ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1569 by gezelter, Thu May 26 13:55:04 2011 UTC vs.
Revision 1764 by gezelter, Tue Jul 3 18:32:27 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 58 | Line 59
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
62 > #include "brains/ForceField.hpp"
63   #include "nonbonded/SwitchingFunction.hpp"
64 + #ifdef IS_MPI
65 + #include <mpi.h>
66 + #endif
67  
68   using namespace std;
69   namespace OpenMD {
# Line 68 | Line 72 | namespace OpenMD {
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), topologyDone_(false),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79      calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81      MoleculeStamp* molStamp;
# Line 125 | Line 129 | namespace OpenMD {
129      //equal to the total number of atoms minus number of atoms belong to
130      //cutoff group defined in meta-data file plus the number of cutoff
131      //groups defined in meta-data file
128    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
129    std::cerr << "nCA = " << nCutoffAtoms << "\n";
130    std::cerr << "nG = " << nGroups << "\n";
132  
133      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
133
134    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
134      
135      //every free atom (atom does not belong to rigid bodies) is an
136      //integrable object therefore the total number of integrable objects
# Line 226 | Line 225 | namespace OpenMD {
225  
226  
227    void SimInfo::calcNdf() {
228 <    int ndf_local;
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230      vector<StuntDouble*>::iterator j;
231 +    vector<Atom*>::iterator k;
232 +
233      Molecule* mol;
234      StuntDouble* integrableObject;
235 +    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
# Line 247 | Line 250 | namespace OpenMD {
250              ndf_local += 3;
251            }
252          }
250            
253        }
254 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 +           atom = mol->nextFluctuatingCharge(k)) {
256 +        if (atom->isFluctuatingCharge()) {
257 +          nfq_local++;
258 +        }
259 +      }
260      }
261      
262 +    ndfLocal_ = ndf_local;
263 +
264      // n_constraints is local, so subtract them on each processor
265      ndf_local -= nConstraints_;
266  
267   #ifdef IS_MPI
268      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
269 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
270   #else
271      ndf_ = ndf_local;
272 +    nGlobalFluctuatingCharges_ = nfq_local;
273   #endif
274  
275      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 274 | Line 286 | namespace OpenMD {
286   #endif
287      return fdf_;
288    }
289 +  
290 +  unsigned int SimInfo::getNLocalCutoffGroups(){
291 +    int nLocalCutoffAtoms = 0;
292 +    Molecule* mol;
293 +    MoleculeIterator mi;
294 +    CutoffGroup* cg;
295 +    Molecule::CutoffGroupIterator ci;
296      
297 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
298 +      
299 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
300 +           cg = mol->nextCutoffGroup(ci)) {
301 +        nLocalCutoffAtoms += cg->getNumAtom();
302 +        
303 +      }        
304 +    }
305 +    
306 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
307 +  }
308 +    
309    void SimInfo::calcNdfRaw() {
310      int ndfRaw_local;
311  
# Line 680 | Line 711 | namespace OpenMD {
711      Atom* atom;
712      set<AtomType*> atomTypes;
713      
714 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
715 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
714 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
715 >      for(atom = mol->beginAtom(ai); atom != NULL;
716 >          atom = mol->nextAtom(ai)) {
717          atomTypes.insert(atom->getAtomType());
718        }      
719      }    
720 <
720 >    
721   #ifdef IS_MPI
722  
723      // loop over the found atom types on this processor, and add their
724      // numerical idents to a vector:
725 <
725 >    
726      vector<int> foundTypes;
727      set<AtomType*>::iterator i;
728      for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
# Line 699 | Line 731 | namespace OpenMD {
731      // count_local holds the number of found types on this processor
732      int count_local = foundTypes.size();
733  
702    // count holds the total number of found types on all processors
703    // (some will be redundant with the ones found locally):
704    int count;
705    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
706
707    // create a vector to hold the globally found types, and resize it:
708    vector<int> ftGlobal;
709    ftGlobal.resize(count);
710    vector<int> counts;
711
734      int nproc = MPI::COMM_WORLD.Get_size();
713    counts.resize(nproc);
714    vector<int> disps;
715    disps.resize(nproc);
735  
736 <    // now spray out the foundTypes to all the other processors:
736 >    // we need arrays to hold the counts and displacement vectors for
737 >    // all processors
738 >    vector<int> counts(nproc, 0);
739 >    vector<int> disps(nproc, 0);
740 >
741 >    // fill the counts array
742 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
743 >                              1, MPI::INT);
744 >  
745 >    // use the processor counts to compute the displacement array
746 >    disps[0] = 0;    
747 >    int totalCount = counts[0];
748 >    for (int iproc = 1; iproc < nproc; iproc++) {
749 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
750 >      totalCount += counts[iproc];
751 >    }
752 >
753 >    // we need a (possibly redundant) set of all found types:
754 >    vector<int> ftGlobal(totalCount);
755      
756 +    // now spray out the foundTypes to all the other processors:    
757      MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
758 <                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
758 >                               &ftGlobal[0], &counts[0], &disps[0],
759 >                               MPI::INT);
760  
761 +    vector<int>::iterator j;
762 +
763      // foundIdents is a stl set, so inserting an already found ident
764      // will have no effect.
765      set<int> foundIdents;
766 <    vector<int>::iterator j;
766 >
767      for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
768        foundIdents.insert((*j));
769      
770      // now iterate over the foundIdents and get the actual atom types
771      // that correspond to these:
772      set<int>::iterator it;
773 <    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
773 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
774        atomTypes.insert( forceField_->getAtomType((*it)) );
775  
776   #endif
777 <    
777 >
778      return atomTypes;        
779    }
780  
# Line 745 | Line 786 | namespace OpenMD {
786        if ( simParams_->getAccumulateBoxDipole() ) {
787          calcBoxDipole_ = true;      
788        }
789 <
789 >    
790      set<AtomType*>::iterator i;
791      set<AtomType*> atomTypes;
792      atomTypes = getSimulatedAtomTypes();    
793      int usesElectrostatic = 0;
794      int usesMetallic = 0;
795      int usesDirectional = 0;
796 +    int usesFluctuatingCharges =  0;
797      //loop over all of the atom types
798      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
799        usesElectrostatic |= (*i)->isElectrostatic();
800        usesMetallic |= (*i)->isMetal();
801        usesDirectional |= (*i)->isDirectional();
802 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
803      }
804  
805   #ifdef IS_MPI    
806      int temp;
807      temp = usesDirectional;
808      MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
809 <
809 >    
810      temp = usesMetallic;
811      MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
812 <
812 >    
813      temp = usesElectrostatic;
814      MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
815 +
816 +    temp = usesFluctuatingCharges;
817 +    MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
818 + #else
819 +
820 +    usesDirectionalAtoms_ = usesDirectional;
821 +    usesMetallicAtoms_ = usesMetallic;
822 +    usesElectrostaticAtoms_ = usesElectrostatic;
823 +    usesFluctuatingCharges_ = usesFluctuatingCharges;
824 +
825   #endif
826 +    
827 +    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
828 +    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
829 +    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
830    }
831  
832  
# Line 824 | Line 881 | namespace OpenMD {
881      Atom* atom;
882      RealType totalMass;
883  
884 <    //to avoid memory reallocation, reserve enough space for massFactors_
884 >    /**
885 >     * The mass factor is the relative mass of an atom to the total
886 >     * mass of the cutoff group it belongs to.  By default, all atoms
887 >     * are their own cutoff groups, and therefore have mass factors of
888 >     * 1.  We need some special handling for massless atoms, which
889 >     * will be treated as carrying the entire mass of the cutoff
890 >     * group.
891 >     */
892      massFactors_.clear();
893 <    massFactors_.reserve(getNCutoffGroups());
893 >    massFactors_.resize(getNAtoms(), 1.0);
894      
895      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
896        for (cg = mol->beginCutoffGroup(ci); cg != NULL;
# Line 835 | Line 899 | namespace OpenMD {
899          totalMass = cg->getMass();
900          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
901            // Check for massless groups - set mfact to 1 if true
902 <          if (totalMass != 0)
903 <            massFactors_.push_back(atom->getMass()/totalMass);
902 >          if (totalMass != 0)
903 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
904            else
905 <            massFactors_.push_back( 1.0 );
905 >            massFactors_[atom->getLocalIndex()] = 1.0;
906          }
907        }      
908      }
# Line 865 | Line 929 | namespace OpenMD {
929      int* oneThreeList = oneThreeInteractions_.getPairList();
930      int* oneFourList = oneFourInteractions_.getPairList();
931  
868    //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
869    //               &nExclude, excludeList,
870    //               &nOneTwo, oneTwoList,
871    //               &nOneThree, oneThreeList,
872    //               &nOneFour, oneFourList,
873    //               &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
874    //               &fortranGlobalGroupMembership[0], &isError);
875    
932      topologyDone_ = true;
933    }
934  
# Line 933 | Line 989 | namespace OpenMD {
989      
990    }
991  
936  Vector3d SimInfo::getComVel(){
937    SimInfo::MoleculeIterator i;
938    Molecule* mol;
992  
940    Vector3d comVel(0.0);
941    RealType totalMass = 0.0;
942    
943
944    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
945      RealType mass = mol->getMass();
946      totalMass += mass;
947      comVel += mass * mol->getComVel();
948    }  
949
950 #ifdef IS_MPI
951    RealType tmpMass = totalMass;
952    Vector3d tmpComVel(comVel);    
953    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
954    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
955 #endif
956
957    comVel /= totalMass;
958
959    return comVel;
960  }
961
962  Vector3d SimInfo::getCom(){
963    SimInfo::MoleculeIterator i;
964    Molecule* mol;
965
966    Vector3d com(0.0);
967    RealType totalMass = 0.0;
968    
969    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
970      RealType mass = mol->getMass();
971      totalMass += mass;
972      com += mass * mol->getCom();
973    }  
974
975 #ifdef IS_MPI
976    RealType tmpMass = totalMass;
977    Vector3d tmpCom(com);    
978    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
979    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
980 #endif
981
982    com /= totalMass;
983
984    return com;
985
986  }        
987
993    ostream& operator <<(ostream& o, SimInfo& info) {
994  
995      return o;
996    }
997    
998 <  
994 <   /*
995 <   Returns center of mass and center of mass velocity in one function call.
996 <   */
997 <  
998 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
999 <      SimInfo::MoleculeIterator i;
1000 <      Molecule* mol;
1001 <      
1002 <    
1003 <      RealType totalMass = 0.0;
1004 <    
1005 <
1006 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1007 <         RealType mass = mol->getMass();
1008 <         totalMass += mass;
1009 <         com += mass * mol->getCom();
1010 <         comVel += mass * mol->getComVel();          
1011 <      }  
1012 <      
1013 < #ifdef IS_MPI
1014 <      RealType tmpMass = totalMass;
1015 <      Vector3d tmpCom(com);  
1016 <      Vector3d tmpComVel(comVel);
1017 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1018 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1019 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1020 < #endif
1021 <      
1022 <      com /= totalMass;
1023 <      comVel /= totalMass;
1024 <   }        
1025 <  
1026 <   /*
1027 <   Return intertia tensor for entire system and angular momentum Vector.
1028 <
1029 <
1030 <       [  Ixx -Ixy  -Ixz ]
1031 <    J =| -Iyx  Iyy  -Iyz |
1032 <       [ -Izx -Iyz   Izz ]
1033 <    */
1034 <
1035 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1036 <      
1037 <
1038 <      RealType xx = 0.0;
1039 <      RealType yy = 0.0;
1040 <      RealType zz = 0.0;
1041 <      RealType xy = 0.0;
1042 <      RealType xz = 0.0;
1043 <      RealType yz = 0.0;
1044 <      Vector3d com(0.0);
1045 <      Vector3d comVel(0.0);
1046 <      
1047 <      getComAll(com, comVel);
1048 <      
1049 <      SimInfo::MoleculeIterator i;
1050 <      Molecule* mol;
1051 <      
1052 <      Vector3d thisq(0.0);
1053 <      Vector3d thisv(0.0);
1054 <
1055 <      RealType thisMass = 0.0;
1056 <    
1057 <      
1058 <      
1059 <  
1060 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1061 <        
1062 <         thisq = mol->getCom()-com;
1063 <         thisv = mol->getComVel()-comVel;
1064 <         thisMass = mol->getMass();
1065 <         // Compute moment of intertia coefficients.
1066 <         xx += thisq[0]*thisq[0]*thisMass;
1067 <         yy += thisq[1]*thisq[1]*thisMass;
1068 <         zz += thisq[2]*thisq[2]*thisMass;
1069 <        
1070 <         // compute products of intertia
1071 <         xy += thisq[0]*thisq[1]*thisMass;
1072 <         xz += thisq[0]*thisq[2]*thisMass;
1073 <         yz += thisq[1]*thisq[2]*thisMass;
1074 <            
1075 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1076 <            
1077 <      }  
1078 <      
1079 <      
1080 <      inertiaTensor(0,0) = yy + zz;
1081 <      inertiaTensor(0,1) = -xy;
1082 <      inertiaTensor(0,2) = -xz;
1083 <      inertiaTensor(1,0) = -xy;
1084 <      inertiaTensor(1,1) = xx + zz;
1085 <      inertiaTensor(1,2) = -yz;
1086 <      inertiaTensor(2,0) = -xz;
1087 <      inertiaTensor(2,1) = -yz;
1088 <      inertiaTensor(2,2) = xx + yy;
1089 <      
1090 < #ifdef IS_MPI
1091 <      Mat3x3d tmpI(inertiaTensor);
1092 <      Vector3d tmpAngMom;
1093 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1094 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1095 < #endif
1096 <              
1097 <      return;
1098 <   }
1099 <
1100 <   //Returns the angular momentum of the system
1101 <   Vector3d SimInfo::getAngularMomentum(){
1102 <      
1103 <      Vector3d com(0.0);
1104 <      Vector3d comVel(0.0);
1105 <      Vector3d angularMomentum(0.0);
1106 <      
1107 <      getComAll(com,comVel);
1108 <      
1109 <      SimInfo::MoleculeIterator i;
1110 <      Molecule* mol;
1111 <      
1112 <      Vector3d thisr(0.0);
1113 <      Vector3d thisp(0.0);
1114 <      
1115 <      RealType thisMass;
1116 <      
1117 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1118 <        thisMass = mol->getMass();
1119 <        thisr = mol->getCom()-com;
1120 <        thisp = (mol->getComVel()-comVel)*thisMass;
1121 <        
1122 <        angularMomentum += cross( thisr, thisp );
1123 <        
1124 <      }  
1125 <      
1126 < #ifdef IS_MPI
1127 <      Vector3d tmpAngMom;
1128 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1129 < #endif
1130 <      
1131 <      return angularMomentum;
1132 <   }
1133 <  
998 >  
999    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1000      return IOIndexToIntegrableObject.at(index);
1001    }
# Line 1138 | Line 1003 | namespace OpenMD {
1003    void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1004      IOIndexToIntegrableObject= v;
1005    }
1141
1142  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1143     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1144     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1145     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1146  */
1147  void SimInfo::getGyrationalVolume(RealType &volume){
1148    Mat3x3d intTensor;
1149    RealType det;
1150    Vector3d dummyAngMom;
1151    RealType sysconstants;
1152    RealType geomCnst;
1153
1154    geomCnst = 3.0/2.0;
1155    /* Get the inertial tensor and angular momentum for free*/
1156    getInertiaTensor(intTensor,dummyAngMom);
1157    
1158    det = intTensor.determinant();
1159    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1160    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1161    return;
1162  }
1163
1164  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1165    Mat3x3d intTensor;
1166    Vector3d dummyAngMom;
1167    RealType sysconstants;
1168    RealType geomCnst;
1169
1170    geomCnst = 3.0/2.0;
1171    /* Get the inertial tensor and angular momentum for free*/
1172    getInertiaTensor(intTensor,dummyAngMom);
1173    
1174    detI = intTensor.determinant();
1175    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1176    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1177    return;
1178  }
1006   /*
1007     void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1008        assert( v.size() == nAtoms_ + nRigidBodies_);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines