ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1529 by gezelter, Mon Dec 27 18:35:59 2010 UTC vs.
Revision 1769 by gezelter, Mon Jul 9 14:15:52 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 #include "UseTheForce/doForces_interface.h"
60 #include "UseTheForce/DarkSide/neighborLists_interface.h"
61 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
63 < #include "nonbonded/InteractionManager.hpp"
68 <
69 <
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
73 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68   using namespace std;
69   namespace OpenMD {
# Line 79 | Line 72 | namespace OpenMD {
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79      calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81      MoleculeStamp* molStamp;
# Line 136 | Line 129 | namespace OpenMD {
129      //equal to the total number of atoms minus number of atoms belong to
130      //cutoff group defined in meta-data file plus the number of cutoff
131      //groups defined in meta-data file
132 +
133      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134      
135      //every free atom (atom does not belong to rigid bodies) is an
# Line 231 | Line 225 | namespace OpenMD {
225  
226  
227    void SimInfo::calcNdf() {
228 <    int ndf_local;
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230      vector<StuntDouble*>::iterator j;
231 +    vector<Atom*>::iterator k;
232 +
233      Molecule* mol;
234 <    StuntDouble* integrableObject;
234 >    StuntDouble* sd;
235 >    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
243      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
244           integrableObject = mol->nextIntegrableObject(j)) {
241  
242 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
243 +           sd = mol->nextIntegrableObject(j)) {
244 +
245          ndf_local += 3;
246  
247 <        if (integrableObject->isDirectional()) {
248 <          if (integrableObject->isLinear()) {
247 >        if (sd->isDirectional()) {
248 >          if (sd->isLinear()) {
249              ndf_local += 2;
250            } else {
251              ndf_local += 3;
252            }
253          }
255            
254        }
255 +
256 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
257 +           atom = mol->nextFluctuatingCharge(k)) {
258 +        if (atom->isFluctuatingCharge()) {
259 +          nfq_local++;
260 +        }
261 +      }
262      }
263      
264 +    ndfLocal_ = ndf_local;
265 +
266      // n_constraints is local, so subtract them on each processor
267      ndf_local -= nConstraints_;
268  
269   #ifdef IS_MPI
270      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
271 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
272   #else
273      ndf_ = ndf_local;
274 +    nGlobalFluctuatingCharges_ = nfq_local;
275   #endif
276  
277      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 278 | Line 287 | namespace OpenMD {
287      fdf_ = fdf_local;
288   #endif
289      return fdf_;
290 +  }
291 +  
292 +  unsigned int SimInfo::getNLocalCutoffGroups(){
293 +    int nLocalCutoffAtoms = 0;
294 +    Molecule* mol;
295 +    MoleculeIterator mi;
296 +    CutoffGroup* cg;
297 +    Molecule::CutoffGroupIterator ci;
298 +    
299 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
300 +      
301 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
302 +           cg = mol->nextCutoffGroup(ci)) {
303 +        nLocalCutoffAtoms += cg->getNumAtom();
304 +        
305 +      }        
306 +    }
307 +    
308 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
309    }
310      
311    void SimInfo::calcNdfRaw() {
# Line 286 | Line 314 | namespace OpenMD {
314      MoleculeIterator i;
315      vector<StuntDouble*>::iterator j;
316      Molecule* mol;
317 <    StuntDouble* integrableObject;
317 >    StuntDouble* sd;
318  
319      // Raw degrees of freedom that we have to set
320      ndfRaw_local = 0;
321      
322      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
295      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
296           integrableObject = mol->nextIntegrableObject(j)) {
323  
324 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
325 +           sd = mol->nextIntegrableObject(j)) {
326 +
327          ndfRaw_local += 3;
328  
329 <        if (integrableObject->isDirectional()) {
330 <          if (integrableObject->isLinear()) {
329 >        if (sd->isDirectional()) {
330 >          if (sd->isLinear()) {
331              ndfRaw_local += 2;
332            } else {
333              ndfRaw_local += 3;
# Line 358 | Line 387 | namespace OpenMD {
387      Molecule::RigidBodyIterator rbIter;
388      RigidBody* rb;
389      Molecule::IntegrableObjectIterator ii;
390 <    StuntDouble* integrableObject;
390 >    StuntDouble* sd;
391      
392 <    for (integrableObject = mol->beginIntegrableObject(ii);
393 <         integrableObject != NULL;
365 <         integrableObject = mol->nextIntegrableObject(ii)) {
392 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
393 >         sd = mol->nextIntegrableObject(ii)) {
394        
395 <      if (integrableObject->isRigidBody()) {
396 <        rb = static_cast<RigidBody*>(integrableObject);
395 >      if (sd->isRigidBody()) {
396 >        rb = static_cast<RigidBody*>(sd);
397          vector<Atom*> atoms = rb->getAtoms();
398          set<int> rigidAtoms;
399          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 376 | Line 404 | namespace OpenMD {
404          }      
405        } else {
406          set<int> oneAtomSet;
407 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
408 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
407 >        oneAtomSet.insert(sd->getGlobalIndex());
408 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
409        }
410      }  
411            
# Line 511 | Line 539 | namespace OpenMD {
539      Molecule::RigidBodyIterator rbIter;
540      RigidBody* rb;
541      Molecule::IntegrableObjectIterator ii;
542 <    StuntDouble* integrableObject;
542 >    StuntDouble* sd;
543      
544 <    for (integrableObject = mol->beginIntegrableObject(ii);
545 <         integrableObject != NULL;
518 <         integrableObject = mol->nextIntegrableObject(ii)) {
544 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
545 >         sd = mol->nextIntegrableObject(ii)) {
546        
547 <      if (integrableObject->isRigidBody()) {
548 <        rb = static_cast<RigidBody*>(integrableObject);
547 >      if (sd->isRigidBody()) {
548 >        rb = static_cast<RigidBody*>(sd);
549          vector<Atom*> atoms = rb->getAtoms();
550          set<int> rigidAtoms;
551          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 529 | Line 556 | namespace OpenMD {
556          }      
557        } else {
558          set<int> oneAtomSet;
559 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
560 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
559 >        oneAtomSet.insert(sd->getGlobalIndex());
560 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
561        }
562      }  
563  
# Line 656 | Line 683 | namespace OpenMD {
683      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
684    }
685  
659  void SimInfo::update() {
686  
687 <    setupSimType();
688 <    setupCutoffRadius();
689 <    setupSwitchingRadius();
690 <    setupCutoffMethod();
691 <    setupSkinThickness();
692 <    setupSwitchingFunction();
693 <    setupAccumulateBoxDipole();
694 <
695 < #ifdef IS_MPI
670 <    setupFortranParallel();
671 < #endif
672 <    setupFortranSim();
673 <    fortranInitialized_ = true;
674 <
687 >  /**
688 >   * update
689 >   *
690 >   *  Performs the global checks and variable settings after the
691 >   *  objects have been created.
692 >   *
693 >   */
694 >  void SimInfo::update() {  
695 >    setupSimVariables();
696      calcNdf();
697      calcNdfRaw();
698      calcNdfTrans();
699    }
700    
701 +  /**
702 +   * getSimulatedAtomTypes
703 +   *
704 +   * Returns an STL set of AtomType* that are actually present in this
705 +   * simulation.  Must query all processors to assemble this information.
706 +   *
707 +   */
708    set<AtomType*> SimInfo::getSimulatedAtomTypes() {
709      SimInfo::MoleculeIterator mi;
710      Molecule* mol;
# Line 684 | Line 712 | namespace OpenMD {
712      Atom* atom;
713      set<AtomType*> atomTypes;
714      
715 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
716 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
715 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
716 >      for(atom = mol->beginAtom(ai); atom != NULL;
717 >          atom = mol->nextAtom(ai)) {
718          atomTypes.insert(atom->getAtomType());
719        }      
720      }    
692    return atomTypes;        
693  }
694
695  /**
696   * setupCutoffRadius
697   *
698   *  If the cutoffRadius was explicitly set, use that value.
699   *  If the cutoffRadius was not explicitly set:
700   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
701   *      No electrostatic atoms?  Poll the atom types present in the
702   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
703   *      Use the maximum suggested value that was found.
704   */
705  void SimInfo::setupCutoffRadius() {
721      
722 <    if (simParams_->haveCutoffRadius()) {
708 <      cutoffRadius_ = simParams_->getCutoffRadius();
709 <    } else {      
710 <      if (usesElectrostaticAtoms_) {
711 <        sprintf(painCave.errMsg,
712 <                "SimInfo Warning: No value was set for the cutoffRadius.\n"
713 <                "\tOpenMD will use a default value of 12.0 angstroms"
714 <                "\tfor the cutoffRadius.\n");
715 <        painCave.isFatal = 0;
716 <        simError();
717 <        cutoffRadius_ = 12.0;
718 <      } else {
719 <        RealType thisCut;
720 <        set<AtomType*>::iterator i;
721 <        set<AtomType*> atomTypes;
722 <        atomTypes = getSimulatedAtomTypes();        
723 <        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
724 <          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
725 <          cutoffRadius_ = max(thisCut, cutoffRadius_);
726 <        }
727 <        sprintf(painCave.errMsg,
728 <                "SimInfo Warning: No value was set for the cutoffRadius.\n"
729 <                "\tOpenMD will use %lf angstroms.\n",
730 <                cutoffRadius_);
731 <        painCave.isFatal = 0;
732 <        simError();
733 <      }            
734 <    }
722 > #ifdef IS_MPI
723  
724 <    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
725 <  }
738 <  
739 <  /**
740 <   * setupSwitchingRadius
741 <   *
742 <   *  If the switchingRadius was explicitly set, use that value (but check it)
743 <   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
744 <   */
745 <  void SimInfo::setupSwitchingRadius() {
724 >    // loop over the found atom types on this processor, and add their
725 >    // numerical idents to a vector:
726      
727 <    if (simParams_->haveSwitchingRadius()) {
728 <      switchingRadius_ = simParams_->getSwitchingRadius();
729 <      if (switchingRadius_ > cutoffRadius_) {        
730 <        sprintf(painCave.errMsg,
731 <                "SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
732 <                switchingRadius_, cutoffRadius_);
733 <        painCave.isFatal = 1;
754 <        simError();
727 >    vector<int> foundTypes;
728 >    set<AtomType*>::iterator i;
729 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
730 >      foundTypes.push_back( (*i)->getIdent() );
731 >
732 >    // count_local holds the number of found types on this processor
733 >    int count_local = foundTypes.size();
734  
735 <      }
757 <    } else {      
758 <      switchingRadius_ = 0.85 * cutoffRadius_;
759 <      sprintf(painCave.errMsg,
760 <              "SimInfo Warning: No value was set for the switchingRadius.\n"
761 <              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
762 <              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
763 <      painCave.isFatal = 0;
764 <      simError();
765 <    }            
766 <    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
767 <  }
735 >    int nproc = MPI::COMM_WORLD.Get_size();
736  
737 <  /**
738 <   * setupSkinThickness
739 <   *
740 <   *  If the skinThickness was explicitly set, use that value (but check it)
741 <   *  If the skinThickness was not explicitly set: use 1.0 angstroms
742 <   */
743 <  void SimInfo::setupSkinThickness() {    
744 <    if (simParams_->haveSkinThickness()) {
745 <      skinThickness_ = simParams_->getSkinThickness();
746 <    } else {      
747 <      skinThickness_ = 1.0;
748 <      sprintf(painCave.errMsg,
749 <              "SimInfo Warning: No value was set for the skinThickness.\n"
750 <              "\tOpenMD will use a default value of %f Angstroms\n"
751 <              "\tfor this simulation\n", skinThickness_);
752 <      painCave.isFatal = 0;
753 <      simError();
754 <    }            
737 >    // we need arrays to hold the counts and displacement vectors for
738 >    // all processors
739 >    vector<int> counts(nproc, 0);
740 >    vector<int> disps(nproc, 0);
741 >
742 >    // fill the counts array
743 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
744 >                              1, MPI::INT);
745 >  
746 >    // use the processor counts to compute the displacement array
747 >    disps[0] = 0;    
748 >    int totalCount = counts[0];
749 >    for (int iproc = 1; iproc < nproc; iproc++) {
750 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
751 >      totalCount += counts[iproc];
752 >    }
753 >
754 >    // we need a (possibly redundant) set of all found types:
755 >    vector<int> ftGlobal(totalCount);
756 >    
757 >    // now spray out the foundTypes to all the other processors:    
758 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
759 >                               &ftGlobal[0], &counts[0], &disps[0],
760 >                               MPI::INT);
761 >
762 >    vector<int>::iterator j;
763 >
764 >    // foundIdents is a stl set, so inserting an already found ident
765 >    // will have no effect.
766 >    set<int> foundIdents;
767 >
768 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
769 >      foundIdents.insert((*j));
770 >    
771 >    // now iterate over the foundIdents and get the actual atom types
772 >    // that correspond to these:
773 >    set<int>::iterator it;
774 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
775 >      atomTypes.insert( forceField_->getAtomType((*it)) );
776 >
777 > #endif
778 >
779 >    return atomTypes;        
780    }
781  
782 <  void SimInfo::setupSimType() {
782 >  void SimInfo::setupSimVariables() {
783 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
784 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
785 >    calcBoxDipole_ = false;
786 >    if ( simParams_->haveAccumulateBoxDipole() )
787 >      if ( simParams_->getAccumulateBoxDipole() ) {
788 >        calcBoxDipole_ = true;      
789 >      }
790 >    
791      set<AtomType*>::iterator i;
792      set<AtomType*> atomTypes;
793 <    atomTypes = getSimulatedAtomTypes();
794 <
795 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
796 <
797 <    int usesElectrostatic = 0;
797 <    int usesMetallic = 0;
798 <    int usesDirectional = 0;
793 >    atomTypes = getSimulatedAtomTypes();    
794 >    bool usesElectrostatic = false;
795 >    bool usesMetallic = false;
796 >    bool usesDirectional = false;
797 >    bool usesFluctuatingCharges =  false;
798      //loop over all of the atom types
799      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
800        usesElectrostatic |= (*i)->isElectrostatic();
801        usesMetallic |= (*i)->isMetal();
802        usesDirectional |= (*i)->isDirectional();
803 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
804      }
805  
806 < #ifdef IS_MPI    
807 <    int temp;
806 > #ifdef IS_MPI
807 >    bool temp;
808      temp = usesDirectional;
809 <    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 <
809 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
810 >                              MPI::LOR);
811 >        
812      temp = usesMetallic;
813 <    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
814 <
813 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
814 >                              MPI::LOR);
815 >    
816      temp = usesElectrostatic;
817 <    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
817 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
818 >                              MPI::LOR);
819 >
820 >    temp = usesFluctuatingCharges;
821 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
822 >                              MPI::LOR);
823 > #else
824 >
825 >    usesDirectionalAtoms_ = usesDirectional;
826 >    usesMetallicAtoms_ = usesMetallic;
827 >    usesElectrostaticAtoms_ = usesElectrostatic;
828 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
829 >
830   #endif
831 <    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
832 <    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
833 <    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
834 <    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
821 <    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
822 <    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
831 >    
832 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
833 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
834 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
835    }
836  
837 <  void SimInfo::setupFortranSim() {
838 <    int isError;
839 <    int nExclude, nOneTwo, nOneThree, nOneFour;
840 <    vector<int> fortranGlobalGroupMembership;
837 >
838 >  vector<int> SimInfo::getGlobalAtomIndices() {
839 >    SimInfo::MoleculeIterator mi;
840 >    Molecule* mol;
841 >    Molecule::AtomIterator ai;
842 >    Atom* atom;
843 >
844 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
845      
846 <    notifyFortranSkinThickness(&skinThickness_);
846 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
847 >      
848 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
849 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
850 >      }
851 >    }
852 >    return GlobalAtomIndices;
853 >  }
854  
832    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
833    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
834    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
855  
856 <    isError = 0;
856 >  vector<int> SimInfo::getGlobalGroupIndices() {
857 >    SimInfo::MoleculeIterator mi;
858 >    Molecule* mol;
859 >    Molecule::CutoffGroupIterator ci;
860 >    CutoffGroup* cg;
861  
862 <    //globalGroupMembership_ is filled by SimCreator    
863 <    for (int i = 0; i < nGlobalAtoms_; i++) {
864 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
862 >    vector<int> GlobalGroupIndices;
863 >    
864 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
865 >      
866 >      //local index of cutoff group is trivial, it only depends on the
867 >      //order of travesing
868 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
869 >           cg = mol->nextCutoffGroup(ci)) {
870 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
871 >      }        
872      }
873 +    return GlobalGroupIndices;
874 +  }
875  
876 +
877 +  void SimInfo::prepareTopology() {
878 +    int nExclude, nOneTwo, nOneThree, nOneFour;
879 +
880      //calculate mass ratio of cutoff group
844    vector<RealType> mfact;
881      SimInfo::MoleculeIterator mi;
882      Molecule* mol;
883      Molecule::CutoffGroupIterator ci;
# Line 850 | Line 886 | namespace OpenMD {
886      Atom* atom;
887      RealType totalMass;
888  
889 <    //to avoid memory reallocation, reserve enough space for mfact
890 <    mfact.reserve(getNCutoffGroups());
889 >    /**
890 >     * The mass factor is the relative mass of an atom to the total
891 >     * mass of the cutoff group it belongs to.  By default, all atoms
892 >     * are their own cutoff groups, and therefore have mass factors of
893 >     * 1.  We need some special handling for massless atoms, which
894 >     * will be treated as carrying the entire mass of the cutoff
895 >     * group.
896 >     */
897 >    massFactors_.clear();
898 >    massFactors_.resize(getNAtoms(), 1.0);
899      
900      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
901 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
901 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
902 >           cg = mol->nextCutoffGroup(ci)) {
903  
904          totalMass = cg->getMass();
905          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
906            // Check for massless groups - set mfact to 1 if true
907 <          if (totalMass != 0)
908 <            mfact.push_back(atom->getMass()/totalMass);
907 >          if (totalMass != 0)
908 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
909            else
910 <            mfact.push_back( 1.0 );
910 >            massFactors_[atom->getLocalIndex()] = 1.0;
911          }
912        }      
913      }
914  
915 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
871 <    vector<int> identArray;
915 >    // Build the identArray_
916  
917 <    //to avoid memory reallocation, reserve enough space identArray
918 <    identArray.reserve(getNAtoms());
875 <    
917 >    identArray_.clear();
918 >    identArray_.reserve(getNAtoms());    
919      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
920        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
921 <        identArray.push_back(atom->getIdent());
921 >        identArray_.push_back(atom->getIdent());
922        }
923      }    
881
882    //fill molMembershipArray
883    //molMembershipArray is filled by SimCreator    
884    vector<int> molMembershipArray(nGlobalAtoms_);
885    for (int i = 0; i < nGlobalAtoms_; i++) {
886      molMembershipArray[i] = globalMolMembership_[i] + 1;
887    }
924      
925 <    //setup fortran simulation
925 >    //scan topology
926  
927      nExclude = excludedInteractions_.getSize();
928      nOneTwo = oneTwoInteractions_.getSize();
# Line 898 | Line 934 | namespace OpenMD {
934      int* oneThreeList = oneThreeInteractions_.getPairList();
935      int* oneFourList = oneFourInteractions_.getPairList();
936  
937 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
902 <                   &nExclude, excludeList,
903 <                   &nOneTwo, oneTwoList,
904 <                   &nOneThree, oneThreeList,
905 <                   &nOneFour, oneFourList,
906 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
907 <                   &fortranGlobalGroupMembership[0], &isError);
908 <    
909 <    if( isError ){
910 <      
911 <      sprintf( painCave.errMsg,
912 <               "There was an error setting the simulation information in fortran.\n" );
913 <      painCave.isFatal = 1;
914 <      painCave.severity = OPENMD_ERROR;
915 <      simError();
916 <    }
917 <    
918 <    
919 <    sprintf( checkPointMsg,
920 <             "succesfully sent the simulation information to fortran.\n");
921 <    
922 <    errorCheckPoint();
923 <    
924 <    // Setup number of neighbors in neighbor list if present
925 <    if (simParams_->haveNeighborListNeighbors()) {
926 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
927 <      setNeighbors(&nlistNeighbors);
928 <    }
929 <  
930 <
937 >    topologyDone_ = true;
938    }
939  
933
934  void SimInfo::setupFortranParallel() {
935 #ifdef IS_MPI    
936    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
937    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
938    vector<int> localToGlobalCutoffGroupIndex;
939    SimInfo::MoleculeIterator mi;
940    Molecule::AtomIterator ai;
941    Molecule::CutoffGroupIterator ci;
942    Molecule* mol;
943    Atom* atom;
944    CutoffGroup* cg;
945    mpiSimData parallelData;
946    int isError;
947
948    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
949
950      //local index(index in DataStorge) of atom is important
951      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
952        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
953      }
954
955      //local index of cutoff group is trivial, it only depends on the order of travesing
956      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
957        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
958      }        
959        
960    }
961
962    //fill up mpiSimData struct
963    parallelData.nMolGlobal = getNGlobalMolecules();
964    parallelData.nMolLocal = getNMolecules();
965    parallelData.nAtomsGlobal = getNGlobalAtoms();
966    parallelData.nAtomsLocal = getNAtoms();
967    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
968    parallelData.nGroupsLocal = getNCutoffGroups();
969    parallelData.myNode = worldRank;
970    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
971
972    //pass mpiSimData struct and index arrays to fortran
973    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
974                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
975                    &localToGlobalCutoffGroupIndex[0], &isError);
976
977    if (isError) {
978      sprintf(painCave.errMsg,
979              "mpiRefresh errror: fortran didn't like something we gave it.\n");
980      painCave.isFatal = 1;
981      simError();
982    }
983
984    sprintf(checkPointMsg, " mpiRefresh successful.\n");
985    errorCheckPoint();
986
987 #endif
988  }
989
990
991  void SimInfo::setupSwitchingFunction() {    
992    int ft = CUBIC;
993    
994    if (simParams_->haveSwitchingFunctionType()) {
995      string funcType = simParams_->getSwitchingFunctionType();
996      toUpper(funcType);
997      if (funcType == "CUBIC") {
998        ft = CUBIC;
999      } else {
1000        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1001          ft = FIFTH_ORDER_POLY;
1002        } else {
1003          // throw error        
1004          sprintf( painCave.errMsg,
1005                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n"
1006                   "\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".",
1007                   funcType.c_str() );
1008          painCave.isFatal = 1;
1009          simError();
1010        }          
1011      }
1012    }
1013
1014    // send switching function notification to switcheroo
1015    setFunctionType(&ft);
1016
1017  }
1018
1019  void SimInfo::setupAccumulateBoxDipole() {    
1020
1021    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1022    if ( simParams_->haveAccumulateBoxDipole() )
1023      if ( simParams_->getAccumulateBoxDipole() ) {
1024        calcBoxDipole_ = true;
1025      }
1026
1027  }
1028
940    void SimInfo::addProperty(GenericData* genData) {
941      properties_.addProperty(genData);  
942    }
# Line 1060 | Line 971 | namespace OpenMD {
971      Molecule* mol;
972      RigidBody* rb;
973      Atom* atom;
974 +    CutoffGroup* cg;
975      SimInfo::MoleculeIterator mi;
976      Molecule::RigidBodyIterator rbIter;
977 <    Molecule::AtomIterator atomIter;;
977 >    Molecule::AtomIterator atomIter;
978 >    Molecule::CutoffGroupIterator cgIter;
979  
980      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
981          
# Line 1073 | Line 986 | namespace OpenMD {
986        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
987          rb->setSnapshotManager(sman_);
988        }
989 +
990 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
991 +        cg->setSnapshotManager(sman_);
992 +      }
993      }    
994      
995    }
996  
1080  Vector3d SimInfo::getComVel(){
1081    SimInfo::MoleculeIterator i;
1082    Molecule* mol;
997  
1084    Vector3d comVel(0.0);
1085    RealType totalMass = 0.0;
1086    
1087
1088    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1089      RealType mass = mol->getMass();
1090      totalMass += mass;
1091      comVel += mass * mol->getComVel();
1092    }  
1093
1094 #ifdef IS_MPI
1095    RealType tmpMass = totalMass;
1096    Vector3d tmpComVel(comVel);    
1097    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1098    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1099 #endif
1100
1101    comVel /= totalMass;
1102
1103    return comVel;
1104  }
1105
1106  Vector3d SimInfo::getCom(){
1107    SimInfo::MoleculeIterator i;
1108    Molecule* mol;
1109
1110    Vector3d com(0.0);
1111    RealType totalMass = 0.0;
1112    
1113    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1114      RealType mass = mol->getMass();
1115      totalMass += mass;
1116      com += mass * mol->getCom();
1117    }  
1118
1119 #ifdef IS_MPI
1120    RealType tmpMass = totalMass;
1121    Vector3d tmpCom(com);    
1122    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1123    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1124 #endif
1125
1126    com /= totalMass;
1127
1128    return com;
1129
1130  }        
1131
998    ostream& operator <<(ostream& o, SimInfo& info) {
999  
1000      return o;
1001    }
1002    
1003 <  
1138 <   /*
1139 <   Returns center of mass and center of mass velocity in one function call.
1140 <   */
1141 <  
1142 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1143 <      SimInfo::MoleculeIterator i;
1144 <      Molecule* mol;
1145 <      
1146 <    
1147 <      RealType totalMass = 0.0;
1148 <    
1149 <
1150 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1151 <         RealType mass = mol->getMass();
1152 <         totalMass += mass;
1153 <         com += mass * mol->getCom();
1154 <         comVel += mass * mol->getComVel();          
1155 <      }  
1156 <      
1157 < #ifdef IS_MPI
1158 <      RealType tmpMass = totalMass;
1159 <      Vector3d tmpCom(com);  
1160 <      Vector3d tmpComVel(comVel);
1161 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1162 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1163 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1164 < #endif
1165 <      
1166 <      com /= totalMass;
1167 <      comVel /= totalMass;
1168 <   }        
1169 <  
1170 <   /*
1171 <   Return intertia tensor for entire system and angular momentum Vector.
1172 <
1173 <
1174 <       [  Ixx -Ixy  -Ixz ]
1175 <    J =| -Iyx  Iyy  -Iyz |
1176 <       [ -Izx -Iyz   Izz ]
1177 <    */
1178 <
1179 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1180 <      
1181 <
1182 <      RealType xx = 0.0;
1183 <      RealType yy = 0.0;
1184 <      RealType zz = 0.0;
1185 <      RealType xy = 0.0;
1186 <      RealType xz = 0.0;
1187 <      RealType yz = 0.0;
1188 <      Vector3d com(0.0);
1189 <      Vector3d comVel(0.0);
1190 <      
1191 <      getComAll(com, comVel);
1192 <      
1193 <      SimInfo::MoleculeIterator i;
1194 <      Molecule* mol;
1195 <      
1196 <      Vector3d thisq(0.0);
1197 <      Vector3d thisv(0.0);
1198 <
1199 <      RealType thisMass = 0.0;
1200 <    
1201 <      
1202 <      
1203 <  
1204 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1205 <        
1206 <         thisq = mol->getCom()-com;
1207 <         thisv = mol->getComVel()-comVel;
1208 <         thisMass = mol->getMass();
1209 <         // Compute moment of intertia coefficients.
1210 <         xx += thisq[0]*thisq[0]*thisMass;
1211 <         yy += thisq[1]*thisq[1]*thisMass;
1212 <         zz += thisq[2]*thisq[2]*thisMass;
1213 <        
1214 <         // compute products of intertia
1215 <         xy += thisq[0]*thisq[1]*thisMass;
1216 <         xz += thisq[0]*thisq[2]*thisMass;
1217 <         yz += thisq[1]*thisq[2]*thisMass;
1218 <            
1219 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1220 <            
1221 <      }  
1222 <      
1223 <      
1224 <      inertiaTensor(0,0) = yy + zz;
1225 <      inertiaTensor(0,1) = -xy;
1226 <      inertiaTensor(0,2) = -xz;
1227 <      inertiaTensor(1,0) = -xy;
1228 <      inertiaTensor(1,1) = xx + zz;
1229 <      inertiaTensor(1,2) = -yz;
1230 <      inertiaTensor(2,0) = -xz;
1231 <      inertiaTensor(2,1) = -yz;
1232 <      inertiaTensor(2,2) = xx + yy;
1233 <      
1234 < #ifdef IS_MPI
1235 <      Mat3x3d tmpI(inertiaTensor);
1236 <      Vector3d tmpAngMom;
1237 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1238 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1239 < #endif
1240 <              
1241 <      return;
1242 <   }
1243 <
1244 <   //Returns the angular momentum of the system
1245 <   Vector3d SimInfo::getAngularMomentum(){
1246 <      
1247 <      Vector3d com(0.0);
1248 <      Vector3d comVel(0.0);
1249 <      Vector3d angularMomentum(0.0);
1250 <      
1251 <      getComAll(com,comVel);
1252 <      
1253 <      SimInfo::MoleculeIterator i;
1254 <      Molecule* mol;
1255 <      
1256 <      Vector3d thisr(0.0);
1257 <      Vector3d thisp(0.0);
1258 <      
1259 <      RealType thisMass;
1260 <      
1261 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1262 <        thisMass = mol->getMass();
1263 <        thisr = mol->getCom()-com;
1264 <        thisp = (mol->getComVel()-comVel)*thisMass;
1265 <        
1266 <        angularMomentum += cross( thisr, thisp );
1267 <        
1268 <      }  
1269 <      
1270 < #ifdef IS_MPI
1271 <      Vector3d tmpAngMom;
1272 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1273 < #endif
1274 <      
1275 <      return angularMomentum;
1276 <   }
1277 <  
1003 >  
1004    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1005      return IOIndexToIntegrableObject.at(index);
1006    }
# Line 1282 | Line 1008 | namespace OpenMD {
1008    void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1009      IOIndexToIntegrableObject= v;
1010    }
1285
1286  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1287     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1288     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1289     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1290  */
1291  void SimInfo::getGyrationalVolume(RealType &volume){
1292    Mat3x3d intTensor;
1293    RealType det;
1294    Vector3d dummyAngMom;
1295    RealType sysconstants;
1296    RealType geomCnst;
1297
1298    geomCnst = 3.0/2.0;
1299    /* Get the inertial tensor and angular momentum for free*/
1300    getInertiaTensor(intTensor,dummyAngMom);
1301    
1302    det = intTensor.determinant();
1303    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1304    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1305    return;
1306  }
1307
1308  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1309    Mat3x3d intTensor;
1310    Vector3d dummyAngMom;
1311    RealType sysconstants;
1312    RealType geomCnst;
1313
1314    geomCnst = 3.0/2.0;
1315    /* Get the inertial tensor and angular momentum for free*/
1316    getInertiaTensor(intTensor,dummyAngMom);
1317    
1318    detI = intTensor.determinant();
1319    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1320    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1321    return;
1322  }
1011   /*
1012     void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1013        assert( v.size() == nAtoms_ + nRigidBodies_);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines