54 |
|
#include "math/Vector3.hpp" |
55 |
|
#include "primitives/Molecule.hpp" |
56 |
|
#include "primitives/StuntDouble.hpp" |
57 |
– |
#include "UseTheForce/fCutoffPolicy.h" |
58 |
– |
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
59 |
– |
#include "UseTheForce/doForces_interface.h" |
60 |
– |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
61 |
– |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
57 |
|
#include "utils/MemoryUtils.hpp" |
58 |
|
#include "utils/simError.h" |
59 |
|
#include "selection/SelectionManager.hpp" |
60 |
|
#include "io/ForceFieldOptions.hpp" |
61 |
|
#include "UseTheForce/ForceField.hpp" |
62 |
+ |
#include "nonbonded/SwitchingFunction.hpp" |
63 |
|
|
64 |
< |
|
69 |
< |
#ifdef IS_MPI |
70 |
< |
#include "UseTheForce/mpiComponentPlan.h" |
71 |
< |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
72 |
< |
#endif |
73 |
< |
|
64 |
> |
using namespace std; |
65 |
|
namespace OpenMD { |
75 |
– |
std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { |
76 |
– |
std::map<int, std::set<int> >::iterator i = container.find(index); |
77 |
– |
std::set<int> result; |
78 |
– |
if (i != container.end()) { |
79 |
– |
result = i->second; |
80 |
– |
} |
81 |
– |
|
82 |
– |
return result; |
83 |
– |
} |
66 |
|
|
67 |
|
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
68 |
|
forceField_(ff), simParams_(simParams), |
71 |
|
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
72 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
73 |
|
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
74 |
< |
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
75 |
< |
calcBoxDipole_(false), useAtomicVirial_(true) { |
76 |
< |
|
77 |
< |
|
78 |
< |
MoleculeStamp* molStamp; |
79 |
< |
int nMolWithSameStamp; |
80 |
< |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
81 |
< |
int nGroups = 0; //total cutoff groups defined in meta-data file |
82 |
< |
CutoffGroupStamp* cgStamp; |
83 |
< |
RigidBodyStamp* rbStamp; |
84 |
< |
int nRigidAtoms = 0; |
85 |
< |
|
86 |
< |
std::vector<Component*> components = simParams->getComponents(); |
74 |
> |
nConstraints_(0), sman_(NULL), topologyDone_(false), |
75 |
> |
calcBoxDipole_(false), useAtomicVirial_(true) { |
76 |
> |
|
77 |
> |
MoleculeStamp* molStamp; |
78 |
> |
int nMolWithSameStamp; |
79 |
> |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
80 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
81 |
> |
CutoffGroupStamp* cgStamp; |
82 |
> |
RigidBodyStamp* rbStamp; |
83 |
> |
int nRigidAtoms = 0; |
84 |
> |
|
85 |
> |
vector<Component*> components = simParams->getComponents(); |
86 |
> |
|
87 |
> |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
88 |
> |
molStamp = (*i)->getMoleculeStamp(); |
89 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
90 |
|
|
91 |
< |
for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
92 |
< |
molStamp = (*i)->getMoleculeStamp(); |
93 |
< |
nMolWithSameStamp = (*i)->getNMol(); |
94 |
< |
|
95 |
< |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
96 |
< |
|
97 |
< |
//calculate atoms in molecules |
98 |
< |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
99 |
< |
|
100 |
< |
//calculate atoms in cutoff groups |
101 |
< |
int nAtomsInGroups = 0; |
102 |
< |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
118 |
< |
|
119 |
< |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
120 |
< |
cgStamp = molStamp->getCutoffGroupStamp(j); |
121 |
< |
nAtomsInGroups += cgStamp->getNMembers(); |
122 |
< |
} |
123 |
< |
|
124 |
< |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
125 |
< |
|
126 |
< |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
127 |
< |
|
128 |
< |
//calculate atoms in rigid bodies |
129 |
< |
int nAtomsInRigidBodies = 0; |
130 |
< |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
131 |
< |
|
132 |
< |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
133 |
< |
rbStamp = molStamp->getRigidBodyStamp(j); |
134 |
< |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
135 |
< |
} |
136 |
< |
|
137 |
< |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
138 |
< |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
139 |
< |
|
91 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
92 |
> |
|
93 |
> |
//calculate atoms in molecules |
94 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
95 |
> |
|
96 |
> |
//calculate atoms in cutoff groups |
97 |
> |
int nAtomsInGroups = 0; |
98 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
99 |
> |
|
100 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
101 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
102 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
103 |
|
} |
104 |
< |
|
105 |
< |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
106 |
< |
//group therefore the total number of cutoff groups in the system is |
107 |
< |
//equal to the total number of atoms minus number of atoms belong to |
108 |
< |
//cutoff group defined in meta-data file plus the number of cutoff |
109 |
< |
//groups defined in meta-data file |
110 |
< |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
111 |
< |
|
112 |
< |
//every free atom (atom does not belong to rigid bodies) is an |
113 |
< |
//integrable object therefore the total number of integrable objects |
114 |
< |
//in the system is equal to the total number of atoms minus number of |
115 |
< |
//atoms belong to rigid body defined in meta-data file plus the number |
116 |
< |
//of rigid bodies defined in meta-data file |
117 |
< |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
118 |
< |
+ nGlobalRigidBodies_; |
119 |
< |
|
120 |
< |
nGlobalMols_ = molStampIds_.size(); |
158 |
< |
molToProcMap_.resize(nGlobalMols_); |
104 |
> |
|
105 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
106 |
> |
|
107 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
108 |
> |
|
109 |
> |
//calculate atoms in rigid bodies |
110 |
> |
int nAtomsInRigidBodies = 0; |
111 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
112 |
> |
|
113 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
114 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
115 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
116 |
> |
} |
117 |
> |
|
118 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
119 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
120 |
> |
|
121 |
|
} |
122 |
+ |
|
123 |
+ |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
124 |
+ |
//group therefore the total number of cutoff groups in the system is |
125 |
+ |
//equal to the total number of atoms minus number of atoms belong to |
126 |
+ |
//cutoff group defined in meta-data file plus the number of cutoff |
127 |
+ |
//groups defined in meta-data file |
128 |
|
|
129 |
+ |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
130 |
+ |
|
131 |
+ |
//every free atom (atom does not belong to rigid bodies) is an |
132 |
+ |
//integrable object therefore the total number of integrable objects |
133 |
+ |
//in the system is equal to the total number of atoms minus number of |
134 |
+ |
//atoms belong to rigid body defined in meta-data file plus the number |
135 |
+ |
//of rigid bodies defined in meta-data file |
136 |
+ |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
137 |
+ |
+ nGlobalRigidBodies_; |
138 |
+ |
|
139 |
+ |
nGlobalMols_ = molStampIds_.size(); |
140 |
+ |
molToProcMap_.resize(nGlobalMols_); |
141 |
+ |
} |
142 |
+ |
|
143 |
|
SimInfo::~SimInfo() { |
144 |
< |
std::map<int, Molecule*>::iterator i; |
144 |
> |
map<int, Molecule*>::iterator i; |
145 |
|
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
146 |
|
delete i->second; |
147 |
|
} |
152 |
|
delete forceField_; |
153 |
|
} |
154 |
|
|
173 |
– |
int SimInfo::getNGlobalConstraints() { |
174 |
– |
int nGlobalConstraints; |
175 |
– |
#ifdef IS_MPI |
176 |
– |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
177 |
– |
MPI_COMM_WORLD); |
178 |
– |
#else |
179 |
– |
nGlobalConstraints = nConstraints_; |
180 |
– |
#endif |
181 |
– |
return nGlobalConstraints; |
182 |
– |
} |
155 |
|
|
156 |
|
bool SimInfo::addMolecule(Molecule* mol) { |
157 |
|
MoleculeIterator i; |
158 |
< |
|
158 |
> |
|
159 |
|
i = molecules_.find(mol->getGlobalIndex()); |
160 |
|
if (i == molecules_.end() ) { |
161 |
< |
|
162 |
< |
molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
163 |
< |
|
161 |
> |
|
162 |
> |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
163 |
> |
|
164 |
|
nAtoms_ += mol->getNAtoms(); |
165 |
|
nBonds_ += mol->getNBonds(); |
166 |
|
nBends_ += mol->getNBends(); |
170 |
|
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
171 |
|
nCutoffGroups_ += mol->getNCutoffGroups(); |
172 |
|
nConstraints_ += mol->getNConstraintPairs(); |
173 |
< |
|
173 |
> |
|
174 |
|
addInteractionPairs(mol); |
175 |
< |
|
175 |
> |
|
176 |
|
return true; |
177 |
|
} else { |
178 |
|
return false; |
179 |
|
} |
180 |
|
} |
181 |
< |
|
181 |
> |
|
182 |
|
bool SimInfo::removeMolecule(Molecule* mol) { |
183 |
|
MoleculeIterator i; |
184 |
|
i = molecules_.find(mol->getGlobalIndex()); |
206 |
|
} else { |
207 |
|
return false; |
208 |
|
} |
237 |
– |
|
238 |
– |
|
209 |
|
} |
210 |
|
|
211 |
|
|
223 |
|
void SimInfo::calcNdf() { |
224 |
|
int ndf_local; |
225 |
|
MoleculeIterator i; |
226 |
< |
std::vector<StuntDouble*>::iterator j; |
226 |
> |
vector<StuntDouble*>::iterator j; |
227 |
|
Molecule* mol; |
228 |
|
StuntDouble* integrableObject; |
229 |
|
|
269 |
|
#endif |
270 |
|
return fdf_; |
271 |
|
} |
272 |
+ |
|
273 |
+ |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
274 |
+ |
int nLocalCutoffAtoms = 0; |
275 |
+ |
Molecule* mol; |
276 |
+ |
MoleculeIterator mi; |
277 |
+ |
CutoffGroup* cg; |
278 |
+ |
Molecule::CutoffGroupIterator ci; |
279 |
|
|
280 |
+ |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
281 |
+ |
|
282 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
283 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
284 |
+ |
nLocalCutoffAtoms += cg->getNumAtom(); |
285 |
+ |
|
286 |
+ |
} |
287 |
+ |
} |
288 |
+ |
|
289 |
+ |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
290 |
+ |
} |
291 |
+ |
|
292 |
|
void SimInfo::calcNdfRaw() { |
293 |
|
int ndfRaw_local; |
294 |
|
|
295 |
|
MoleculeIterator i; |
296 |
< |
std::vector<StuntDouble*>::iterator j; |
296 |
> |
vector<StuntDouble*>::iterator j; |
297 |
|
Molecule* mol; |
298 |
|
StuntDouble* integrableObject; |
299 |
|
|
342 |
|
|
343 |
|
void SimInfo::addInteractionPairs(Molecule* mol) { |
344 |
|
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
345 |
< |
std::vector<Bond*>::iterator bondIter; |
346 |
< |
std::vector<Bend*>::iterator bendIter; |
347 |
< |
std::vector<Torsion*>::iterator torsionIter; |
348 |
< |
std::vector<Inversion*>::iterator inversionIter; |
345 |
> |
vector<Bond*>::iterator bondIter; |
346 |
> |
vector<Bend*>::iterator bendIter; |
347 |
> |
vector<Torsion*>::iterator torsionIter; |
348 |
> |
vector<Inversion*>::iterator inversionIter; |
349 |
|
Bond* bond; |
350 |
|
Bend* bend; |
351 |
|
Torsion* torsion; |
363 |
|
// always be excluded. These are done at the bottom of this |
364 |
|
// function. |
365 |
|
|
366 |
< |
std::map<int, std::set<int> > atomGroups; |
366 |
> |
map<int, set<int> > atomGroups; |
367 |
|
Molecule::RigidBodyIterator rbIter; |
368 |
|
RigidBody* rb; |
369 |
|
Molecule::IntegrableObjectIterator ii; |
375 |
|
|
376 |
|
if (integrableObject->isRigidBody()) { |
377 |
|
rb = static_cast<RigidBody*>(integrableObject); |
378 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
379 |
< |
std::set<int> rigidAtoms; |
378 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
379 |
> |
set<int> rigidAtoms; |
380 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
381 |
|
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
382 |
|
} |
383 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
384 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
384 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
385 |
|
} |
386 |
|
} else { |
387 |
< |
std::set<int> oneAtomSet; |
387 |
> |
set<int> oneAtomSet; |
388 |
|
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
389 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
389 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
390 |
|
} |
391 |
|
} |
392 |
|
|
489 |
|
|
490 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
491 |
|
rb = mol->nextRigidBody(rbIter)) { |
492 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
492 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
493 |
|
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
494 |
|
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
495 |
|
a = atoms[i]->getGlobalIndex(); |
503 |
|
|
504 |
|
void SimInfo::removeInteractionPairs(Molecule* mol) { |
505 |
|
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
506 |
< |
std::vector<Bond*>::iterator bondIter; |
507 |
< |
std::vector<Bend*>::iterator bendIter; |
508 |
< |
std::vector<Torsion*>::iterator torsionIter; |
509 |
< |
std::vector<Inversion*>::iterator inversionIter; |
506 |
> |
vector<Bond*>::iterator bondIter; |
507 |
> |
vector<Bend*>::iterator bendIter; |
508 |
> |
vector<Torsion*>::iterator torsionIter; |
509 |
> |
vector<Inversion*>::iterator inversionIter; |
510 |
|
Bond* bond; |
511 |
|
Bend* bend; |
512 |
|
Torsion* torsion; |
516 |
|
int c; |
517 |
|
int d; |
518 |
|
|
519 |
< |
std::map<int, std::set<int> > atomGroups; |
519 |
> |
map<int, set<int> > atomGroups; |
520 |
|
Molecule::RigidBodyIterator rbIter; |
521 |
|
RigidBody* rb; |
522 |
|
Molecule::IntegrableObjectIterator ii; |
528 |
|
|
529 |
|
if (integrableObject->isRigidBody()) { |
530 |
|
rb = static_cast<RigidBody*>(integrableObject); |
531 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
532 |
< |
std::set<int> rigidAtoms; |
531 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
532 |
> |
set<int> rigidAtoms; |
533 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
534 |
|
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
535 |
|
} |
536 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
537 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
537 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
538 |
|
} |
539 |
|
} else { |
540 |
< |
std::set<int> oneAtomSet; |
540 |
> |
set<int> oneAtomSet; |
541 |
|
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
542 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
542 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
543 |
|
} |
544 |
|
} |
545 |
|
|
642 |
|
|
643 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
644 |
|
rb = mol->nextRigidBody(rbIter)) { |
645 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
645 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
646 |
|
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
647 |
|
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
648 |
|
a = atoms[i]->getGlobalIndex(); |
665 |
|
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
666 |
|
} |
667 |
|
|
679 |
– |
void SimInfo::update() { |
680 |
– |
|
681 |
– |
setupSimType(); |
682 |
– |
|
683 |
– |
#ifdef IS_MPI |
684 |
– |
setupFortranParallel(); |
685 |
– |
#endif |
686 |
– |
|
687 |
– |
setupFortranSim(); |
688 |
– |
|
689 |
– |
//setup fortran force field |
690 |
– |
/** @deprecate */ |
691 |
– |
int isError = 0; |
692 |
– |
|
693 |
– |
setupCutoff(); |
694 |
– |
|
695 |
– |
setupElectrostaticSummationMethod( isError ); |
696 |
– |
setupSwitchingFunction(); |
697 |
– |
setupAccumulateBoxDipole(); |
698 |
– |
|
699 |
– |
if(isError){ |
700 |
– |
sprintf( painCave.errMsg, |
701 |
– |
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
702 |
– |
painCave.isFatal = 1; |
703 |
– |
simError(); |
704 |
– |
} |
668 |
|
|
669 |
+ |
/** |
670 |
+ |
* update |
671 |
+ |
* |
672 |
+ |
* Performs the global checks and variable settings after the |
673 |
+ |
* objects have been created. |
674 |
+ |
* |
675 |
+ |
*/ |
676 |
+ |
void SimInfo::update() { |
677 |
+ |
setupSimVariables(); |
678 |
|
calcNdf(); |
679 |
|
calcNdfRaw(); |
680 |
|
calcNdfTrans(); |
709 |
– |
|
710 |
– |
fortranInitialized_ = true; |
681 |
|
} |
682 |
< |
|
683 |
< |
std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
682 |
> |
|
683 |
> |
/** |
684 |
> |
* getSimulatedAtomTypes |
685 |
> |
* |
686 |
> |
* Returns an STL set of AtomType* that are actually present in this |
687 |
> |
* simulation. Must query all processors to assemble this information. |
688 |
> |
* |
689 |
> |
*/ |
690 |
> |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
691 |
|
SimInfo::MoleculeIterator mi; |
692 |
|
Molecule* mol; |
693 |
|
Molecule::AtomIterator ai; |
694 |
|
Atom* atom; |
695 |
< |
std::set<AtomType*> atomTypes; |
696 |
< |
|
695 |
> |
set<AtomType*> atomTypes; |
696 |
> |
|
697 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
698 |
< |
|
699 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
698 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
699 |
> |
atom = mol->nextAtom(ai)) { |
700 |
|
atomTypes.insert(atom->getAtomType()); |
701 |
< |
} |
702 |
< |
|
703 |
< |
} |
701 |
> |
} |
702 |
> |
} |
703 |
> |
|
704 |
> |
#ifdef IS_MPI |
705 |
|
|
706 |
< |
return atomTypes; |
707 |
< |
} |
730 |
< |
|
731 |
< |
void SimInfo::setupSimType() { |
732 |
< |
std::set<AtomType*>::iterator i; |
733 |
< |
std::set<AtomType*> atomTypes; |
734 |
< |
atomTypes = getUniqueAtomTypes(); |
706 |
> |
// loop over the found atom types on this processor, and add their |
707 |
> |
// numerical idents to a vector: |
708 |
|
|
709 |
< |
int useLennardJones = 0; |
710 |
< |
int useElectrostatic = 0; |
711 |
< |
int useEAM = 0; |
712 |
< |
int useSC = 0; |
740 |
< |
int useCharge = 0; |
741 |
< |
int useDirectional = 0; |
742 |
< |
int useDipole = 0; |
743 |
< |
int useGayBerne = 0; |
744 |
< |
int useSticky = 0; |
745 |
< |
int useStickyPower = 0; |
746 |
< |
int useShape = 0; |
747 |
< |
int useFLARB = 0; //it is not in AtomType yet |
748 |
< |
int useDirectionalAtom = 0; |
749 |
< |
int useElectrostatics = 0; |
750 |
< |
//usePBC and useRF are from simParams |
751 |
< |
int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
752 |
< |
int useRF; |
753 |
< |
int useSF; |
754 |
< |
int useSP; |
755 |
< |
int useBoxDipole; |
709 |
> |
vector<int> foundTypes; |
710 |
> |
set<AtomType*>::iterator i; |
711 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
712 |
> |
foundTypes.push_back( (*i)->getIdent() ); |
713 |
|
|
714 |
< |
std::string myMethod; |
714 |
> |
// count_local holds the number of found types on this processor |
715 |
> |
int count_local = foundTypes.size(); |
716 |
|
|
717 |
< |
// set the useRF logical |
760 |
< |
useRF = 0; |
761 |
< |
useSF = 0; |
762 |
< |
useSP = 0; |
763 |
< |
useBoxDipole = 0; |
717 |
> |
int nproc = MPI::COMM_WORLD.Get_size(); |
718 |
|
|
719 |
+ |
// we need arrays to hold the counts and displacement vectors for |
720 |
+ |
// all processors |
721 |
+ |
vector<int> counts(nproc, 0); |
722 |
+ |
vector<int> disps(nproc, 0); |
723 |
|
|
724 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
725 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
726 |
< |
toUpper(myMethod); |
727 |
< |
if (myMethod == "REACTION_FIELD"){ |
728 |
< |
useRF = 1; |
729 |
< |
} else if (myMethod == "SHIFTED_FORCE"){ |
730 |
< |
useSF = 1; |
731 |
< |
} else if (myMethod == "SHIFTED_POTENTIAL"){ |
732 |
< |
useSP = 1; |
733 |
< |
} |
724 |
> |
// fill the counts array |
725 |
> |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
726 |
> |
1, MPI::INT); |
727 |
> |
|
728 |
> |
// use the processor counts to compute the displacement array |
729 |
> |
disps[0] = 0; |
730 |
> |
int totalCount = counts[0]; |
731 |
> |
for (int iproc = 1; iproc < nproc; iproc++) { |
732 |
> |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
733 |
> |
totalCount += counts[iproc]; |
734 |
|
} |
735 |
+ |
|
736 |
+ |
// we need a (possibly redundant) set of all found types: |
737 |
+ |
vector<int> ftGlobal(totalCount); |
738 |
|
|
739 |
< |
if (simParams_->haveAccumulateBoxDipole()) |
740 |
< |
if (simParams_->getAccumulateBoxDipole()) |
741 |
< |
useBoxDipole = 1; |
739 |
> |
// now spray out the foundTypes to all the other processors: |
740 |
> |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
741 |
> |
&ftGlobal[0], &counts[0], &disps[0], |
742 |
> |
MPI::INT); |
743 |
|
|
744 |
< |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
744 |
> |
vector<int>::iterator j; |
745 |
|
|
746 |
< |
//loop over all of the atom types |
747 |
< |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
748 |
< |
useLennardJones |= (*i)->isLennardJones(); |
787 |
< |
useElectrostatic |= (*i)->isElectrostatic(); |
788 |
< |
useEAM |= (*i)->isEAM(); |
789 |
< |
useSC |= (*i)->isSC(); |
790 |
< |
useCharge |= (*i)->isCharge(); |
791 |
< |
useDirectional |= (*i)->isDirectional(); |
792 |
< |
useDipole |= (*i)->isDipole(); |
793 |
< |
useGayBerne |= (*i)->isGayBerne(); |
794 |
< |
useSticky |= (*i)->isSticky(); |
795 |
< |
useStickyPower |= (*i)->isStickyPower(); |
796 |
< |
useShape |= (*i)->isShape(); |
797 |
< |
} |
746 |
> |
// foundIdents is a stl set, so inserting an already found ident |
747 |
> |
// will have no effect. |
748 |
> |
set<int> foundIdents; |
749 |
|
|
750 |
< |
if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
751 |
< |
useDirectionalAtom = 1; |
752 |
< |
} |
750 |
> |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
751 |
> |
foundIdents.insert((*j)); |
752 |
> |
|
753 |
> |
// now iterate over the foundIdents and get the actual atom types |
754 |
> |
// that correspond to these: |
755 |
> |
set<int>::iterator it; |
756 |
> |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
757 |
> |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
758 |
> |
|
759 |
> |
#endif |
760 |
|
|
761 |
< |
if (useCharge || useDipole) { |
762 |
< |
useElectrostatics = 1; |
805 |
< |
} |
761 |
> |
return atomTypes; |
762 |
> |
} |
763 |
|
|
764 |
+ |
void SimInfo::setupSimVariables() { |
765 |
+ |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
766 |
+ |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
767 |
+ |
calcBoxDipole_ = false; |
768 |
+ |
if ( simParams_->haveAccumulateBoxDipole() ) |
769 |
+ |
if ( simParams_->getAccumulateBoxDipole() ) { |
770 |
+ |
calcBoxDipole_ = true; |
771 |
+ |
} |
772 |
+ |
|
773 |
+ |
set<AtomType*>::iterator i; |
774 |
+ |
set<AtomType*> atomTypes; |
775 |
+ |
atomTypes = getSimulatedAtomTypes(); |
776 |
+ |
int usesElectrostatic = 0; |
777 |
+ |
int usesMetallic = 0; |
778 |
+ |
int usesDirectional = 0; |
779 |
+ |
//loop over all of the atom types |
780 |
+ |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
781 |
+ |
usesElectrostatic |= (*i)->isElectrostatic(); |
782 |
+ |
usesMetallic |= (*i)->isMetal(); |
783 |
+ |
usesDirectional |= (*i)->isDirectional(); |
784 |
+ |
} |
785 |
+ |
|
786 |
|
#ifdef IS_MPI |
787 |
|
int temp; |
788 |
+ |
temp = usesDirectional; |
789 |
+ |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
790 |
+ |
|
791 |
+ |
temp = usesMetallic; |
792 |
+ |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
793 |
+ |
|
794 |
+ |
temp = usesElectrostatic; |
795 |
+ |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
796 |
+ |
#else |
797 |
|
|
798 |
< |
temp = usePBC; |
799 |
< |
MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
798 |
> |
usesDirectionalAtoms_ = usesDirectional; |
799 |
> |
usesMetallicAtoms_ = usesMetallic; |
800 |
> |
usesElectrostaticAtoms_ = usesElectrostatic; |
801 |
|
|
802 |
< |
temp = useDirectionalAtom; |
803 |
< |
MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
802 |
> |
#endif |
803 |
> |
|
804 |
> |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
805 |
> |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
806 |
> |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
807 |
> |
} |
808 |
|
|
816 |
– |
temp = useLennardJones; |
817 |
– |
MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
809 |
|
|
810 |
< |
temp = useElectrostatics; |
811 |
< |
MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
810 |
> |
vector<int> SimInfo::getGlobalAtomIndices() { |
811 |
> |
SimInfo::MoleculeIterator mi; |
812 |
> |
Molecule* mol; |
813 |
> |
Molecule::AtomIterator ai; |
814 |
> |
Atom* atom; |
815 |
|
|
816 |
< |
temp = useCharge; |
823 |
< |
MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
824 |
< |
|
825 |
< |
temp = useDipole; |
826 |
< |
MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
827 |
< |
|
828 |
< |
temp = useSticky; |
829 |
< |
MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
830 |
< |
|
831 |
< |
temp = useStickyPower; |
832 |
< |
MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
816 |
> |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
817 |
|
|
818 |
< |
temp = useGayBerne; |
819 |
< |
MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
818 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
819 |
> |
|
820 |
> |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
821 |
> |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
822 |
> |
} |
823 |
> |
} |
824 |
> |
return GlobalAtomIndices; |
825 |
> |
} |
826 |
|
|
837 |
– |
temp = useEAM; |
838 |
– |
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
827 |
|
|
828 |
< |
temp = useSC; |
829 |
< |
MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
830 |
< |
|
831 |
< |
temp = useShape; |
832 |
< |
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
828 |
> |
vector<int> SimInfo::getGlobalGroupIndices() { |
829 |
> |
SimInfo::MoleculeIterator mi; |
830 |
> |
Molecule* mol; |
831 |
> |
Molecule::CutoffGroupIterator ci; |
832 |
> |
CutoffGroup* cg; |
833 |
|
|
834 |
< |
temp = useFLARB; |
835 |
< |
MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
836 |
< |
|
837 |
< |
temp = useRF; |
838 |
< |
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
839 |
< |
|
840 |
< |
temp = useSF; |
841 |
< |
MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
842 |
< |
|
843 |
< |
temp = useSP; |
844 |
< |
MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
845 |
< |
|
858 |
< |
temp = useBoxDipole; |
859 |
< |
MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
860 |
< |
|
861 |
< |
temp = useAtomicVirial_; |
862 |
< |
MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
863 |
< |
|
864 |
< |
#endif |
865 |
< |
|
866 |
< |
fInfo_.SIM_uses_PBC = usePBC; |
867 |
< |
fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
868 |
< |
fInfo_.SIM_uses_LennardJones = useLennardJones; |
869 |
< |
fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
870 |
< |
fInfo_.SIM_uses_Charges = useCharge; |
871 |
< |
fInfo_.SIM_uses_Dipoles = useDipole; |
872 |
< |
fInfo_.SIM_uses_Sticky = useSticky; |
873 |
< |
fInfo_.SIM_uses_StickyPower = useStickyPower; |
874 |
< |
fInfo_.SIM_uses_GayBerne = useGayBerne; |
875 |
< |
fInfo_.SIM_uses_EAM = useEAM; |
876 |
< |
fInfo_.SIM_uses_SC = useSC; |
877 |
< |
fInfo_.SIM_uses_Shapes = useShape; |
878 |
< |
fInfo_.SIM_uses_FLARB = useFLARB; |
879 |
< |
fInfo_.SIM_uses_RF = useRF; |
880 |
< |
fInfo_.SIM_uses_SF = useSF; |
881 |
< |
fInfo_.SIM_uses_SP = useSP; |
882 |
< |
fInfo_.SIM_uses_BoxDipole = useBoxDipole; |
883 |
< |
fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; |
834 |
> |
vector<int> GlobalGroupIndices; |
835 |
> |
|
836 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
837 |
> |
|
838 |
> |
//local index of cutoff group is trivial, it only depends on the |
839 |
> |
//order of travesing |
840 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
841 |
> |
cg = mol->nextCutoffGroup(ci)) { |
842 |
> |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
843 |
> |
} |
844 |
> |
} |
845 |
> |
return GlobalGroupIndices; |
846 |
|
} |
847 |
|
|
848 |
< |
void SimInfo::setupFortranSim() { |
849 |
< |
int isError; |
848 |
> |
|
849 |
> |
void SimInfo::prepareTopology() { |
850 |
|
int nExclude, nOneTwo, nOneThree, nOneFour; |
889 |
– |
std::vector<int> fortranGlobalGroupMembership; |
890 |
– |
|
891 |
– |
isError = 0; |
851 |
|
|
893 |
– |
//globalGroupMembership_ is filled by SimCreator |
894 |
– |
for (int i = 0; i < nGlobalAtoms_; i++) { |
895 |
– |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
896 |
– |
} |
897 |
– |
|
852 |
|
//calculate mass ratio of cutoff group |
899 |
– |
std::vector<RealType> mfact; |
853 |
|
SimInfo::MoleculeIterator mi; |
854 |
|
Molecule* mol; |
855 |
|
Molecule::CutoffGroupIterator ci; |
858 |
|
Atom* atom; |
859 |
|
RealType totalMass; |
860 |
|
|
861 |
< |
//to avoid memory reallocation, reserve enough space for mfact |
862 |
< |
mfact.reserve(getNCutoffGroups()); |
861 |
> |
/** |
862 |
> |
* The mass factor is the relative mass of an atom to the total |
863 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
864 |
> |
* are their own cutoff groups, and therefore have mass factors of |
865 |
> |
* 1. We need some special handling for massless atoms, which |
866 |
> |
* will be treated as carrying the entire mass of the cutoff |
867 |
> |
* group. |
868 |
> |
*/ |
869 |
> |
massFactors_.clear(); |
870 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
871 |
|
|
872 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
873 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
873 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
874 |
> |
cg = mol->nextCutoffGroup(ci)) { |
875 |
|
|
876 |
|
totalMass = cg->getMass(); |
877 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
878 |
|
// Check for massless groups - set mfact to 1 if true |
879 |
< |
if (totalMass != 0) |
880 |
< |
mfact.push_back(atom->getMass()/totalMass); |
879 |
> |
if (totalMass != 0) |
880 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
881 |
|
else |
882 |
< |
mfact.push_back( 1.0 ); |
882 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
883 |
|
} |
884 |
|
} |
885 |
|
} |
886 |
|
|
887 |
< |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
926 |
< |
std::vector<int> identArray; |
887 |
> |
// Build the identArray_ |
888 |
|
|
889 |
< |
//to avoid memory reallocation, reserve enough space identArray |
890 |
< |
identArray.reserve(getNAtoms()); |
930 |
< |
|
889 |
> |
identArray_.clear(); |
890 |
> |
identArray_.reserve(getNAtoms()); |
891 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
892 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
893 |
< |
identArray.push_back(atom->getIdent()); |
893 |
> |
identArray_.push_back(atom->getIdent()); |
894 |
|
} |
895 |
|
} |
936 |
– |
|
937 |
– |
//fill molMembershipArray |
938 |
– |
//molMembershipArray is filled by SimCreator |
939 |
– |
std::vector<int> molMembershipArray(nGlobalAtoms_); |
940 |
– |
for (int i = 0; i < nGlobalAtoms_; i++) { |
941 |
– |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
942 |
– |
} |
896 |
|
|
897 |
< |
//setup fortran simulation |
897 |
> |
//scan topology |
898 |
|
|
899 |
|
nExclude = excludedInteractions_.getSize(); |
900 |
|
nOneTwo = oneTwoInteractions_.getSize(); |
906 |
|
int* oneThreeList = oneThreeInteractions_.getPairList(); |
907 |
|
int* oneFourList = oneFourInteractions_.getPairList(); |
908 |
|
|
909 |
< |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
957 |
< |
&nExclude, excludeList, |
958 |
< |
&nOneTwo, oneTwoList, |
959 |
< |
&nOneThree, oneThreeList, |
960 |
< |
&nOneFour, oneFourList, |
961 |
< |
&molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
962 |
< |
&fortranGlobalGroupMembership[0], &isError); |
963 |
< |
|
964 |
< |
if( isError ){ |
965 |
< |
|
966 |
< |
sprintf( painCave.errMsg, |
967 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
968 |
< |
painCave.isFatal = 1; |
969 |
< |
painCave.severity = OPENMD_ERROR; |
970 |
< |
simError(); |
971 |
< |
} |
972 |
< |
|
973 |
< |
|
974 |
< |
sprintf( checkPointMsg, |
975 |
< |
"succesfully sent the simulation information to fortran.\n"); |
976 |
< |
|
977 |
< |
errorCheckPoint(); |
978 |
< |
|
979 |
< |
// Setup number of neighbors in neighbor list if present |
980 |
< |
if (simParams_->haveNeighborListNeighbors()) { |
981 |
< |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
982 |
< |
setNeighbors(&nlistNeighbors); |
983 |
< |
} |
984 |
< |
|
985 |
< |
|
986 |
< |
} |
987 |
< |
|
988 |
< |
|
989 |
< |
void SimInfo::setupFortranParallel() { |
990 |
< |
#ifdef IS_MPI |
991 |
< |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
992 |
< |
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
993 |
< |
std::vector<int> localToGlobalCutoffGroupIndex; |
994 |
< |
SimInfo::MoleculeIterator mi; |
995 |
< |
Molecule::AtomIterator ai; |
996 |
< |
Molecule::CutoffGroupIterator ci; |
997 |
< |
Molecule* mol; |
998 |
< |
Atom* atom; |
999 |
< |
CutoffGroup* cg; |
1000 |
< |
mpiSimData parallelData; |
1001 |
< |
int isError; |
1002 |
< |
|
1003 |
< |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1004 |
< |
|
1005 |
< |
//local index(index in DataStorge) of atom is important |
1006 |
< |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
1007 |
< |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
1008 |
< |
} |
1009 |
< |
|
1010 |
< |
//local index of cutoff group is trivial, it only depends on the order of travesing |
1011 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
1012 |
< |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
1013 |
< |
} |
1014 |
< |
|
1015 |
< |
} |
1016 |
< |
|
1017 |
< |
//fill up mpiSimData struct |
1018 |
< |
parallelData.nMolGlobal = getNGlobalMolecules(); |
1019 |
< |
parallelData.nMolLocal = getNMolecules(); |
1020 |
< |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
1021 |
< |
parallelData.nAtomsLocal = getNAtoms(); |
1022 |
< |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
1023 |
< |
parallelData.nGroupsLocal = getNCutoffGroups(); |
1024 |
< |
parallelData.myNode = worldRank; |
1025 |
< |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
1026 |
< |
|
1027 |
< |
//pass mpiSimData struct and index arrays to fortran |
1028 |
< |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
1029 |
< |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
1030 |
< |
&localToGlobalCutoffGroupIndex[0], &isError); |
1031 |
< |
|
1032 |
< |
if (isError) { |
1033 |
< |
sprintf(painCave.errMsg, |
1034 |
< |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
1035 |
< |
painCave.isFatal = 1; |
1036 |
< |
simError(); |
1037 |
< |
} |
1038 |
< |
|
1039 |
< |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
1040 |
< |
errorCheckPoint(); |
1041 |
< |
|
1042 |
< |
#endif |
1043 |
< |
} |
1044 |
< |
|
1045 |
< |
void SimInfo::setupCutoff() { |
1046 |
< |
|
1047 |
< |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
1048 |
< |
|
1049 |
< |
// Check the cutoff policy |
1050 |
< |
int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
1051 |
< |
|
1052 |
< |
// Set LJ shifting bools to false |
1053 |
< |
ljsp_ = 0; |
1054 |
< |
ljsf_ = 0; |
1055 |
< |
|
1056 |
< |
std::string myPolicy; |
1057 |
< |
if (forceFieldOptions_.haveCutoffPolicy()){ |
1058 |
< |
myPolicy = forceFieldOptions_.getCutoffPolicy(); |
1059 |
< |
}else if (simParams_->haveCutoffPolicy()) { |
1060 |
< |
myPolicy = simParams_->getCutoffPolicy(); |
1061 |
< |
} |
1062 |
< |
|
1063 |
< |
if (!myPolicy.empty()){ |
1064 |
< |
toUpper(myPolicy); |
1065 |
< |
if (myPolicy == "MIX") { |
1066 |
< |
cp = MIX_CUTOFF_POLICY; |
1067 |
< |
} else { |
1068 |
< |
if (myPolicy == "MAX") { |
1069 |
< |
cp = MAX_CUTOFF_POLICY; |
1070 |
< |
} else { |
1071 |
< |
if (myPolicy == "TRADITIONAL") { |
1072 |
< |
cp = TRADITIONAL_CUTOFF_POLICY; |
1073 |
< |
} else { |
1074 |
< |
// throw error |
1075 |
< |
sprintf( painCave.errMsg, |
1076 |
< |
"SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
1077 |
< |
painCave.isFatal = 1; |
1078 |
< |
simError(); |
1079 |
< |
} |
1080 |
< |
} |
1081 |
< |
} |
1082 |
< |
} |
1083 |
< |
notifyFortranCutoffPolicy(&cp); |
1084 |
< |
|
1085 |
< |
// Check the Skin Thickness for neighborlists |
1086 |
< |
RealType skin; |
1087 |
< |
if (simParams_->haveSkinThickness()) { |
1088 |
< |
skin = simParams_->getSkinThickness(); |
1089 |
< |
notifyFortranSkinThickness(&skin); |
1090 |
< |
} |
1091 |
< |
|
1092 |
< |
// Check if the cutoff was set explicitly: |
1093 |
< |
if (simParams_->haveCutoffRadius()) { |
1094 |
< |
rcut_ = simParams_->getCutoffRadius(); |
1095 |
< |
if (simParams_->haveSwitchingRadius()) { |
1096 |
< |
rsw_ = simParams_->getSwitchingRadius(); |
1097 |
< |
} else { |
1098 |
< |
if (fInfo_.SIM_uses_Charges | |
1099 |
< |
fInfo_.SIM_uses_Dipoles | |
1100 |
< |
fInfo_.SIM_uses_RF) { |
1101 |
< |
|
1102 |
< |
rsw_ = 0.85 * rcut_; |
1103 |
< |
sprintf(painCave.errMsg, |
1104 |
< |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1105 |
< |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
1106 |
< |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1107 |
< |
painCave.isFatal = 0; |
1108 |
< |
simError(); |
1109 |
< |
} else { |
1110 |
< |
rsw_ = rcut_; |
1111 |
< |
sprintf(painCave.errMsg, |
1112 |
< |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1113 |
< |
"\tOpenMD will use the same value as the cutoffRadius.\n" |
1114 |
< |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1115 |
< |
painCave.isFatal = 0; |
1116 |
< |
simError(); |
1117 |
< |
} |
1118 |
< |
} |
1119 |
< |
|
1120 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
1121 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1122 |
< |
toUpper(myMethod); |
1123 |
< |
|
1124 |
< |
if (myMethod == "SHIFTED_POTENTIAL") { |
1125 |
< |
ljsp_ = 1; |
1126 |
< |
} else if (myMethod == "SHIFTED_FORCE") { |
1127 |
< |
ljsf_ = 1; |
1128 |
< |
} |
1129 |
< |
} |
1130 |
< |
|
1131 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1132 |
< |
|
1133 |
< |
} else { |
1134 |
< |
|
1135 |
< |
// For electrostatic atoms, we'll assume a large safe value: |
1136 |
< |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
1137 |
< |
sprintf(painCave.errMsg, |
1138 |
< |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
1139 |
< |
"\tOpenMD will use a default value of 15.0 angstroms" |
1140 |
< |
"\tfor the cutoffRadius.\n"); |
1141 |
< |
painCave.isFatal = 0; |
1142 |
< |
simError(); |
1143 |
< |
rcut_ = 15.0; |
1144 |
< |
|
1145 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
1146 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1147 |
< |
toUpper(myMethod); |
1148 |
< |
|
1149 |
< |
// For the time being, we're tethering the LJ shifted behavior to the |
1150 |
< |
// electrostaticSummationMethod keyword options |
1151 |
< |
if (myMethod == "SHIFTED_POTENTIAL") { |
1152 |
< |
ljsp_ = 1; |
1153 |
< |
} else if (myMethod == "SHIFTED_FORCE") { |
1154 |
< |
ljsf_ = 1; |
1155 |
< |
} |
1156 |
< |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1157 |
< |
if (simParams_->haveSwitchingRadius()){ |
1158 |
< |
sprintf(painCave.errMsg, |
1159 |
< |
"SimInfo Warning: A value was set for the switchingRadius\n" |
1160 |
< |
"\teven though the electrostaticSummationMethod was\n" |
1161 |
< |
"\tset to %s\n", myMethod.c_str()); |
1162 |
< |
painCave.isFatal = 1; |
1163 |
< |
simError(); |
1164 |
< |
} |
1165 |
< |
} |
1166 |
< |
} |
1167 |
< |
|
1168 |
< |
if (simParams_->haveSwitchingRadius()){ |
1169 |
< |
rsw_ = simParams_->getSwitchingRadius(); |
1170 |
< |
} else { |
1171 |
< |
sprintf(painCave.errMsg, |
1172 |
< |
"SimCreator Warning: No value was set for switchingRadius.\n" |
1173 |
< |
"\tOpenMD will use a default value of\n" |
1174 |
< |
"\t0.85 * cutoffRadius for the switchingRadius\n"); |
1175 |
< |
painCave.isFatal = 0; |
1176 |
< |
simError(); |
1177 |
< |
rsw_ = 0.85 * rcut_; |
1178 |
< |
} |
1179 |
< |
|
1180 |
< |
Electrostatic::setElectrostaticCutoffRadius(rcut_, rsw_); |
1181 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1182 |
< |
|
1183 |
< |
} else { |
1184 |
< |
// We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1185 |
< |
// We'll punt and let fortran figure out the cutoffs later. |
1186 |
< |
|
1187 |
< |
notifyFortranYouAreOnYourOwn(); |
1188 |
< |
|
1189 |
< |
} |
1190 |
< |
} |
1191 |
< |
} |
1192 |
< |
|
1193 |
< |
void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
1194 |
< |
|
1195 |
< |
int errorOut; |
1196 |
< |
ElectrostaticSummationMethod esm = NONE; |
1197 |
< |
ElectrostaticScreeningMethod sm = UNDAMPED; |
1198 |
< |
RealType alphaVal; |
1199 |
< |
RealType dielectric; |
1200 |
< |
|
1201 |
< |
errorOut = isError; |
1202 |
< |
|
1203 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
1204 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1205 |
< |
toUpper(myMethod); |
1206 |
< |
if (myMethod == "NONE") { |
1207 |
< |
esm = NONE; |
1208 |
< |
} else { |
1209 |
< |
if (myMethod == "SWITCHING_FUNCTION") { |
1210 |
< |
esm = SWITCHING_FUNCTION; |
1211 |
< |
} else { |
1212 |
< |
if (myMethod == "SHIFTED_POTENTIAL") { |
1213 |
< |
esm = SHIFTED_POTENTIAL; |
1214 |
< |
} else { |
1215 |
< |
if (myMethod == "SHIFTED_FORCE") { |
1216 |
< |
esm = SHIFTED_FORCE; |
1217 |
< |
} else { |
1218 |
< |
if (myMethod == "REACTION_FIELD") { |
1219 |
< |
esm = REACTION_FIELD; |
1220 |
< |
dielectric = simParams_->getDielectric(); |
1221 |
< |
if (!simParams_->haveDielectric()) { |
1222 |
< |
// throw warning |
1223 |
< |
sprintf( painCave.errMsg, |
1224 |
< |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
1225 |
< |
"\tA default value of %f will be used for the dielectric.\n", dielectric); |
1226 |
< |
painCave.isFatal = 0; |
1227 |
< |
simError(); |
1228 |
< |
} |
1229 |
< |
} else { |
1230 |
< |
// throw error |
1231 |
< |
sprintf( painCave.errMsg, |
1232 |
< |
"SimInfo error: Unknown electrostaticSummationMethod.\n" |
1233 |
< |
"\t(Input file specified %s .)\n" |
1234 |
< |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
1235 |
< |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
1236 |
< |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
1237 |
< |
painCave.isFatal = 1; |
1238 |
< |
simError(); |
1239 |
< |
} |
1240 |
< |
} |
1241 |
< |
} |
1242 |
< |
} |
1243 |
< |
} |
1244 |
< |
} |
1245 |
< |
|
1246 |
< |
if (simParams_->haveElectrostaticScreeningMethod()) { |
1247 |
< |
std::string myScreen = simParams_->getElectrostaticScreeningMethod(); |
1248 |
< |
toUpper(myScreen); |
1249 |
< |
if (myScreen == "UNDAMPED") { |
1250 |
< |
sm = UNDAMPED; |
1251 |
< |
} else { |
1252 |
< |
if (myScreen == "DAMPED") { |
1253 |
< |
sm = DAMPED; |
1254 |
< |
if (!simParams_->haveDampingAlpha()) { |
1255 |
< |
// first set a cutoff dependent alpha value |
1256 |
< |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
1257 |
< |
alphaVal = 0.5125 - rcut_* 0.025; |
1258 |
< |
// for values rcut > 20.5, alpha is zero |
1259 |
< |
if (alphaVal < 0) alphaVal = 0; |
1260 |
< |
|
1261 |
< |
// throw warning |
1262 |
< |
sprintf( painCave.errMsg, |
1263 |
< |
"SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1264 |
< |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); |
1265 |
< |
painCave.isFatal = 0; |
1266 |
< |
simError(); |
1267 |
< |
} else { |
1268 |
< |
alphaVal = simParams_->getDampingAlpha(); |
1269 |
< |
} |
1270 |
< |
|
1271 |
< |
} else { |
1272 |
< |
// throw error |
1273 |
< |
sprintf( painCave.errMsg, |
1274 |
< |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
1275 |
< |
"\t(Input file specified %s .)\n" |
1276 |
< |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
1277 |
< |
"or \"damped\".\n", myScreen.c_str() ); |
1278 |
< |
painCave.isFatal = 1; |
1279 |
< |
simError(); |
1280 |
< |
} |
1281 |
< |
} |
1282 |
< |
} |
1283 |
< |
|
1284 |
< |
|
1285 |
< |
Electrostatic::setElectrostaticSummationMethod( esm ); |
1286 |
< |
Electrostatic::setElectrostaticScreeningMethod( sm ); |
1287 |
< |
Electrostatic::setDampingAlpha( alphaVal ); |
1288 |
< |
Electrostatic::setReactionFieldDielectric( dielectric ); |
1289 |
< |
initFortranFF( &errorOut ); |
909 |
> |
topologyDone_ = true; |
910 |
|
} |
911 |
|
|
1292 |
– |
void SimInfo::setupSwitchingFunction() { |
1293 |
– |
int ft = CUBIC; |
1294 |
– |
|
1295 |
– |
if (simParams_->haveSwitchingFunctionType()) { |
1296 |
– |
std::string funcType = simParams_->getSwitchingFunctionType(); |
1297 |
– |
toUpper(funcType); |
1298 |
– |
if (funcType == "CUBIC") { |
1299 |
– |
ft = CUBIC; |
1300 |
– |
} else { |
1301 |
– |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1302 |
– |
ft = FIFTH_ORDER_POLY; |
1303 |
– |
} else { |
1304 |
– |
// throw error |
1305 |
– |
sprintf( painCave.errMsg, |
1306 |
– |
"SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1307 |
– |
painCave.isFatal = 1; |
1308 |
– |
simError(); |
1309 |
– |
} |
1310 |
– |
} |
1311 |
– |
} |
1312 |
– |
|
1313 |
– |
// send switching function notification to switcheroo |
1314 |
– |
setFunctionType(&ft); |
1315 |
– |
|
1316 |
– |
} |
1317 |
– |
|
1318 |
– |
void SimInfo::setupAccumulateBoxDipole() { |
1319 |
– |
|
1320 |
– |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1321 |
– |
if ( simParams_->haveAccumulateBoxDipole() ) |
1322 |
– |
if ( simParams_->getAccumulateBoxDipole() ) { |
1323 |
– |
setAccumulateBoxDipole(); |
1324 |
– |
calcBoxDipole_ = true; |
1325 |
– |
} |
1326 |
– |
|
1327 |
– |
} |
1328 |
– |
|
912 |
|
void SimInfo::addProperty(GenericData* genData) { |
913 |
|
properties_.addProperty(genData); |
914 |
|
} |
915 |
|
|
916 |
< |
void SimInfo::removeProperty(const std::string& propName) { |
916 |
> |
void SimInfo::removeProperty(const string& propName) { |
917 |
|
properties_.removeProperty(propName); |
918 |
|
} |
919 |
|
|
921 |
|
properties_.clearProperties(); |
922 |
|
} |
923 |
|
|
924 |
< |
std::vector<std::string> SimInfo::getPropertyNames() { |
924 |
> |
vector<string> SimInfo::getPropertyNames() { |
925 |
|
return properties_.getPropertyNames(); |
926 |
|
} |
927 |
|
|
928 |
< |
std::vector<GenericData*> SimInfo::getProperties() { |
928 |
> |
vector<GenericData*> SimInfo::getProperties() { |
929 |
|
return properties_.getProperties(); |
930 |
|
} |
931 |
|
|
932 |
< |
GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
932 |
> |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
933 |
|
return properties_.getPropertyByName(propName); |
934 |
|
} |
935 |
|
|
943 |
|
Molecule* mol; |
944 |
|
RigidBody* rb; |
945 |
|
Atom* atom; |
946 |
+ |
CutoffGroup* cg; |
947 |
|
SimInfo::MoleculeIterator mi; |
948 |
|
Molecule::RigidBodyIterator rbIter; |
949 |
< |
Molecule::AtomIterator atomIter;; |
949 |
> |
Molecule::AtomIterator atomIter; |
950 |
> |
Molecule::CutoffGroupIterator cgIter; |
951 |
|
|
952 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
953 |
|
|
958 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
959 |
|
rb->setSnapshotManager(sman_); |
960 |
|
} |
961 |
+ |
|
962 |
+ |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
963 |
+ |
cg->setSnapshotManager(sman_); |
964 |
+ |
} |
965 |
|
} |
966 |
|
|
967 |
|
} |
1018 |
|
|
1019 |
|
} |
1020 |
|
|
1021 |
< |
std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1021 |
> |
ostream& operator <<(ostream& o, SimInfo& info) { |
1022 |
|
|
1023 |
|
return o; |
1024 |
|
} |
1061 |
|
|
1062 |
|
|
1063 |
|
[ Ixx -Ixy -Ixz ] |
1064 |
< |
J =| -Iyx Iyy -Iyz | |
1064 |
> |
J =| -Iyx Iyy -Iyz | |
1065 |
|
[ -Izx -Iyz Izz ] |
1066 |
|
*/ |
1067 |
|
|
1168 |
|
return IOIndexToIntegrableObject.at(index); |
1169 |
|
} |
1170 |
|
|
1171 |
< |
void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { |
1171 |
> |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1172 |
|
IOIndexToIntegrableObject= v; |
1173 |
|
} |
1174 |
|
|
1210 |
|
return; |
1211 |
|
} |
1212 |
|
/* |
1213 |
< |
void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { |
1213 |
> |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1214 |
|
assert( v.size() == nAtoms_ + nRigidBodies_); |
1215 |
|
sdByGlobalIndex_ = v; |
1216 |
|
} |
1220 |
|
return sdByGlobalIndex_.at(index); |
1221 |
|
} |
1222 |
|
*/ |
1223 |
+ |
int SimInfo::getNGlobalConstraints() { |
1224 |
+ |
int nGlobalConstraints; |
1225 |
+ |
#ifdef IS_MPI |
1226 |
+ |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1227 |
+ |
MPI_COMM_WORLD); |
1228 |
+ |
#else |
1229 |
+ |
nGlobalConstraints = nConstraints_; |
1230 |
+ |
#endif |
1231 |
+ |
return nGlobalConstraints; |
1232 |
+ |
} |
1233 |
+ |
|
1234 |
|
}//end namespace OpenMD |
1235 |
|
|