ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1529 by gezelter, Mon Dec 27 18:35:59 2010 UTC vs.
Revision 1764 by gezelter, Tue Jul 3 18:32:27 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 #include "UseTheForce/doForces_interface.h"
60 #include "UseTheForce/DarkSide/neighborLists_interface.h"
61 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
63 < #include "nonbonded/InteractionManager.hpp"
68 <
69 <
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
73 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68   using namespace std;
69   namespace OpenMD {
# Line 79 | Line 72 | namespace OpenMD {
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79      calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81      MoleculeStamp* molStamp;
# Line 136 | Line 129 | namespace OpenMD {
129      //equal to the total number of atoms minus number of atoms belong to
130      //cutoff group defined in meta-data file plus the number of cutoff
131      //groups defined in meta-data file
132 +
133      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134      
135      //every free atom (atom does not belong to rigid bodies) is an
# Line 231 | Line 225 | namespace OpenMD {
225  
226  
227    void SimInfo::calcNdf() {
228 <    int ndf_local;
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230      vector<StuntDouble*>::iterator j;
231 +    vector<Atom*>::iterator k;
232 +
233      Molecule* mol;
234      StuntDouble* integrableObject;
235 +    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
# Line 252 | Line 250 | namespace OpenMD {
250              ndf_local += 3;
251            }
252          }
255            
253        }
254 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 +           atom = mol->nextFluctuatingCharge(k)) {
256 +        if (atom->isFluctuatingCharge()) {
257 +          nfq_local++;
258 +        }
259 +      }
260      }
261      
262 +    ndfLocal_ = ndf_local;
263 +
264      // n_constraints is local, so subtract them on each processor
265      ndf_local -= nConstraints_;
266  
267   #ifdef IS_MPI
268      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
269 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
270   #else
271      ndf_ = ndf_local;
272 +    nGlobalFluctuatingCharges_ = nfq_local;
273   #endif
274  
275      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 278 | Line 285 | namespace OpenMD {
285      fdf_ = fdf_local;
286   #endif
287      return fdf_;
288 +  }
289 +  
290 +  unsigned int SimInfo::getNLocalCutoffGroups(){
291 +    int nLocalCutoffAtoms = 0;
292 +    Molecule* mol;
293 +    MoleculeIterator mi;
294 +    CutoffGroup* cg;
295 +    Molecule::CutoffGroupIterator ci;
296 +    
297 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
298 +      
299 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
300 +           cg = mol->nextCutoffGroup(ci)) {
301 +        nLocalCutoffAtoms += cg->getNumAtom();
302 +        
303 +      }        
304 +    }
305 +    
306 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
307    }
308      
309    void SimInfo::calcNdfRaw() {
# Line 656 | Line 682 | namespace OpenMD {
682      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
683    }
684  
659  void SimInfo::update() {
685  
686 <    setupSimType();
687 <    setupCutoffRadius();
688 <    setupSwitchingRadius();
689 <    setupCutoffMethod();
690 <    setupSkinThickness();
691 <    setupSwitchingFunction();
692 <    setupAccumulateBoxDipole();
693 <
694 < #ifdef IS_MPI
670 <    setupFortranParallel();
671 < #endif
672 <    setupFortranSim();
673 <    fortranInitialized_ = true;
674 <
686 >  /**
687 >   * update
688 >   *
689 >   *  Performs the global checks and variable settings after the
690 >   *  objects have been created.
691 >   *
692 >   */
693 >  void SimInfo::update() {  
694 >    setupSimVariables();
695      calcNdf();
696      calcNdfRaw();
697      calcNdfTrans();
698    }
699    
700 +  /**
701 +   * getSimulatedAtomTypes
702 +   *
703 +   * Returns an STL set of AtomType* that are actually present in this
704 +   * simulation.  Must query all processors to assemble this information.
705 +   *
706 +   */
707    set<AtomType*> SimInfo::getSimulatedAtomTypes() {
708      SimInfo::MoleculeIterator mi;
709      Molecule* mol;
# Line 684 | Line 711 | namespace OpenMD {
711      Atom* atom;
712      set<AtomType*> atomTypes;
713      
714 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
715 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
714 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
715 >      for(atom = mol->beginAtom(ai); atom != NULL;
716 >          atom = mol->nextAtom(ai)) {
717          atomTypes.insert(atom->getAtomType());
718        }      
719      }    
720 <    return atomTypes;        
721 <  }
720 >    
721 > #ifdef IS_MPI
722  
723 <  /**
724 <   * setupCutoffRadius
697 <   *
698 <   *  If the cutoffRadius was explicitly set, use that value.
699 <   *  If the cutoffRadius was not explicitly set:
700 <   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
701 <   *      No electrostatic atoms?  Poll the atom types present in the
702 <   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
703 <   *      Use the maximum suggested value that was found.
704 <   */
705 <  void SimInfo::setupCutoffRadius() {
723 >    // loop over the found atom types on this processor, and add their
724 >    // numerical idents to a vector:
725      
726 <    if (simParams_->haveCutoffRadius()) {
727 <      cutoffRadius_ = simParams_->getCutoffRadius();
728 <    } else {      
729 <      if (usesElectrostaticAtoms_) {
711 <        sprintf(painCave.errMsg,
712 <                "SimInfo Warning: No value was set for the cutoffRadius.\n"
713 <                "\tOpenMD will use a default value of 12.0 angstroms"
714 <                "\tfor the cutoffRadius.\n");
715 <        painCave.isFatal = 0;
716 <        simError();
717 <        cutoffRadius_ = 12.0;
718 <      } else {
719 <        RealType thisCut;
720 <        set<AtomType*>::iterator i;
721 <        set<AtomType*> atomTypes;
722 <        atomTypes = getSimulatedAtomTypes();        
723 <        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
724 <          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
725 <          cutoffRadius_ = max(thisCut, cutoffRadius_);
726 <        }
727 <        sprintf(painCave.errMsg,
728 <                "SimInfo Warning: No value was set for the cutoffRadius.\n"
729 <                "\tOpenMD will use %lf angstroms.\n",
730 <                cutoffRadius_);
731 <        painCave.isFatal = 0;
732 <        simError();
733 <      }            
734 <    }
726 >    vector<int> foundTypes;
727 >    set<AtomType*>::iterator i;
728 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
729 >      foundTypes.push_back( (*i)->getIdent() );
730  
731 <    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
732 <  }
731 >    // count_local holds the number of found types on this processor
732 >    int count_local = foundTypes.size();
733 >
734 >    int nproc = MPI::COMM_WORLD.Get_size();
735 >
736 >    // we need arrays to hold the counts and displacement vectors for
737 >    // all processors
738 >    vector<int> counts(nproc, 0);
739 >    vector<int> disps(nproc, 0);
740 >
741 >    // fill the counts array
742 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
743 >                              1, MPI::INT);
744    
745 <  /**
746 <   * setupSwitchingRadius
747 <   *
748 <   *  If the switchingRadius was explicitly set, use that value (but check it)
749 <   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
750 <   */
751 <  void SimInfo::setupSwitchingRadius() {
745 >    // use the processor counts to compute the displacement array
746 >    disps[0] = 0;    
747 >    int totalCount = counts[0];
748 >    for (int iproc = 1; iproc < nproc; iproc++) {
749 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
750 >      totalCount += counts[iproc];
751 >    }
752 >
753 >    // we need a (possibly redundant) set of all found types:
754 >    vector<int> ftGlobal(totalCount);
755      
756 <    if (simParams_->haveSwitchingRadius()) {
757 <      switchingRadius_ = simParams_->getSwitchingRadius();
758 <      if (switchingRadius_ > cutoffRadius_) {        
759 <        sprintf(painCave.errMsg,
751 <                "SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
752 <                switchingRadius_, cutoffRadius_);
753 <        painCave.isFatal = 1;
754 <        simError();
756 >    // now spray out the foundTypes to all the other processors:    
757 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
758 >                               &ftGlobal[0], &counts[0], &disps[0],
759 >                               MPI::INT);
760  
761 <      }
757 <    } else {      
758 <      switchingRadius_ = 0.85 * cutoffRadius_;
759 <      sprintf(painCave.errMsg,
760 <              "SimInfo Warning: No value was set for the switchingRadius.\n"
761 <              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
762 <              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
763 <      painCave.isFatal = 0;
764 <      simError();
765 <    }            
766 <    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
767 <  }
761 >    vector<int>::iterator j;
762  
763 <  /**
764 <   * setupSkinThickness
765 <   *
766 <   *  If the skinThickness was explicitly set, use that value (but check it)
767 <   *  If the skinThickness was not explicitly set: use 1.0 angstroms
768 <   */
769 <  void SimInfo::setupSkinThickness() {    
770 <    if (simParams_->haveSkinThickness()) {
771 <      skinThickness_ = simParams_->getSkinThickness();
772 <    } else {      
773 <      skinThickness_ = 1.0;
774 <      sprintf(painCave.errMsg,
775 <              "SimInfo Warning: No value was set for the skinThickness.\n"
776 <              "\tOpenMD will use a default value of %f Angstroms\n"
777 <              "\tfor this simulation\n", skinThickness_);
778 <      painCave.isFatal = 0;
785 <      simError();
786 <    }            
763 >    // foundIdents is a stl set, so inserting an already found ident
764 >    // will have no effect.
765 >    set<int> foundIdents;
766 >
767 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
768 >      foundIdents.insert((*j));
769 >    
770 >    // now iterate over the foundIdents and get the actual atom types
771 >    // that correspond to these:
772 >    set<int>::iterator it;
773 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
774 >      atomTypes.insert( forceField_->getAtomType((*it)) );
775 >
776 > #endif
777 >
778 >    return atomTypes;        
779    }
780  
781 <  void SimInfo::setupSimType() {
781 >  void SimInfo::setupSimVariables() {
782 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
783 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
784 >    calcBoxDipole_ = false;
785 >    if ( simParams_->haveAccumulateBoxDipole() )
786 >      if ( simParams_->getAccumulateBoxDipole() ) {
787 >        calcBoxDipole_ = true;      
788 >      }
789 >    
790      set<AtomType*>::iterator i;
791      set<AtomType*> atomTypes;
792 <    atomTypes = getSimulatedAtomTypes();
793 <
794 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
795 <
792 >    atomTypes = getSimulatedAtomTypes();    
793      int usesElectrostatic = 0;
794      int usesMetallic = 0;
795      int usesDirectional = 0;
796 +    int usesFluctuatingCharges =  0;
797      //loop over all of the atom types
798      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
799        usesElectrostatic |= (*i)->isElectrostatic();
800        usesMetallic |= (*i)->isMetal();
801        usesDirectional |= (*i)->isDirectional();
802 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
803      }
804  
805   #ifdef IS_MPI    
806      int temp;
807      temp = usesDirectional;
808      MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
809 <
809 >    
810      temp = usesMetallic;
811      MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
812 <
812 >    
813      temp = usesElectrostatic;
814      MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
815 +
816 +    temp = usesFluctuatingCharges;
817 +    MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
818 + #else
819 +
820 +    usesDirectionalAtoms_ = usesDirectional;
821 +    usesMetallicAtoms_ = usesMetallic;
822 +    usesElectrostaticAtoms_ = usesElectrostatic;
823 +    usesFluctuatingCharges_ = usesFluctuatingCharges;
824 +
825   #endif
826 <    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
827 <    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
828 <    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
829 <    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
821 <    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
822 <    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
826 >    
827 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
828 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
829 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
830    }
831  
832 <  void SimInfo::setupFortranSim() {
833 <    int isError;
834 <    int nExclude, nOneTwo, nOneThree, nOneFour;
835 <    vector<int> fortranGlobalGroupMembership;
832 >
833 >  vector<int> SimInfo::getGlobalAtomIndices() {
834 >    SimInfo::MoleculeIterator mi;
835 >    Molecule* mol;
836 >    Molecule::AtomIterator ai;
837 >    Atom* atom;
838 >
839 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
840      
841 <    notifyFortranSkinThickness(&skinThickness_);
841 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
842 >      
843 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
844 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
845 >      }
846 >    }
847 >    return GlobalAtomIndices;
848 >  }
849  
832    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
833    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
834    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
850  
851 <    isError = 0;
851 >  vector<int> SimInfo::getGlobalGroupIndices() {
852 >    SimInfo::MoleculeIterator mi;
853 >    Molecule* mol;
854 >    Molecule::CutoffGroupIterator ci;
855 >    CutoffGroup* cg;
856  
857 <    //globalGroupMembership_ is filled by SimCreator    
858 <    for (int i = 0; i < nGlobalAtoms_; i++) {
859 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
857 >    vector<int> GlobalGroupIndices;
858 >    
859 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
860 >      
861 >      //local index of cutoff group is trivial, it only depends on the
862 >      //order of travesing
863 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
864 >           cg = mol->nextCutoffGroup(ci)) {
865 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
866 >      }        
867      }
868 +    return GlobalGroupIndices;
869 +  }
870  
871 +
872 +  void SimInfo::prepareTopology() {
873 +    int nExclude, nOneTwo, nOneThree, nOneFour;
874 +
875      //calculate mass ratio of cutoff group
844    vector<RealType> mfact;
876      SimInfo::MoleculeIterator mi;
877      Molecule* mol;
878      Molecule::CutoffGroupIterator ci;
# Line 850 | Line 881 | namespace OpenMD {
881      Atom* atom;
882      RealType totalMass;
883  
884 <    //to avoid memory reallocation, reserve enough space for mfact
885 <    mfact.reserve(getNCutoffGroups());
884 >    /**
885 >     * The mass factor is the relative mass of an atom to the total
886 >     * mass of the cutoff group it belongs to.  By default, all atoms
887 >     * are their own cutoff groups, and therefore have mass factors of
888 >     * 1.  We need some special handling for massless atoms, which
889 >     * will be treated as carrying the entire mass of the cutoff
890 >     * group.
891 >     */
892 >    massFactors_.clear();
893 >    massFactors_.resize(getNAtoms(), 1.0);
894      
895      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
896 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
896 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
897 >           cg = mol->nextCutoffGroup(ci)) {
898  
899          totalMass = cg->getMass();
900          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
901            // Check for massless groups - set mfact to 1 if true
902 <          if (totalMass != 0)
903 <            mfact.push_back(atom->getMass()/totalMass);
902 >          if (totalMass != 0)
903 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
904            else
905 <            mfact.push_back( 1.0 );
905 >            massFactors_[atom->getLocalIndex()] = 1.0;
906          }
907        }      
908      }
909  
910 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
871 <    vector<int> identArray;
910 >    // Build the identArray_
911  
912 <    //to avoid memory reallocation, reserve enough space identArray
913 <    identArray.reserve(getNAtoms());
875 <    
912 >    identArray_.clear();
913 >    identArray_.reserve(getNAtoms());    
914      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
915        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
916 <        identArray.push_back(atom->getIdent());
916 >        identArray_.push_back(atom->getIdent());
917        }
918      }    
881
882    //fill molMembershipArray
883    //molMembershipArray is filled by SimCreator    
884    vector<int> molMembershipArray(nGlobalAtoms_);
885    for (int i = 0; i < nGlobalAtoms_; i++) {
886      molMembershipArray[i] = globalMolMembership_[i] + 1;
887    }
919      
920 <    //setup fortran simulation
920 >    //scan topology
921  
922      nExclude = excludedInteractions_.getSize();
923      nOneTwo = oneTwoInteractions_.getSize();
# Line 898 | Line 929 | namespace OpenMD {
929      int* oneThreeList = oneThreeInteractions_.getPairList();
930      int* oneFourList = oneFourInteractions_.getPairList();
931  
932 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
902 <                   &nExclude, excludeList,
903 <                   &nOneTwo, oneTwoList,
904 <                   &nOneThree, oneThreeList,
905 <                   &nOneFour, oneFourList,
906 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
907 <                   &fortranGlobalGroupMembership[0], &isError);
908 <    
909 <    if( isError ){
910 <      
911 <      sprintf( painCave.errMsg,
912 <               "There was an error setting the simulation information in fortran.\n" );
913 <      painCave.isFatal = 1;
914 <      painCave.severity = OPENMD_ERROR;
915 <      simError();
916 <    }
917 <    
918 <    
919 <    sprintf( checkPointMsg,
920 <             "succesfully sent the simulation information to fortran.\n");
921 <    
922 <    errorCheckPoint();
923 <    
924 <    // Setup number of neighbors in neighbor list if present
925 <    if (simParams_->haveNeighborListNeighbors()) {
926 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
927 <      setNeighbors(&nlistNeighbors);
928 <    }
929 <  
930 <
932 >    topologyDone_ = true;
933    }
934  
933
934  void SimInfo::setupFortranParallel() {
935 #ifdef IS_MPI    
936    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
937    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
938    vector<int> localToGlobalCutoffGroupIndex;
939    SimInfo::MoleculeIterator mi;
940    Molecule::AtomIterator ai;
941    Molecule::CutoffGroupIterator ci;
942    Molecule* mol;
943    Atom* atom;
944    CutoffGroup* cg;
945    mpiSimData parallelData;
946    int isError;
947
948    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
949
950      //local index(index in DataStorge) of atom is important
951      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
952        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
953      }
954
955      //local index of cutoff group is trivial, it only depends on the order of travesing
956      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
957        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
958      }        
959        
960    }
961
962    //fill up mpiSimData struct
963    parallelData.nMolGlobal = getNGlobalMolecules();
964    parallelData.nMolLocal = getNMolecules();
965    parallelData.nAtomsGlobal = getNGlobalAtoms();
966    parallelData.nAtomsLocal = getNAtoms();
967    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
968    parallelData.nGroupsLocal = getNCutoffGroups();
969    parallelData.myNode = worldRank;
970    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
971
972    //pass mpiSimData struct and index arrays to fortran
973    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
974                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
975                    &localToGlobalCutoffGroupIndex[0], &isError);
976
977    if (isError) {
978      sprintf(painCave.errMsg,
979              "mpiRefresh errror: fortran didn't like something we gave it.\n");
980      painCave.isFatal = 1;
981      simError();
982    }
983
984    sprintf(checkPointMsg, " mpiRefresh successful.\n");
985    errorCheckPoint();
986
987 #endif
988  }
989
990
991  void SimInfo::setupSwitchingFunction() {    
992    int ft = CUBIC;
993    
994    if (simParams_->haveSwitchingFunctionType()) {
995      string funcType = simParams_->getSwitchingFunctionType();
996      toUpper(funcType);
997      if (funcType == "CUBIC") {
998        ft = CUBIC;
999      } else {
1000        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1001          ft = FIFTH_ORDER_POLY;
1002        } else {
1003          // throw error        
1004          sprintf( painCave.errMsg,
1005                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n"
1006                   "\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".",
1007                   funcType.c_str() );
1008          painCave.isFatal = 1;
1009          simError();
1010        }          
1011      }
1012    }
1013
1014    // send switching function notification to switcheroo
1015    setFunctionType(&ft);
1016
1017  }
1018
1019  void SimInfo::setupAccumulateBoxDipole() {    
1020
1021    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1022    if ( simParams_->haveAccumulateBoxDipole() )
1023      if ( simParams_->getAccumulateBoxDipole() ) {
1024        calcBoxDipole_ = true;
1025      }
1026
1027  }
1028
935    void SimInfo::addProperty(GenericData* genData) {
936      properties_.addProperty(genData);  
937    }
# Line 1060 | Line 966 | namespace OpenMD {
966      Molecule* mol;
967      RigidBody* rb;
968      Atom* atom;
969 +    CutoffGroup* cg;
970      SimInfo::MoleculeIterator mi;
971      Molecule::RigidBodyIterator rbIter;
972 <    Molecule::AtomIterator atomIter;;
972 >    Molecule::AtomIterator atomIter;
973 >    Molecule::CutoffGroupIterator cgIter;
974  
975      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
976          
# Line 1073 | Line 981 | namespace OpenMD {
981        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
982          rb->setSnapshotManager(sman_);
983        }
984 +
985 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
986 +        cg->setSnapshotManager(sman_);
987 +      }
988      }    
989      
990    }
1079
1080  Vector3d SimInfo::getComVel(){
1081    SimInfo::MoleculeIterator i;
1082    Molecule* mol;
1083
1084    Vector3d comVel(0.0);
1085    RealType totalMass = 0.0;
1086    
1087
1088    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1089      RealType mass = mol->getMass();
1090      totalMass += mass;
1091      comVel += mass * mol->getComVel();
1092    }  
1093
1094 #ifdef IS_MPI
1095    RealType tmpMass = totalMass;
1096    Vector3d tmpComVel(comVel);    
1097    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1098    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1099 #endif
1100
1101    comVel /= totalMass;
1102
1103    return comVel;
1104  }
1105
1106  Vector3d SimInfo::getCom(){
1107    SimInfo::MoleculeIterator i;
1108    Molecule* mol;
1109
1110    Vector3d com(0.0);
1111    RealType totalMass = 0.0;
1112    
1113    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1114      RealType mass = mol->getMass();
1115      totalMass += mass;
1116      com += mass * mol->getCom();
1117    }  
1118
1119 #ifdef IS_MPI
1120    RealType tmpMass = totalMass;
1121    Vector3d tmpCom(com);    
1122    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1123    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1124 #endif
1125
1126    com /= totalMass;
1127
1128    return com;
991  
1130  }        
992  
993    ostream& operator <<(ostream& o, SimInfo& info) {
994  
995      return o;
996    }
997    
998 <  
1138 <   /*
1139 <   Returns center of mass and center of mass velocity in one function call.
1140 <   */
1141 <  
1142 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1143 <      SimInfo::MoleculeIterator i;
1144 <      Molecule* mol;
1145 <      
1146 <    
1147 <      RealType totalMass = 0.0;
1148 <    
1149 <
1150 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1151 <         RealType mass = mol->getMass();
1152 <         totalMass += mass;
1153 <         com += mass * mol->getCom();
1154 <         comVel += mass * mol->getComVel();          
1155 <      }  
1156 <      
1157 < #ifdef IS_MPI
1158 <      RealType tmpMass = totalMass;
1159 <      Vector3d tmpCom(com);  
1160 <      Vector3d tmpComVel(comVel);
1161 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1162 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1163 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1164 < #endif
1165 <      
1166 <      com /= totalMass;
1167 <      comVel /= totalMass;
1168 <   }        
1169 <  
1170 <   /*
1171 <   Return intertia tensor for entire system and angular momentum Vector.
1172 <
1173 <
1174 <       [  Ixx -Ixy  -Ixz ]
1175 <    J =| -Iyx  Iyy  -Iyz |
1176 <       [ -Izx -Iyz   Izz ]
1177 <    */
1178 <
1179 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1180 <      
1181 <
1182 <      RealType xx = 0.0;
1183 <      RealType yy = 0.0;
1184 <      RealType zz = 0.0;
1185 <      RealType xy = 0.0;
1186 <      RealType xz = 0.0;
1187 <      RealType yz = 0.0;
1188 <      Vector3d com(0.0);
1189 <      Vector3d comVel(0.0);
1190 <      
1191 <      getComAll(com, comVel);
1192 <      
1193 <      SimInfo::MoleculeIterator i;
1194 <      Molecule* mol;
1195 <      
1196 <      Vector3d thisq(0.0);
1197 <      Vector3d thisv(0.0);
1198 <
1199 <      RealType thisMass = 0.0;
1200 <    
1201 <      
1202 <      
1203 <  
1204 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1205 <        
1206 <         thisq = mol->getCom()-com;
1207 <         thisv = mol->getComVel()-comVel;
1208 <         thisMass = mol->getMass();
1209 <         // Compute moment of intertia coefficients.
1210 <         xx += thisq[0]*thisq[0]*thisMass;
1211 <         yy += thisq[1]*thisq[1]*thisMass;
1212 <         zz += thisq[2]*thisq[2]*thisMass;
1213 <        
1214 <         // compute products of intertia
1215 <         xy += thisq[0]*thisq[1]*thisMass;
1216 <         xz += thisq[0]*thisq[2]*thisMass;
1217 <         yz += thisq[1]*thisq[2]*thisMass;
1218 <            
1219 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1220 <            
1221 <      }  
1222 <      
1223 <      
1224 <      inertiaTensor(0,0) = yy + zz;
1225 <      inertiaTensor(0,1) = -xy;
1226 <      inertiaTensor(0,2) = -xz;
1227 <      inertiaTensor(1,0) = -xy;
1228 <      inertiaTensor(1,1) = xx + zz;
1229 <      inertiaTensor(1,2) = -yz;
1230 <      inertiaTensor(2,0) = -xz;
1231 <      inertiaTensor(2,1) = -yz;
1232 <      inertiaTensor(2,2) = xx + yy;
1233 <      
1234 < #ifdef IS_MPI
1235 <      Mat3x3d tmpI(inertiaTensor);
1236 <      Vector3d tmpAngMom;
1237 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1238 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1239 < #endif
1240 <              
1241 <      return;
1242 <   }
1243 <
1244 <   //Returns the angular momentum of the system
1245 <   Vector3d SimInfo::getAngularMomentum(){
1246 <      
1247 <      Vector3d com(0.0);
1248 <      Vector3d comVel(0.0);
1249 <      Vector3d angularMomentum(0.0);
1250 <      
1251 <      getComAll(com,comVel);
1252 <      
1253 <      SimInfo::MoleculeIterator i;
1254 <      Molecule* mol;
1255 <      
1256 <      Vector3d thisr(0.0);
1257 <      Vector3d thisp(0.0);
1258 <      
1259 <      RealType thisMass;
1260 <      
1261 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1262 <        thisMass = mol->getMass();
1263 <        thisr = mol->getCom()-com;
1264 <        thisp = (mol->getComVel()-comVel)*thisMass;
1265 <        
1266 <        angularMomentum += cross( thisr, thisp );
1267 <        
1268 <      }  
1269 <      
1270 < #ifdef IS_MPI
1271 <      Vector3d tmpAngMom;
1272 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1273 < #endif
1274 <      
1275 <      return angularMomentum;
1276 <   }
1277 <  
998 >  
999    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1000      return IOIndexToIntegrableObject.at(index);
1001    }
# Line 1282 | Line 1003 | namespace OpenMD {
1003    void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1004      IOIndexToIntegrableObject= v;
1005    }
1285
1286  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1287     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1288     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1289     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1290  */
1291  void SimInfo::getGyrationalVolume(RealType &volume){
1292    Mat3x3d intTensor;
1293    RealType det;
1294    Vector3d dummyAngMom;
1295    RealType sysconstants;
1296    RealType geomCnst;
1297
1298    geomCnst = 3.0/2.0;
1299    /* Get the inertial tensor and angular momentum for free*/
1300    getInertiaTensor(intTensor,dummyAngMom);
1301    
1302    det = intTensor.determinant();
1303    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1304    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1305    return;
1306  }
1307
1308  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1309    Mat3x3d intTensor;
1310    Vector3d dummyAngMom;
1311    RealType sysconstants;
1312    RealType geomCnst;
1313
1314    geomCnst = 3.0/2.0;
1315    /* Get the inertial tensor and angular momentum for free*/
1316    getInertiaTensor(intTensor,dummyAngMom);
1317    
1318    detI = intTensor.determinant();
1319    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1320    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1321    return;
1322  }
1006   /*
1007     void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1008        assert( v.size() == nAtoms_ + nRigidBodies_);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines