ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1532 by gezelter, Wed Dec 29 19:59:21 2010 UTC vs.
Revision 1779 by gezelter, Mon Aug 20 17:51:39 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/doForces_interface.h"
58 #include "UseTheForce/DarkSide/neighborLists_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
62 > #include "brains/ForceField.hpp"
63   #include "nonbonded/SwitchingFunction.hpp"
65
66
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
70 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68   using namespace std;
69   namespace OpenMD {
# Line 76 | Line 72 | namespace OpenMD {
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79      calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81      MoleculeStamp* molStamp;
# Line 92 | Line 88 | namespace OpenMD {
88      
89      vector<Component*> components = simParams->getComponents();
90      
91 <    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93        molStamp = (*i)->getMoleculeStamp();
94        nMolWithSameStamp = (*i)->getNMol();
95        
# Line 133 | Line 130 | namespace OpenMD {
130      //equal to the total number of atoms minus number of atoms belong to
131      //cutoff group defined in meta-data file plus the number of cutoff
132      //groups defined in meta-data file
133 +
134      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135      
136      //every free atom (atom does not belong to rigid bodies) is an
# Line 228 | Line 226 | namespace OpenMD {
226  
227  
228    void SimInfo::calcNdf() {
229 <    int ndf_local;
229 >    int ndf_local, nfq_local;
230      MoleculeIterator i;
231      vector<StuntDouble*>::iterator j;
232 +    vector<Atom*>::iterator k;
233 +
234      Molecule* mol;
235 <    StuntDouble* integrableObject;
235 >    StuntDouble* sd;
236 >    Atom* atom;
237  
238      ndf_local = 0;
239 +    nfq_local = 0;
240      
241      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
242 <      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
243 <           integrableObject = mol->nextIntegrableObject(j)) {
242 >
243 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
244 >           sd = mol->nextIntegrableObject(j)) {
245  
246          ndf_local += 3;
247  
248 <        if (integrableObject->isDirectional()) {
249 <          if (integrableObject->isLinear()) {
248 >        if (sd->isDirectional()) {
249 >          if (sd->isLinear()) {
250              ndf_local += 2;
251            } else {
252              ndf_local += 3;
253            }
254          }
252            
255        }
256 +
257 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
258 +           atom = mol->nextFluctuatingCharge(k)) {
259 +        if (atom->isFluctuatingCharge()) {
260 +          nfq_local++;
261 +        }
262 +      }
263      }
264      
265 +    ndfLocal_ = ndf_local;
266 +
267      // n_constraints is local, so subtract them on each processor
268      ndf_local -= nConstraints_;
269  
270   #ifdef IS_MPI
271      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
272 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
273   #else
274      ndf_ = ndf_local;
275 +    nGlobalFluctuatingCharges_ = nfq_local;
276   #endif
277  
278      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 275 | Line 288 | namespace OpenMD {
288      fdf_ = fdf_local;
289   #endif
290      return fdf_;
291 +  }
292 +  
293 +  unsigned int SimInfo::getNLocalCutoffGroups(){
294 +    int nLocalCutoffAtoms = 0;
295 +    Molecule* mol;
296 +    MoleculeIterator mi;
297 +    CutoffGroup* cg;
298 +    Molecule::CutoffGroupIterator ci;
299 +    
300 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
301 +      
302 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
303 +           cg = mol->nextCutoffGroup(ci)) {
304 +        nLocalCutoffAtoms += cg->getNumAtom();
305 +        
306 +      }        
307 +    }
308 +    
309 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
310    }
311      
312    void SimInfo::calcNdfRaw() {
# Line 283 | Line 315 | namespace OpenMD {
315      MoleculeIterator i;
316      vector<StuntDouble*>::iterator j;
317      Molecule* mol;
318 <    StuntDouble* integrableObject;
318 >    StuntDouble* sd;
319  
320      // Raw degrees of freedom that we have to set
321      ndfRaw_local = 0;
322      
323      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
292      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
293           integrableObject = mol->nextIntegrableObject(j)) {
324  
325 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
326 +           sd = mol->nextIntegrableObject(j)) {
327 +
328          ndfRaw_local += 3;
329  
330 <        if (integrableObject->isDirectional()) {
331 <          if (integrableObject->isLinear()) {
330 >        if (sd->isDirectional()) {
331 >          if (sd->isLinear()) {
332              ndfRaw_local += 2;
333            } else {
334              ndfRaw_local += 3;
# Line 355 | Line 388 | namespace OpenMD {
388      Molecule::RigidBodyIterator rbIter;
389      RigidBody* rb;
390      Molecule::IntegrableObjectIterator ii;
391 <    StuntDouble* integrableObject;
391 >    StuntDouble* sd;
392      
393 <    for (integrableObject = mol->beginIntegrableObject(ii);
394 <         integrableObject != NULL;
362 <         integrableObject = mol->nextIntegrableObject(ii)) {
393 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
394 >         sd = mol->nextIntegrableObject(ii)) {
395        
396 <      if (integrableObject->isRigidBody()) {
397 <        rb = static_cast<RigidBody*>(integrableObject);
396 >      if (sd->isRigidBody()) {
397 >        rb = static_cast<RigidBody*>(sd);
398          vector<Atom*> atoms = rb->getAtoms();
399          set<int> rigidAtoms;
400          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 373 | Line 405 | namespace OpenMD {
405          }      
406        } else {
407          set<int> oneAtomSet;
408 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
409 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
408 >        oneAtomSet.insert(sd->getGlobalIndex());
409 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
410        }
411      }  
412            
# Line 508 | Line 540 | namespace OpenMD {
540      Molecule::RigidBodyIterator rbIter;
541      RigidBody* rb;
542      Molecule::IntegrableObjectIterator ii;
543 <    StuntDouble* integrableObject;
543 >    StuntDouble* sd;
544      
545 <    for (integrableObject = mol->beginIntegrableObject(ii);
546 <         integrableObject != NULL;
515 <         integrableObject = mol->nextIntegrableObject(ii)) {
545 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
546 >         sd = mol->nextIntegrableObject(ii)) {
547        
548 <      if (integrableObject->isRigidBody()) {
549 <        rb = static_cast<RigidBody*>(integrableObject);
548 >      if (sd->isRigidBody()) {
549 >        rb = static_cast<RigidBody*>(sd);
550          vector<Atom*> atoms = rb->getAtoms();
551          set<int> rigidAtoms;
552          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 526 | Line 557 | namespace OpenMD {
557          }      
558        } else {
559          set<int> oneAtomSet;
560 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
561 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
560 >        oneAtomSet.insert(sd->getGlobalIndex());
561 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
562        }
563      }  
564  
# Line 657 | Line 688 | namespace OpenMD {
688    /**
689     * update
690     *
691 <   *  Performs the global checks and variable settings after the objects have been
692 <   *  created.
691 >   *  Performs the global checks and variable settings after the
692 >   *  objects have been created.
693     *
694     */
695 <  void SimInfo::update() {
665 <    
695 >  void SimInfo::update() {  
696      setupSimVariables();
667    setupCutoffs();
668    setupSwitching();
669    setupElectrostatics();
670    setupNeighborlists();
671
672 #ifdef IS_MPI
673    setupFortranParallel();
674 #endif
675    setupFortranSim();
676    fortranInitialized_ = true;
677
697      calcNdf();
698      calcNdfRaw();
699      calcNdfTrans();
700    }
701    
702 +  /**
703 +   * getSimulatedAtomTypes
704 +   *
705 +   * Returns an STL set of AtomType* that are actually present in this
706 +   * simulation.  Must query all processors to assemble this information.
707 +   *
708 +   */
709    set<AtomType*> SimInfo::getSimulatedAtomTypes() {
710      SimInfo::MoleculeIterator mi;
711      Molecule* mol;
# Line 687 | Line 713 | namespace OpenMD {
713      Atom* atom;
714      set<AtomType*> atomTypes;
715      
716 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
717 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
716 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
717 >      for(atom = mol->beginAtom(ai); atom != NULL;
718 >          atom = mol->nextAtom(ai)) {
719          atomTypes.insert(atom->getAtomType());
720        }      
721      }    
722 <    return atomTypes;        
723 <  }
722 >    
723 > #ifdef IS_MPI
724  
725 <  /**
726 <   * setupCutoffs
700 <   *
701 <   * Sets the values of cutoffRadius and cutoffMethod
702 <   *
703 <   * cutoffRadius : realType
704 <   *  If the cutoffRadius was explicitly set, use that value.
705 <   *  If the cutoffRadius was not explicitly set:
706 <   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
707 <   *      No electrostatic atoms?  Poll the atom types present in the
708 <   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
709 <   *      Use the maximum suggested value that was found.
710 <   *
711 <   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
712 <   *      If cutoffMethod was explicitly set, use that choice.
713 <   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
714 <   */
715 <  void SimInfo::setupCutoffs() {
725 >    // loop over the found atom types on this processor, and add their
726 >    // numerical idents to a vector:
727      
728 <    if (simParams_->haveCutoffRadius()) {
729 <      cutoffRadius_ = simParams_->getCutoffRadius();
730 <    } else {      
731 <      if (usesElectrostaticAtoms_) {
721 <        sprintf(painCave.errMsg,
722 <                "SimInfo: No value was set for the cutoffRadius.\n"
723 <                "\tOpenMD will use a default value of 12.0 angstroms"
724 <                "\tfor the cutoffRadius.\n");
725 <        painCave.isFatal = 0;
726 <        painCave.severity = OPENMD_INFO;
727 <        simError();
728 <        cutoffRadius_ = 12.0;
729 <      } else {
730 <        RealType thisCut;
731 <        set<AtomType*>::iterator i;
732 <        set<AtomType*> atomTypes;
733 <        atomTypes = getSimulatedAtomTypes();        
734 <        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
735 <          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
736 <          cutoffRadius_ = max(thisCut, cutoffRadius_);
737 <        }
738 <        sprintf(painCave.errMsg,
739 <                "SimInfo: No value was set for the cutoffRadius.\n"
740 <                "\tOpenMD will use %lf angstroms.\n",
741 <                cutoffRadius_);
742 <        painCave.isFatal = 0;
743 <        painCave.severity = OPENMD_INFO;
744 <        simError();
745 <      }            
746 <    }
728 >    vector<int> foundTypes;
729 >    set<AtomType*>::iterator i;
730 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
731 >      foundTypes.push_back( (*i)->getIdent() );
732  
733 <    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
733 >    // count_local holds the number of found types on this processor
734 >    int count_local = foundTypes.size();
735  
736 <    map<string, CutoffMethod> stringToCutoffMethod;
737 <    stringToCutoffMethod["HARD"] = HARD;
738 <    stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION;
739 <    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
740 <    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
736 >    int nproc = MPI::COMM_WORLD.Get_size();
737 >
738 >    // we need arrays to hold the counts and displacement vectors for
739 >    // all processors
740 >    vector<int> counts(nproc, 0);
741 >    vector<int> disps(nproc, 0);
742 >
743 >    // fill the counts array
744 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
745 >                              1, MPI::INT);
746    
747 <    if (simParams_->haveCutoffMethod()) {
748 <      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
749 <      map<string, CutoffMethod>::iterator i;
750 <      i = stringToCutoffMethod.find(cutMeth);
751 <      if (i == stringToCutoffMethod.end()) {
752 <        sprintf(painCave.errMsg,
762 <                "SimInfo: Could not find chosen cutoffMethod %s\n"
763 <                "\tShould be one of: "
764 <                "HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
765 <                cutMeth.c_str());
766 <        painCave.isFatal = 1;
767 <        painCave.severity = OPENMD_ERROR;
768 <        simError();
769 <      } else {
770 <        cutoffMethod_ = i->second;
771 <      }
772 <    } else {
773 <      sprintf(painCave.errMsg,
774 <              "SimInfo: No value was set for the cutoffMethod.\n"
775 <              "\tOpenMD will use SHIFTED_FORCE.\n");
776 <        painCave.isFatal = 0;
777 <        painCave.severity = OPENMD_INFO;
778 <        simError();
779 <        cutoffMethod_ = SHIFTED_FORCE;        
747 >    // use the processor counts to compute the displacement array
748 >    disps[0] = 0;    
749 >    int totalCount = counts[0];
750 >    for (int iproc = 1; iproc < nproc; iproc++) {
751 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
752 >      totalCount += counts[iproc];
753      }
754  
755 <    InteractionManager::Instance()->setCutoffMethod(cutoffMethod_);
756 <  }
784 <  
785 <  /**
786 <   * setupSwitching
787 <   *
788 <   * Sets the values of switchingRadius and
789 <   *  If the switchingRadius was explicitly set, use that value (but check it)
790 <   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
791 <   */
792 <  void SimInfo::setupSwitching() {
755 >    // we need a (possibly redundant) set of all found types:
756 >    vector<int> ftGlobal(totalCount);
757      
758 <    if (simParams_->haveSwitchingRadius()) {
759 <      switchingRadius_ = simParams_->getSwitchingRadius();
760 <      if (switchingRadius_ > cutoffRadius_) {        
761 <        sprintf(painCave.errMsg,
798 <                "SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
799 <                switchingRadius_, cutoffRadius_);
800 <        painCave.isFatal = 1;
801 <        painCave.severity = OPENMD_ERROR;
802 <        simError();
803 <      }
804 <    } else {      
805 <      switchingRadius_ = 0.85 * cutoffRadius_;
806 <      sprintf(painCave.errMsg,
807 <              "SimInfo: No value was set for the switchingRadius.\n"
808 <              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
809 <              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
810 <      painCave.isFatal = 0;
811 <      painCave.severity = OPENMD_WARNING;
812 <      simError();
813 <    }          
814 <  
815 <    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
758 >    // now spray out the foundTypes to all the other processors:    
759 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
760 >                               &ftGlobal[0], &counts[0], &disps[0],
761 >                               MPI::INT);
762  
763 <    SwitchingFunctionType ft;
763 >    vector<int>::iterator j;
764 >
765 >    // foundIdents is a stl set, so inserting an already found ident
766 >    // will have no effect.
767 >    set<int> foundIdents;
768 >
769 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
770 >      foundIdents.insert((*j));
771      
772 <    if (simParams_->haveSwitchingFunctionType()) {
773 <      string funcType = simParams_->getSwitchingFunctionType();
774 <      toUpper(funcType);
775 <      if (funcType == "CUBIC") {
776 <        ft = cubic;
777 <      } else {
778 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
826 <          ft = fifth_order_poly;
827 <        } else {
828 <          // throw error        
829 <          sprintf( painCave.errMsg,
830 <                   "SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n"
831 <                   "\tswitchingFunctionType must be one of: "
832 <                   "\"cubic\" or \"fifth_order_polynomial\".",
833 <                   funcType.c_str() );
834 <          painCave.isFatal = 1;
835 <          painCave.severity = OPENMD_ERROR;
836 <          simError();
837 <        }          
838 <      }
839 <    }
772 >    // now iterate over the foundIdents and get the actual atom types
773 >    // that correspond to these:
774 >    set<int>::iterator it;
775 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
776 >      atomTypes.insert( forceField_->getAtomType((*it)) );
777 >
778 > #endif
779  
780 <    InteractionManager::Instance()->setSwitchingFunctionType(ft);
780 >    return atomTypes;        
781    }
782  
783 <  /**
784 <   * setupSkinThickness
785 <   *
786 <   *  If the skinThickness was explicitly set, use that value (but check it)
787 <   *  If the skinThickness was not explicitly set: use 1.0 angstroms
788 <   */
789 <  void SimInfo::setupSkinThickness() {    
790 <    if (simParams_->haveSkinThickness()) {
791 <      skinThickness_ = simParams_->getSkinThickness();
792 <    } else {      
854 <      skinThickness_ = 1.0;
855 <      sprintf(painCave.errMsg,
856 <              "SimInfo Warning: No value was set for the skinThickness.\n"
857 <              "\tOpenMD will use a default value of %f Angstroms\n"
858 <              "\tfor this simulation\n", skinThickness_);
859 <      painCave.isFatal = 0;
860 <      simError();
861 <    }            
862 <  }
863 <
864 <  void SimInfo::setupSimType() {
783 >  void SimInfo::setupSimVariables() {
784 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
785 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
786 >    // parameter is true
787 >    calcBoxDipole_ = false;
788 >    if ( simParams_->haveAccumulateBoxDipole() )
789 >      if ( simParams_->getAccumulateBoxDipole() ) {
790 >        calcBoxDipole_ = true;      
791 >      }
792 >    
793      set<AtomType*>::iterator i;
794      set<AtomType*> atomTypes;
795 <    atomTypes = getSimulatedAtomTypes();
796 <
797 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
798 <
799 <    int usesElectrostatic = 0;
872 <    int usesMetallic = 0;
873 <    int usesDirectional = 0;
795 >    atomTypes = getSimulatedAtomTypes();    
796 >    bool usesElectrostatic = false;
797 >    bool usesMetallic = false;
798 >    bool usesDirectional = false;
799 >    bool usesFluctuatingCharges =  false;
800      //loop over all of the atom types
801      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
802        usesElectrostatic |= (*i)->isElectrostatic();
803        usesMetallic |= (*i)->isMetal();
804        usesDirectional |= (*i)->isDirectional();
805 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
806      }
807  
808 < #ifdef IS_MPI    
809 <    int temp;
808 > #ifdef IS_MPI
809 >    bool temp;
810      temp = usesDirectional;
811 <    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
812 <
811 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
812 >                              MPI::LOR);
813 >        
814      temp = usesMetallic;
815 <    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816 <
815 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
816 >                              MPI::LOR);
817 >    
818      temp = usesElectrostatic;
819 <    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
819 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
820 >                              MPI::LOR);
821 >
822 >    temp = usesFluctuatingCharges;
823 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
824 >                              MPI::LOR);
825 > #else
826 >
827 >    usesDirectionalAtoms_ = usesDirectional;
828 >    usesMetallicAtoms_ = usesMetallic;
829 >    usesElectrostaticAtoms_ = usesElectrostatic;
830 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
831 >
832   #endif
833 <    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
834 <    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
835 <    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
836 <    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
896 <    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
897 <    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
833 >    
834 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
835 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
836 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
837    }
838  
900  void SimInfo::setupFortranSim() {
901    int isError;
902    int nExclude, nOneTwo, nOneThree, nOneFour;
903    vector<int> fortranGlobalGroupMembership;
904    
905    notifyFortranSkinThickness(&skinThickness_);
839  
840 <    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
841 <    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
842 <    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
840 >  vector<int> SimInfo::getGlobalAtomIndices() {
841 >    SimInfo::MoleculeIterator mi;
842 >    Molecule* mol;
843 >    Molecule::AtomIterator ai;
844 >    Atom* atom;
845  
846 <    isError = 0;
846 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
847 >    
848 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
849 >      
850 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
851 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
852 >      }
853 >    }
854 >    return GlobalAtomIndices;
855 >  }
856  
857 <    //globalGroupMembership_ is filled by SimCreator    
858 <    for (int i = 0; i < nGlobalAtoms_; i++) {
859 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
857 >
858 >  vector<int> SimInfo::getGlobalGroupIndices() {
859 >    SimInfo::MoleculeIterator mi;
860 >    Molecule* mol;
861 >    Molecule::CutoffGroupIterator ci;
862 >    CutoffGroup* cg;
863 >
864 >    vector<int> GlobalGroupIndices;
865 >    
866 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
867 >      
868 >      //local index of cutoff group is trivial, it only depends on the
869 >      //order of travesing
870 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
871 >           cg = mol->nextCutoffGroup(ci)) {
872 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
873 >      }        
874      }
875 +    return GlobalGroupIndices;
876 +  }
877  
878 +
879 +  void SimInfo::prepareTopology() {
880 +    int nExclude, nOneTwo, nOneThree, nOneFour;
881 +
882      //calculate mass ratio of cutoff group
919    vector<RealType> mfact;
883      SimInfo::MoleculeIterator mi;
884      Molecule* mol;
885      Molecule::CutoffGroupIterator ci;
# Line 925 | Line 888 | namespace OpenMD {
888      Atom* atom;
889      RealType totalMass;
890  
891 <    //to avoid memory reallocation, reserve enough space for mfact
892 <    mfact.reserve(getNCutoffGroups());
891 >    /**
892 >     * The mass factor is the relative mass of an atom to the total
893 >     * mass of the cutoff group it belongs to.  By default, all atoms
894 >     * are their own cutoff groups, and therefore have mass factors of
895 >     * 1.  We need some special handling for massless atoms, which
896 >     * will be treated as carrying the entire mass of the cutoff
897 >     * group.
898 >     */
899 >    massFactors_.clear();
900 >    massFactors_.resize(getNAtoms(), 1.0);
901      
902      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
903 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
903 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
904 >           cg = mol->nextCutoffGroup(ci)) {
905  
906          totalMass = cg->getMass();
907          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
908            // Check for massless groups - set mfact to 1 if true
909 <          if (totalMass != 0)
910 <            mfact.push_back(atom->getMass()/totalMass);
909 >          if (totalMass != 0)
910 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
911            else
912 <            mfact.push_back( 1.0 );
912 >            massFactors_[atom->getLocalIndex()] = 1.0;
913          }
914        }      
915      }
916  
917 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
946 <    vector<int> identArray;
917 >    // Build the identArray_
918  
919 <    //to avoid memory reallocation, reserve enough space identArray
920 <    identArray.reserve(getNAtoms());
950 <    
919 >    identArray_.clear();
920 >    identArray_.reserve(getNAtoms());    
921      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
922        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
923 <        identArray.push_back(atom->getIdent());
923 >        identArray_.push_back(atom->getIdent());
924        }
925      }    
956
957    //fill molMembershipArray
958    //molMembershipArray is filled by SimCreator    
959    vector<int> molMembershipArray(nGlobalAtoms_);
960    for (int i = 0; i < nGlobalAtoms_; i++) {
961      molMembershipArray[i] = globalMolMembership_[i] + 1;
962    }
926      
927 <    //setup fortran simulation
927 >    //scan topology
928  
929      nExclude = excludedInteractions_.getSize();
930      nOneTwo = oneTwoInteractions_.getSize();
# Line 973 | Line 936 | namespace OpenMD {
936      int* oneThreeList = oneThreeInteractions_.getPairList();
937      int* oneFourList = oneFourInteractions_.getPairList();
938  
939 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
977 <                   &nExclude, excludeList,
978 <                   &nOneTwo, oneTwoList,
979 <                   &nOneThree, oneThreeList,
980 <                   &nOneFour, oneFourList,
981 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
982 <                   &fortranGlobalGroupMembership[0], &isError);
983 <    
984 <    if( isError ){
985 <      
986 <      sprintf( painCave.errMsg,
987 <               "There was an error setting the simulation information in fortran.\n" );
988 <      painCave.isFatal = 1;
989 <      painCave.severity = OPENMD_ERROR;
990 <      simError();
991 <    }
992 <    
993 <    
994 <    sprintf( checkPointMsg,
995 <             "succesfully sent the simulation information to fortran.\n");
996 <    
997 <    errorCheckPoint();
998 <    
999 <    // Setup number of neighbors in neighbor list if present
1000 <    if (simParams_->haveNeighborListNeighbors()) {
1001 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
1002 <      setNeighbors(&nlistNeighbors);
1003 <    }
1004 <  
1005 <
939 >    topologyDone_ = true;
940    }
941  
1008
1009  void SimInfo::setupFortranParallel() {
1010 #ifdef IS_MPI    
1011    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
1012    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1013    vector<int> localToGlobalCutoffGroupIndex;
1014    SimInfo::MoleculeIterator mi;
1015    Molecule::AtomIterator ai;
1016    Molecule::CutoffGroupIterator ci;
1017    Molecule* mol;
1018    Atom* atom;
1019    CutoffGroup* cg;
1020    mpiSimData parallelData;
1021    int isError;
1022
1023    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1024
1025      //local index(index in DataStorge) of atom is important
1026      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1027        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1028      }
1029
1030      //local index of cutoff group is trivial, it only depends on the order of travesing
1031      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1032        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1033      }        
1034        
1035    }
1036
1037    //fill up mpiSimData struct
1038    parallelData.nMolGlobal = getNGlobalMolecules();
1039    parallelData.nMolLocal = getNMolecules();
1040    parallelData.nAtomsGlobal = getNGlobalAtoms();
1041    parallelData.nAtomsLocal = getNAtoms();
1042    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1043    parallelData.nGroupsLocal = getNCutoffGroups();
1044    parallelData.myNode = worldRank;
1045    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1046
1047    //pass mpiSimData struct and index arrays to fortran
1048    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1049                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
1050                    &localToGlobalCutoffGroupIndex[0], &isError);
1051
1052    if (isError) {
1053      sprintf(painCave.errMsg,
1054              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1055      painCave.isFatal = 1;
1056      simError();
1057    }
1058
1059    sprintf(checkPointMsg, " mpiRefresh successful.\n");
1060    errorCheckPoint();
1061
1062 #endif
1063  }
1064
1065
1066  void SimInfo::setupSwitchingFunction() {    
1067
1068  }
1069
1070  void SimInfo::setupAccumulateBoxDipole() {    
1071
1072    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1073    if ( simParams_->haveAccumulateBoxDipole() )
1074      if ( simParams_->getAccumulateBoxDipole() ) {
1075        calcBoxDipole_ = true;
1076      }
1077
1078  }
1079
942    void SimInfo::addProperty(GenericData* genData) {
943      properties_.addProperty(genData);  
944    }
# Line 1111 | Line 973 | namespace OpenMD {
973      Molecule* mol;
974      RigidBody* rb;
975      Atom* atom;
976 +    CutoffGroup* cg;
977      SimInfo::MoleculeIterator mi;
978      Molecule::RigidBodyIterator rbIter;
979 <    Molecule::AtomIterator atomIter;;
979 >    Molecule::AtomIterator atomIter;
980 >    Molecule::CutoffGroupIterator cgIter;
981  
982      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
983          
984 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
984 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
985 >           atom = mol->nextAtom(atomIter)) {
986          atom->setSnapshotManager(sman_);
987        }
988          
989 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
989 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
990 >           rb = mol->nextRigidBody(rbIter)) {
991          rb->setSnapshotManager(sman_);
992        }
993 +
994 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
995 +           cg = mol->nextCutoffGroup(cgIter)) {
996 +        cg->setSnapshotManager(sman_);
997 +      }
998      }    
999      
1000    }
1001  
1131  Vector3d SimInfo::getComVel(){
1132    SimInfo::MoleculeIterator i;
1133    Molecule* mol;
1002  
1135    Vector3d comVel(0.0);
1136    RealType totalMass = 0.0;
1137    
1138
1139    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1140      RealType mass = mol->getMass();
1141      totalMass += mass;
1142      comVel += mass * mol->getComVel();
1143    }  
1144
1145 #ifdef IS_MPI
1146    RealType tmpMass = totalMass;
1147    Vector3d tmpComVel(comVel);    
1148    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1149    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1150 #endif
1151
1152    comVel /= totalMass;
1153
1154    return comVel;
1155  }
1156
1157  Vector3d SimInfo::getCom(){
1158    SimInfo::MoleculeIterator i;
1159    Molecule* mol;
1160
1161    Vector3d com(0.0);
1162    RealType totalMass = 0.0;
1163    
1164    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1165      RealType mass = mol->getMass();
1166      totalMass += mass;
1167      com += mass * mol->getCom();
1168    }  
1169
1170 #ifdef IS_MPI
1171    RealType tmpMass = totalMass;
1172    Vector3d tmpCom(com);    
1173    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1174    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1175 #endif
1176
1177    com /= totalMass;
1178
1179    return com;
1180
1181  }        
1182
1003    ostream& operator <<(ostream& o, SimInfo& info) {
1004  
1005      return o;
1006    }
1007    
1008 <  
1189 <   /*
1190 <   Returns center of mass and center of mass velocity in one function call.
1191 <   */
1192 <  
1193 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1194 <      SimInfo::MoleculeIterator i;
1195 <      Molecule* mol;
1196 <      
1197 <    
1198 <      RealType totalMass = 0.0;
1199 <    
1200 <
1201 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1202 <         RealType mass = mol->getMass();
1203 <         totalMass += mass;
1204 <         com += mass * mol->getCom();
1205 <         comVel += mass * mol->getComVel();          
1206 <      }  
1207 <      
1208 < #ifdef IS_MPI
1209 <      RealType tmpMass = totalMass;
1210 <      Vector3d tmpCom(com);  
1211 <      Vector3d tmpComVel(comVel);
1212 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1213 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1214 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1215 < #endif
1216 <      
1217 <      com /= totalMass;
1218 <      comVel /= totalMass;
1219 <   }        
1220 <  
1221 <   /*
1222 <   Return intertia tensor for entire system and angular momentum Vector.
1223 <
1224 <
1225 <       [  Ixx -Ixy  -Ixz ]
1226 <    J =| -Iyx  Iyy  -Iyz |
1227 <       [ -Izx -Iyz   Izz ]
1228 <    */
1229 <
1230 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1231 <      
1232 <
1233 <      RealType xx = 0.0;
1234 <      RealType yy = 0.0;
1235 <      RealType zz = 0.0;
1236 <      RealType xy = 0.0;
1237 <      RealType xz = 0.0;
1238 <      RealType yz = 0.0;
1239 <      Vector3d com(0.0);
1240 <      Vector3d comVel(0.0);
1241 <      
1242 <      getComAll(com, comVel);
1243 <      
1244 <      SimInfo::MoleculeIterator i;
1245 <      Molecule* mol;
1246 <      
1247 <      Vector3d thisq(0.0);
1248 <      Vector3d thisv(0.0);
1249 <
1250 <      RealType thisMass = 0.0;
1251 <    
1252 <      
1253 <      
1254 <  
1255 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1256 <        
1257 <         thisq = mol->getCom()-com;
1258 <         thisv = mol->getComVel()-comVel;
1259 <         thisMass = mol->getMass();
1260 <         // Compute moment of intertia coefficients.
1261 <         xx += thisq[0]*thisq[0]*thisMass;
1262 <         yy += thisq[1]*thisq[1]*thisMass;
1263 <         zz += thisq[2]*thisq[2]*thisMass;
1264 <        
1265 <         // compute products of intertia
1266 <         xy += thisq[0]*thisq[1]*thisMass;
1267 <         xz += thisq[0]*thisq[2]*thisMass;
1268 <         yz += thisq[1]*thisq[2]*thisMass;
1269 <            
1270 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1271 <            
1272 <      }  
1273 <      
1274 <      
1275 <      inertiaTensor(0,0) = yy + zz;
1276 <      inertiaTensor(0,1) = -xy;
1277 <      inertiaTensor(0,2) = -xz;
1278 <      inertiaTensor(1,0) = -xy;
1279 <      inertiaTensor(1,1) = xx + zz;
1280 <      inertiaTensor(1,2) = -yz;
1281 <      inertiaTensor(2,0) = -xz;
1282 <      inertiaTensor(2,1) = -yz;
1283 <      inertiaTensor(2,2) = xx + yy;
1284 <      
1285 < #ifdef IS_MPI
1286 <      Mat3x3d tmpI(inertiaTensor);
1287 <      Vector3d tmpAngMom;
1288 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1289 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1290 < #endif
1291 <              
1292 <      return;
1293 <   }
1294 <
1295 <   //Returns the angular momentum of the system
1296 <   Vector3d SimInfo::getAngularMomentum(){
1297 <      
1298 <      Vector3d com(0.0);
1299 <      Vector3d comVel(0.0);
1300 <      Vector3d angularMomentum(0.0);
1301 <      
1302 <      getComAll(com,comVel);
1303 <      
1304 <      SimInfo::MoleculeIterator i;
1305 <      Molecule* mol;
1306 <      
1307 <      Vector3d thisr(0.0);
1308 <      Vector3d thisp(0.0);
1309 <      
1310 <      RealType thisMass;
1311 <      
1312 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1313 <        thisMass = mol->getMass();
1314 <        thisr = mol->getCom()-com;
1315 <        thisp = (mol->getComVel()-comVel)*thisMass;
1316 <        
1317 <        angularMomentum += cross( thisr, thisp );
1318 <        
1319 <      }  
1320 <      
1321 < #ifdef IS_MPI
1322 <      Vector3d tmpAngMom;
1323 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1324 < #endif
1325 <      
1326 <      return angularMomentum;
1327 <   }
1328 <  
1008 >  
1009    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1010 <    return IOIndexToIntegrableObject.at(index);
1010 >    if (index >= IOIndexToIntegrableObject.size()) {
1011 >      sprintf(painCave.errMsg,
1012 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1013 >              "\tindex exceeds number of known objects!\n");
1014 >      painCave.isFatal = 1;
1015 >      simError();
1016 >      return NULL;
1017 >    } else
1018 >      return IOIndexToIntegrableObject.at(index);
1019    }
1020    
1021    void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1022      IOIndexToIntegrableObject= v;
1023    }
1024  
1337  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1338     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1339     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1340     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1341  */
1342  void SimInfo::getGyrationalVolume(RealType &volume){
1343    Mat3x3d intTensor;
1344    RealType det;
1345    Vector3d dummyAngMom;
1346    RealType sysconstants;
1347    RealType geomCnst;
1348
1349    geomCnst = 3.0/2.0;
1350    /* Get the inertial tensor and angular momentum for free*/
1351    getInertiaTensor(intTensor,dummyAngMom);
1352    
1353    det = intTensor.determinant();
1354    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1355    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1356    return;
1357  }
1358
1359  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1360    Mat3x3d intTensor;
1361    Vector3d dummyAngMom;
1362    RealType sysconstants;
1363    RealType geomCnst;
1364
1365    geomCnst = 3.0/2.0;
1366    /* Get the inertial tensor and angular momentum for free*/
1367    getInertiaTensor(intTensor,dummyAngMom);
1368    
1369    detI = intTensor.determinant();
1370    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1371    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1372    return;
1373  }
1374 /*
1375   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1376      assert( v.size() == nAtoms_ + nRigidBodies_);
1377      sdByGlobalIndex_ = v;
1378    }
1379
1380    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1381      //assert(index < nAtoms_ + nRigidBodies_);
1382      return sdByGlobalIndex_.at(index);
1383    }  
1384 */  
1025    int SimInfo::getNGlobalConstraints() {
1026      int nGlobalConstraints;
1027   #ifdef IS_MPI

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines