
713 <
714 <    //pass mpiSimData struct and index arrays to fortran
715 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
716 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
717 <                    &localToGlobalCutoffGroupIndex[0], &isError);
718 <
719 <    if (isError) {
720 <        sprintf(painCave.errMsg,
721 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
722 <        painCave.isFatal = 1;
723 <        simError();
724 <    }
725 <
726 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
727 <    MPIcheckPoint();
728 <
729 <
730 < }
731 <
732 < #endif
733 <
734 < double SimInfo::calcMaxCutoffRadius() {
735 <
736 <
737 <    std::set<AtomType*> atomTypes;
738 <    std::set<AtomType*>::iterator i;
739 <    std::vector<double> cutoffRadius;
740 <
741 <    //get the unique atom types
742 <    atomTypes = getUniqueAtomTypes();
743 <
744 <    //query the max cutoff radius among these atom types
745 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
746 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
747 <    }
748 <
749 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
750 < #ifdef IS_MPI
751 <    //pick the max cutoff radius among the processors
752 < #endif
753 <
754 <    return maxCutoffRadius;
755 < }
756 <
757 < void SimInfo::getCutoff(double& rcut, double& rsw) {
758 <    
759 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
760 <        
761 <        if (!simParams_->haveRcut()){
762 <            sprintf(painCave.errMsg,
763 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
764 <                "\tOOPSE will use a default value of 15.0 angstroms"
765 <                "\tfor the cutoffRadius.\n");
766 <            painCave.isFatal = 0;
767 <            simError();
768 <            rcut = 15.0;
769 <        } else{
770 <            rcut = simParams_->getRcut();
771 <        }
772 <
773 <        if (!simParams_->haveRsw()){
774 <            sprintf(painCave.errMsg,
775 <                "SimCreator Warning: No value was set for switchingRadius.\n"
776 <                "\tOOPSE will use a default value of\n"
777 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
778 <            painCave.isFatal = 0;
779 <            simError();
780 <            rsw = 0.95 * rcut;
781 <        } else{
782 <            rsw = simParams_->getRsw();
783 <        }
784 <
785 <    } else {
786 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
787 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
788 <        
789 <        if (simParams_->haveRcut()) {
790 <            rcut = simParams_->getRcut();
791 <        } else {
792 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
793 <            rcut = calcMaxCutoffRadius();
794 <        }
795 <
796 <        if (simParams_->haveRsw()) {
797 <            rsw  = simParams_->getRsw();
798 <        } else {
799 <            rsw = rcut;
800 <        }
801 <    
802 <    }
803 < }
804 <
805 < void SimInfo::setupCutoff() {
806 <    getCutoff(rcut_, rsw_);    
807 <    double rnblist = rcut_ + 1; // skin of neighbor list
808 <
809 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
810 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
811 < }
812 <
813 < void SimInfo::addProperty(GenericData* genData) {
814 <    properties_.addProperty(genData);  
815 < }
816 <
817 < void SimInfo::removeProperty(const std::string& propName) {
818 <    properties_.removeProperty(propName);  
819 < }
820 <
821 < void SimInfo::clearProperties() {
822 <    properties_.clearProperties();
823 < }
824 <
825 < std::vector<std::string> SimInfo::getPropertyNames() {
826 <    return properties_.getPropertyNames();  
827 < }
828 <      
829 < std::vector<GenericData*> SimInfo::getProperties() {
830 <    return properties_.getProperties();
831 < }
832 <
833 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
834 <    return properties_.getPropertyByName(propName);
835 < }
836 <
837 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
838 <    //if (sman_ == sman_) {
839 <    //    return;
840 <    //}
841 <    
842 <    //delete sman_;
939 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
940 >    if (sman_ == sman) {
941 >      return;
942 >    }    
943 >    delete sman_;
944      sman_ = sman;
945  
946      Molecule* mol;
947      RigidBody* rb;
948      Atom* atom;
949 +    CutoffGroup* cg;
950      SimInfo::MoleculeIterator mi;
951      Molecule::RigidBodyIterator rbIter;
952 <    Molecule::AtomIterator atomIter;;
952 >    Molecule::AtomIterator atomIter;
953 >    Molecule::CutoffGroupIterator cgIter;
954  
955      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
956          
957 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
958 <            atom->setSnapshotManager(sman_);
959 <        }
957 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
958 >        atom->setSnapshotManager(sman_);
959 >      }
960          
961 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
962 <            rb->setSnapshotManager(sman_);
963 <        }
961 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
962 >        rb->setSnapshotManager(sman_);
963 >      }
964 >
965 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
966 >        cg->setSnapshotManager(sman_);
967 >      }
968      }    
969      
970 < }
970 >  }
971  
972 < Vector3d SimInfo::getComVel(){
972 >  Vector3d SimInfo::getComVel(){
973      SimInfo::MoleculeIterator i;
974      Molecule* mol;
975  
976      Vector3d comVel(0.0);
977 <    double totalMass = 0.0;
977 >    RealType totalMass = 0.0;
978      
979  
980      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
981 <        double mass = mol->getMass();
982 <        totalMass += mass;
983 <        comVel += mass * mol->getComVel();
981 >      RealType mass = mol->getMass();
982 >      totalMass += mass;
983 >      comVel += mass * mol->getComVel();
984      }  
985  
986   #ifdef IS_MPI
987 <    double tmpMass = totalMass;
987 >    RealType tmpMass = totalMass;
988      Vector3d tmpComVel(comVel);    
989 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
990 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
989 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
990 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
991   #endif
992  
993      comVel /= totalMass;
994  
995      return comVel;
996 < }
996 >  }
997  
998 < Vector3d SimInfo::getCom(){
998 >  Vector3d SimInfo::getCom(){
999      SimInfo::MoleculeIterator i;
1000      Molecule* mol;
1001  
1002      Vector3d com(0.0);
1003 <    double totalMass = 0.0;
1003 >    RealType totalMass = 0.0;
1004      
1005      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1006 <        double mass = mol->getMass();
1007 <        totalMass += mass;
1008 <        com += mass * mol->getCom();
1006 >      RealType mass = mol->getMass();
1007 >      totalMass += mass;
1008 >      com += mass * mol->getCom();
1009      }  
1010  
1011   #ifdef IS_MPI
1012 <    double tmpMass = totalMass;
1012 >    RealType tmpMass = totalMass;
1013      Vector3d tmpCom(com);    
1014 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1015 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1014 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1015 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1016   #endif
1017  
1018      com /= totalMass;
1019  
1020      return com;
1021  
1022 < }        
1022 >  }        
1023  
1024 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1024 >  ostream& operator <<(ostream& o, SimInfo& info) {
1025  
1026      return o;
1027 < }
1027 >  }
1028 >  
1029 >  
1030 >   /*
1031 >   Returns center of mass and center of mass velocity in one function call.
1032 >   */
1033 >  
1034 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1035 >      SimInfo::MoleculeIterator i;
1036 >      Molecule* mol;
1037 >      
1038 >    
1039 >      RealType totalMass = 0.0;
1040 >    
1041  
1042 < }//end namespace oopse
1042 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1043 >         RealType mass = mol->getMass();
1044 >         totalMass += mass;
1045 >         com += mass * mol->getCom();
1046 >         comVel += mass * mol->getComVel();          
1047 >      }  
1048 >      
1049 > #ifdef IS_MPI
1050 >      RealType tmpMass = totalMass;
1051 >      Vector3d tmpCom(com);  
1052 >      Vector3d tmpComVel(comVel);
1053 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1054 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1055 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1056 > #endif
1057 >      
1058 >      com /= totalMass;
1059 >      comVel /= totalMass;
1060 >   }        
1061 >  
1062 >   /*
1063 >   Return intertia tensor for entire system and angular momentum Vector.
1064  
1065 +
1066 +       [  Ixx -Ixy  -Ixz ]
1067 +    J =| -Iyx  Iyy  -Iyz |
1068 +       [ -Izx -Iyz   Izz ]
1069 +    */
1070 +
1071 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1072 +      
1073 +
1074 +      RealType xx = 0.0;
1075 +      RealType yy = 0.0;
1076 +      RealType zz = 0.0;
1077 +      RealType xy = 0.0;
1078 +      RealType xz = 0.0;
1079 +      RealType yz = 0.0;
1080 +      Vector3d com(0.0);
1081 +      Vector3d comVel(0.0);
1082 +      
1083 +      getComAll(com, comVel);
1084 +      
1085 +      SimInfo::MoleculeIterator i;
1086 +      Molecule* mol;
1087 +      
1088 +      Vector3d thisq(0.0);
1089 +      Vector3d thisv(0.0);
1090 +
1091 +      RealType thisMass = 0.0;
1092 +    
1093 +      
1094 +      
1095 +  
1096 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1097 +        
1098 +         thisq = mol->getCom()-com;
1099 +         thisv = mol->getComVel()-comVel;
1100 +         thisMass = mol->getMass();
1101 +         // Compute moment of intertia coefficients.
1102 +         xx += thisq[0]*thisq[0]*thisMass;
1103 +         yy += thisq[1]*thisq[1]*thisMass;
1104 +         zz += thisq[2]*thisq[2]*thisMass;
1105 +        
1106 +         // compute products of intertia
1107 +         xy += thisq[0]*thisq[1]*thisMass;
1108 +         xz += thisq[0]*thisq[2]*thisMass;
1109 +         yz += thisq[1]*thisq[2]*thisMass;
1110 +            
1111 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1112 +            
1113 +      }  
1114 +      
1115 +      
1116 +      inertiaTensor(0,0) = yy + zz;
1117 +      inertiaTensor(0,1) = -xy;
1118 +      inertiaTensor(0,2) = -xz;
1119 +      inertiaTensor(1,0) = -xy;
1120 +      inertiaTensor(1,1) = xx + zz;
1121 +      inertiaTensor(1,2) = -yz;
1122 +      inertiaTensor(2,0) = -xz;
1123 +      inertiaTensor(2,1) = -yz;
1124 +      inertiaTensor(2,2) = xx + yy;
1125 +      
1126 + #ifdef IS_MPI
1127 +      Mat3x3d tmpI(inertiaTensor);
1128 +      Vector3d tmpAngMom;
1129 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1130 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1131 + #endif
1132 +              
1133 +      return;
1134 +   }
1135 +
1136 +   //Returns the angular momentum of the system
1137 +   Vector3d SimInfo::getAngularMomentum(){
1138 +      
1139 +      Vector3d com(0.0);
1140 +      Vector3d comVel(0.0);
1141 +      Vector3d angularMomentum(0.0);
1142 +      
1143 +      getComAll(com,comVel);
1144 +      
1145 +      SimInfo::MoleculeIterator i;
1146 +      Molecule* mol;
1147 +      
1148 +      Vector3d thisr(0.0);
1149 +      Vector3d thisp(0.0);
1150 +      
1151 +      RealType thisMass;
1152 +      
1153 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1154 +        thisMass = mol->getMass();
1155 +        thisr = mol->getCom()-com;
1156 +        thisp = (mol->getComVel()-comVel)*thisMass;
1157 +        
1158 +        angularMomentum += cross( thisr, thisp );
1159 +        
1160 +      }  
1161 +      
1162 + #ifdef IS_MPI
1163 +      Vector3d tmpAngMom;
1164 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1165 + #endif
1166 +      
1167 +      return angularMomentum;
1168 +   }
1169 +  
1170 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1171 +    return IOIndexToIntegrableObject.at(index);
1172 +  }
1173 +  
1174 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1175 +    IOIndexToIntegrableObject= v;
1176 +  }
1177 +
1178 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1179 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1180 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1181 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1182 +  */
1183 +  void SimInfo::getGyrationalVolume(RealType &volume){
1184 +    Mat3x3d intTensor;
1185 +    RealType det;
1186 +    Vector3d dummyAngMom;
1187 +    RealType sysconstants;
1188 +    RealType geomCnst;
1189 +
1190 +    geomCnst = 3.0/2.0;
1191 +    /* Get the inertial tensor and angular momentum for free*/
1192 +    getInertiaTensor(intTensor,dummyAngMom);
1193 +    
1194 +    det = intTensor.determinant();
1195 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1196 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1197 +    return;
1198 +  }
1199 +
1200 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1201 +    Mat3x3d intTensor;
1202 +    Vector3d dummyAngMom;
1203 +    RealType sysconstants;
1204 +    RealType geomCnst;
1205 +
1206 +    geomCnst = 3.0/2.0;
1207 +    /* Get the inertial tensor and angular momentum for free*/
1208 +    getInertiaTensor(intTensor,dummyAngMom);
1209 +    
1210 +    detI = intTensor.determinant();
1211 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1212 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1213 +    return;
1214 +  }
1215 + /*
1216 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1217 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1218 +      sdByGlobalIndex_ = v;
1219 +    }
1220 +
1221 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1222 +      //assert(index < nAtoms_ + nRigidBodies_);
1223 +      return sdByGlobalIndex_.at(index);
1224 +    }  
1225 + */  
1226 +  int SimInfo::getNGlobalConstraints() {
1227 +    int nGlobalConstraints;
1228 + #ifdef IS_MPI
1229 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1230 +                  MPI_COMM_WORLD);    
1231 + #else
1232 +    nGlobalConstraints =  nConstraints_;
1233 + #endif
1234 +    return nGlobalConstraints;
1235 +  }
1236 +
1237 + }//end namespace OpenMD
1238 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 334 by tim, Mon Feb 14 17:57:01 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1627 by gezelter, Tue Sep 13 22:05:04 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines