ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 331 by tim, Sun Feb 13 21:18:27 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1505 by gezelter, Sun Oct 3 22:18:59 2010 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57 + #include "UseTheForce/fCutoffPolicy.h"
58 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59   #include "UseTheForce/doForces_interface.h"
60 < #include "UseTheForce/notifyCutoffs_interface.h"
60 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
61 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
62   #include "utils/MemoryUtils.hpp"
63   #include "utils/simError.h"
64   #include "selection/SelectionManager.hpp"
65 + #include "io/ForceFieldOptions.hpp"
66 + #include "UseTheForce/ForceField.hpp"
67  
68 +
69   #ifdef IS_MPI
70   #include "UseTheForce/mpiComponentPlan.h"
71   #include "UseTheForce/DarkSide/simParallel_interface.h"
72   #endif
73  
74 < namespace oopse {
74 > namespace OpenMD {
75 >  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 >    std::map<int, std::set<int> >::iterator i = container.find(index);
77 >    std::set<int> result;
78 >    if (i != container.end()) {
79 >        result = i->second;
80 >    }
81  
82 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
83 <                                ForceField* ff, Globals* simParams) :
84 <                                forceField_(ff), simParams_(simParams),
85 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
86 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
87 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
88 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
89 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
90 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
82 >    return result;
83 >  }
84 >  
85 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
86 >    forceField_(ff), simParams_(simParams),
87 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
89 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
90 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
91 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
92 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
93 >    calcBoxDipole_(false), useAtomicVirial_(true) {
94  
95 <            
96 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
97 <    MoleculeStamp* molStamp;
98 <    int nMolWithSameStamp;
99 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
100 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
101 <    CutoffGroupStamp* cgStamp;    
102 <    RigidBodyStamp* rbStamp;
103 <    int nRigidAtoms = 0;
104 <    
105 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
106 <        molStamp = i->first;
107 <        nMolWithSameStamp = i->second;
95 >
96 >      MoleculeStamp* molStamp;
97 >      int nMolWithSameStamp;
98 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
99 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
100 >      CutoffGroupStamp* cgStamp;    
101 >      RigidBodyStamp* rbStamp;
102 >      int nRigidAtoms = 0;
103 >
104 >      std::vector<Component*> components = simParams->getComponents();
105 >      
106 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
107 >        molStamp = (*i)->getMoleculeStamp();
108 >        nMolWithSameStamp = (*i)->getNMol();
109          
110          addMoleculeStamp(molStamp, nMolWithSameStamp);
111  
112          //calculate atoms in molecules
113          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
114  
97
115          //calculate atoms in cutoff groups
116          int nAtomsInGroups = 0;
117          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118          
119          for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 <            cgStamp = molStamp->getCutoffGroup(j);
121 <            nAtomsInGroups += cgStamp->getNMembers();
120 >          cgStamp = molStamp->getCutoffGroupStamp(j);
121 >          nAtomsInGroups += cgStamp->getNMembers();
122          }
123  
124          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125 +
126          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
127  
128          //calculate atoms in rigid bodies
# Line 112 | Line 130 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
130          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131          
132          for (int j=0; j < nRigidBodiesInStamp; j++) {
133 <            rbStamp = molStamp->getRigidBody(j);
134 <            nAtomsInRigidBodies += rbStamp->getNMembers();
133 >          rbStamp = molStamp->getRigidBodyStamp(j);
134 >          nAtomsInRigidBodies += rbStamp->getNMembers();
135          }
136  
137          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
138          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
139          
140 <    }
140 >      }
141  
142 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
143 <    //therefore the total number of cutoff groups in the system is equal to
144 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
145 <    //file plus the number of cutoff groups defined in meta-data file
146 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
142 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
143 >      //group therefore the total number of cutoff groups in the system is
144 >      //equal to the total number of atoms minus number of atoms belong to
145 >      //cutoff group defined in meta-data file plus the number of cutoff
146 >      //groups defined in meta-data file
147 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
148  
149 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
150 <    //therefore the total number of  integrable objects in the system is equal to
151 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
152 <    //file plus the number of  rigid bodies defined in meta-data file
153 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
149 >      //every free atom (atom does not belong to rigid bodies) is an
150 >      //integrable object therefore the total number of integrable objects
151 >      //in the system is equal to the total number of atoms minus number of
152 >      //atoms belong to rigid body defined in meta-data file plus the number
153 >      //of rigid bodies defined in meta-data file
154 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
155 >                                                + nGlobalRigidBodies_;
156 >  
157 >      nGlobalMols_ = molStampIds_.size();
158 >      molToProcMap_.resize(nGlobalMols_);
159 >    }
160  
161 <    nGlobalMols_ = molStampIds_.size();
162 <
163 < #ifdef IS_MPI    
164 <    molToProcMap_.resize(nGlobalMols_);
165 < #endif
166 <
167 <    selectMan_ = new SelectionManager(this);
143 <    selectMan_->selectAll();
144 < }
145 <
146 < SimInfo::~SimInfo() {
147 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
148 <
149 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
150 <    
161 >  SimInfo::~SimInfo() {
162 >    std::map<int, Molecule*>::iterator i;
163 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
164 >      delete i->second;
165 >    }
166 >    molecules_.clear();
167 >      
168      delete sman_;
169      delete simParams_;
170      delete forceField_;
171 <    delete selectMan_;
155 < }
171 >  }
172  
173 < int SimInfo::getNGlobalConstraints() {
173 >  int SimInfo::getNGlobalConstraints() {
174      int nGlobalConstraints;
175   #ifdef IS_MPI
176      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 163 | Line 179 | int SimInfo::getNGlobalConstraints() {
179      nGlobalConstraints =  nConstraints_;
180   #endif
181      return nGlobalConstraints;
182 < }
182 >  }
183  
184 < bool SimInfo::addMolecule(Molecule* mol) {
184 >  bool SimInfo::addMolecule(Molecule* mol) {
185      MoleculeIterator i;
186  
187      i = molecules_.find(mol->getGlobalIndex());
188      if (i == molecules_.end() ) {
189  
190 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
190 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
191          
192 <        nAtoms_ += mol->getNAtoms();
193 <        nBonds_ += mol->getNBonds();
194 <        nBends_ += mol->getNBends();
195 <        nTorsions_ += mol->getNTorsions();
196 <        nRigidBodies_ += mol->getNRigidBodies();
197 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
198 <        nCutoffGroups_ += mol->getNCutoffGroups();
199 <        nConstraints_ += mol->getNConstraintPairs();
192 >      nAtoms_ += mol->getNAtoms();
193 >      nBonds_ += mol->getNBonds();
194 >      nBends_ += mol->getNBends();
195 >      nTorsions_ += mol->getNTorsions();
196 >      nInversions_ += mol->getNInversions();
197 >      nRigidBodies_ += mol->getNRigidBodies();
198 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
199 >      nCutoffGroups_ += mol->getNCutoffGroups();
200 >      nConstraints_ += mol->getNConstraintPairs();
201  
202 <        addExcludePairs(mol);
203 <        
204 <        return true;
202 >      addInteractionPairs(mol);
203 >  
204 >      return true;
205      } else {
206 <        return false;
206 >      return false;
207      }
208 < }
208 >  }
209  
210 < bool SimInfo::removeMolecule(Molecule* mol) {
210 >  bool SimInfo::removeMolecule(Molecule* mol) {
211      MoleculeIterator i;
212      i = molecules_.find(mol->getGlobalIndex());
213  
214      if (i != molecules_.end() ) {
215  
216 <        assert(mol == i->second);
216 >      assert(mol == i->second);
217          
218 <        nAtoms_ -= mol->getNAtoms();
219 <        nBonds_ -= mol->getNBonds();
220 <        nBends_ -= mol->getNBends();
221 <        nTorsions_ -= mol->getNTorsions();
222 <        nRigidBodies_ -= mol->getNRigidBodies();
223 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
224 <        nCutoffGroups_ -= mol->getNCutoffGroups();
225 <        nConstraints_ -= mol->getNConstraintPairs();
218 >      nAtoms_ -= mol->getNAtoms();
219 >      nBonds_ -= mol->getNBonds();
220 >      nBends_ -= mol->getNBends();
221 >      nTorsions_ -= mol->getNTorsions();
222 >      nInversions_ -= mol->getNInversions();
223 >      nRigidBodies_ -= mol->getNRigidBodies();
224 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
225 >      nCutoffGroups_ -= mol->getNCutoffGroups();
226 >      nConstraints_ -= mol->getNConstraintPairs();
227  
228 <        removeExcludePairs(mol);
229 <        molecules_.erase(mol->getGlobalIndex());
228 >      removeInteractionPairs(mol);
229 >      molecules_.erase(mol->getGlobalIndex());
230  
231 <        delete mol;
231 >      delete mol;
232          
233 <        return true;
233 >      return true;
234      } else {
235 <        return false;
235 >      return false;
236      }
237  
238  
239 < }    
239 >  }    
240  
241          
242 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
242 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
243      i = molecules_.begin();
244      return i == molecules_.end() ? NULL : i->second;
245 < }    
245 >  }    
246  
247 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
247 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
248      ++i;
249      return i == molecules_.end() ? NULL : i->second;    
250 < }
250 >  }
251  
252  
253 < void SimInfo::calcNdf() {
253 >  void SimInfo::calcNdf() {
254      int ndf_local;
255      MoleculeIterator i;
256      std::vector<StuntDouble*>::iterator j;
# Line 242 | Line 260 | void SimInfo::calcNdf() {
260      ndf_local = 0;
261      
262      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
263 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
264 <               integrableObject = mol->nextIntegrableObject(j)) {
263 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
264 >           integrableObject = mol->nextIntegrableObject(j)) {
265  
266 <            ndf_local += 3;
266 >        ndf_local += 3;
267  
268 <            if (integrableObject->isDirectional()) {
269 <                if (integrableObject->isLinear()) {
270 <                    ndf_local += 2;
271 <                } else {
272 <                    ndf_local += 3;
273 <                }
274 <            }
268 >        if (integrableObject->isDirectional()) {
269 >          if (integrableObject->isLinear()) {
270 >            ndf_local += 2;
271 >          } else {
272 >            ndf_local += 3;
273 >          }
274 >        }
275              
276 <        }//end for (integrableObject)
277 <    }// end for (mol)
276 >      }
277 >    }
278      
279      // n_constraints is local, so subtract them on each processor
280      ndf_local -= nConstraints_;
# Line 271 | Line 289 | void SimInfo::calcNdf() {
289      // entire system:
290      ndf_ = ndf_ - 3 - nZconstraint_;
291  
292 < }
292 >  }
293  
294 < void SimInfo::calcNdfRaw() {
294 >  int SimInfo::getFdf() {
295 > #ifdef IS_MPI
296 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
297 > #else
298 >    fdf_ = fdf_local;
299 > #endif
300 >    return fdf_;
301 >  }
302 >    
303 >  void SimInfo::calcNdfRaw() {
304      int ndfRaw_local;
305  
306      MoleculeIterator i;
# Line 285 | Line 312 | void SimInfo::calcNdfRaw() {
312      ndfRaw_local = 0;
313      
314      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
315 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
316 <               integrableObject = mol->nextIntegrableObject(j)) {
315 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
316 >           integrableObject = mol->nextIntegrableObject(j)) {
317  
318 <            ndfRaw_local += 3;
318 >        ndfRaw_local += 3;
319  
320 <            if (integrableObject->isDirectional()) {
321 <                if (integrableObject->isLinear()) {
322 <                    ndfRaw_local += 2;
323 <                } else {
324 <                    ndfRaw_local += 3;
325 <                }
326 <            }
320 >        if (integrableObject->isDirectional()) {
321 >          if (integrableObject->isLinear()) {
322 >            ndfRaw_local += 2;
323 >          } else {
324 >            ndfRaw_local += 3;
325 >          }
326 >        }
327              
328 <        }
328 >      }
329      }
330      
331   #ifdef IS_MPI
# Line 306 | Line 333 | void SimInfo::calcNdfRaw() {
333   #else
334      ndfRaw_ = ndfRaw_local;
335   #endif
336 < }
336 >  }
337  
338 < void SimInfo::calcNdfTrans() {
338 >  void SimInfo::calcNdfTrans() {
339      int ndfTrans_local;
340  
341      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 322 | Line 349 | void SimInfo::calcNdfTrans() {
349  
350      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
351  
352 < }
352 >  }
353  
354 < void SimInfo::addExcludePairs(Molecule* mol) {
354 >  void SimInfo::addInteractionPairs(Molecule* mol) {
355 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
356      std::vector<Bond*>::iterator bondIter;
357      std::vector<Bend*>::iterator bendIter;
358      std::vector<Torsion*>::iterator torsionIter;
359 +    std::vector<Inversion*>::iterator inversionIter;
360      Bond* bond;
361      Bend* bend;
362      Torsion* torsion;
363 +    Inversion* inversion;
364      int a;
365      int b;
366      int c;
367      int d;
368 +
369 +    // atomGroups can be used to add special interaction maps between
370 +    // groups of atoms that are in two separate rigid bodies.
371 +    // However, most site-site interactions between two rigid bodies
372 +    // are probably not special, just the ones between the physically
373 +    // bonded atoms.  Interactions *within* a single rigid body should
374 +    // always be excluded.  These are done at the bottom of this
375 +    // function.
376 +
377 +    std::map<int, std::set<int> > atomGroups;
378 +    Molecule::RigidBodyIterator rbIter;
379 +    RigidBody* rb;
380 +    Molecule::IntegrableObjectIterator ii;
381 +    StuntDouble* integrableObject;
382      
383 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
384 <        a = bond->getAtomA()->getGlobalIndex();
385 <        b = bond->getAtomB()->getGlobalIndex();        
386 <        exclude_.addPair(a, b);
383 >    for (integrableObject = mol->beginIntegrableObject(ii);
384 >         integrableObject != NULL;
385 >         integrableObject = mol->nextIntegrableObject(ii)) {
386 >      
387 >      if (integrableObject->isRigidBody()) {
388 >        rb = static_cast<RigidBody*>(integrableObject);
389 >        std::vector<Atom*> atoms = rb->getAtoms();
390 >        std::set<int> rigidAtoms;
391 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
392 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
393 >        }
394 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
395 >          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
396 >        }      
397 >      } else {
398 >        std::set<int> oneAtomSet;
399 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
400 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
401 >      }
402 >    }  
403 >          
404 >    for (bond= mol->beginBond(bondIter); bond != NULL;
405 >         bond = mol->nextBond(bondIter)) {
406 >
407 >      a = bond->getAtomA()->getGlobalIndex();
408 >      b = bond->getAtomB()->getGlobalIndex();  
409 >    
410 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
411 >        oneTwoInteractions_.addPair(a, b);
412 >      } else {
413 >        excludedInteractions_.addPair(a, b);
414 >      }
415      }
416  
417 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
418 <        a = bend->getAtomA()->getGlobalIndex();
347 <        b = bend->getAtomB()->getGlobalIndex();        
348 <        c = bend->getAtomC()->getGlobalIndex();
417 >    for (bend= mol->beginBend(bendIter); bend != NULL;
418 >         bend = mol->nextBend(bendIter)) {
419  
420 <        exclude_.addPair(a, b);
421 <        exclude_.addPair(a, c);
422 <        exclude_.addPair(b, c);        
420 >      a = bend->getAtomA()->getGlobalIndex();
421 >      b = bend->getAtomB()->getGlobalIndex();        
422 >      c = bend->getAtomC()->getGlobalIndex();
423 >      
424 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
425 >        oneTwoInteractions_.addPair(a, b);      
426 >        oneTwoInteractions_.addPair(b, c);
427 >      } else {
428 >        excludedInteractions_.addPair(a, b);
429 >        excludedInteractions_.addPair(b, c);
430 >      }
431 >
432 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
433 >        oneThreeInteractions_.addPair(a, c);      
434 >      } else {
435 >        excludedInteractions_.addPair(a, c);
436 >      }
437      }
438  
439 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
440 <        a = torsion->getAtomA()->getGlobalIndex();
357 <        b = torsion->getAtomB()->getGlobalIndex();        
358 <        c = torsion->getAtomC()->getGlobalIndex();        
359 <        d = torsion->getAtomD()->getGlobalIndex();        
439 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
440 >         torsion = mol->nextTorsion(torsionIter)) {
441  
442 <        exclude_.addPair(a, b);
443 <        exclude_.addPair(a, c);
444 <        exclude_.addPair(a, d);
445 <        exclude_.addPair(b, c);
365 <        exclude_.addPair(b, d);
366 <        exclude_.addPair(c, d);        
367 <    }
442 >      a = torsion->getAtomA()->getGlobalIndex();
443 >      b = torsion->getAtomB()->getGlobalIndex();        
444 >      c = torsion->getAtomC()->getGlobalIndex();        
445 >      d = torsion->getAtomD()->getGlobalIndex();      
446  
447 <    
448 < }
447 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
448 >        oneTwoInteractions_.addPair(a, b);      
449 >        oneTwoInteractions_.addPair(b, c);
450 >        oneTwoInteractions_.addPair(c, d);
451 >      } else {
452 >        excludedInteractions_.addPair(a, b);
453 >        excludedInteractions_.addPair(b, c);
454 >        excludedInteractions_.addPair(c, d);
455 >      }
456  
457 < void SimInfo::removeExcludePairs(Molecule* mol) {
457 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
458 >        oneThreeInteractions_.addPair(a, c);      
459 >        oneThreeInteractions_.addPair(b, d);      
460 >      } else {
461 >        excludedInteractions_.addPair(a, c);
462 >        excludedInteractions_.addPair(b, d);
463 >      }
464 >
465 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
466 >        oneFourInteractions_.addPair(a, d);      
467 >      } else {
468 >        excludedInteractions_.addPair(a, d);
469 >      }
470 >    }
471 >
472 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
473 >         inversion = mol->nextInversion(inversionIter)) {
474 >
475 >      a = inversion->getAtomA()->getGlobalIndex();
476 >      b = inversion->getAtomB()->getGlobalIndex();        
477 >      c = inversion->getAtomC()->getGlobalIndex();        
478 >      d = inversion->getAtomD()->getGlobalIndex();        
479 >
480 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
481 >        oneTwoInteractions_.addPair(a, b);      
482 >        oneTwoInteractions_.addPair(a, c);
483 >        oneTwoInteractions_.addPair(a, d);
484 >      } else {
485 >        excludedInteractions_.addPair(a, b);
486 >        excludedInteractions_.addPair(a, c);
487 >        excludedInteractions_.addPair(a, d);
488 >      }
489 >
490 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
491 >        oneThreeInteractions_.addPair(b, c);    
492 >        oneThreeInteractions_.addPair(b, d);    
493 >        oneThreeInteractions_.addPair(c, d);      
494 >      } else {
495 >        excludedInteractions_.addPair(b, c);
496 >        excludedInteractions_.addPair(b, d);
497 >        excludedInteractions_.addPair(c, d);
498 >      }
499 >    }
500 >
501 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
502 >         rb = mol->nextRigidBody(rbIter)) {
503 >      std::vector<Atom*> atoms = rb->getAtoms();
504 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
505 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
506 >          a = atoms[i]->getGlobalIndex();
507 >          b = atoms[j]->getGlobalIndex();
508 >          excludedInteractions_.addPair(a, b);
509 >        }
510 >      }
511 >    }        
512 >
513 >  }
514 >
515 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
516 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
517      std::vector<Bond*>::iterator bondIter;
518      std::vector<Bend*>::iterator bendIter;
519      std::vector<Torsion*>::iterator torsionIter;
520 +    std::vector<Inversion*>::iterator inversionIter;
521      Bond* bond;
522      Bend* bend;
523      Torsion* torsion;
524 +    Inversion* inversion;
525      int a;
526      int b;
527      int c;
528      int d;
529 +
530 +    std::map<int, std::set<int> > atomGroups;
531 +    Molecule::RigidBodyIterator rbIter;
532 +    RigidBody* rb;
533 +    Molecule::IntegrableObjectIterator ii;
534 +    StuntDouble* integrableObject;
535      
536 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
537 <        a = bond->getAtomA()->getGlobalIndex();
538 <        b = bond->getAtomB()->getGlobalIndex();        
539 <        exclude_.removePair(a, b);
536 >    for (integrableObject = mol->beginIntegrableObject(ii);
537 >         integrableObject != NULL;
538 >         integrableObject = mol->nextIntegrableObject(ii)) {
539 >      
540 >      if (integrableObject->isRigidBody()) {
541 >        rb = static_cast<RigidBody*>(integrableObject);
542 >        std::vector<Atom*> atoms = rb->getAtoms();
543 >        std::set<int> rigidAtoms;
544 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
545 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
546 >        }
547 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
548 >          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
549 >        }      
550 >      } else {
551 >        std::set<int> oneAtomSet;
552 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
553 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
554 >      }
555 >    }  
556 >
557 >    for (bond= mol->beginBond(bondIter); bond != NULL;
558 >         bond = mol->nextBond(bondIter)) {
559 >      
560 >      a = bond->getAtomA()->getGlobalIndex();
561 >      b = bond->getAtomB()->getGlobalIndex();  
562 >    
563 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
564 >        oneTwoInteractions_.removePair(a, b);
565 >      } else {
566 >        excludedInteractions_.removePair(a, b);
567 >      }
568      }
569  
570 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
571 <        a = bend->getAtomA()->getGlobalIndex();
392 <        b = bend->getAtomB()->getGlobalIndex();        
393 <        c = bend->getAtomC()->getGlobalIndex();
570 >    for (bend= mol->beginBend(bendIter); bend != NULL;
571 >         bend = mol->nextBend(bendIter)) {
572  
573 <        exclude_.removePair(a, b);
574 <        exclude_.removePair(a, c);
575 <        exclude_.removePair(b, c);        
573 >      a = bend->getAtomA()->getGlobalIndex();
574 >      b = bend->getAtomB()->getGlobalIndex();        
575 >      c = bend->getAtomC()->getGlobalIndex();
576 >      
577 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
578 >        oneTwoInteractions_.removePair(a, b);      
579 >        oneTwoInteractions_.removePair(b, c);
580 >      } else {
581 >        excludedInteractions_.removePair(a, b);
582 >        excludedInteractions_.removePair(b, c);
583 >      }
584 >
585 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
586 >        oneThreeInteractions_.removePair(a, c);      
587 >      } else {
588 >        excludedInteractions_.removePair(a, c);
589 >      }
590      }
591  
592 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
593 <        a = torsion->getAtomA()->getGlobalIndex();
402 <        b = torsion->getAtomB()->getGlobalIndex();        
403 <        c = torsion->getAtomC()->getGlobalIndex();        
404 <        d = torsion->getAtomD()->getGlobalIndex();        
592 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
593 >         torsion = mol->nextTorsion(torsionIter)) {
594  
595 <        exclude_.removePair(a, b);
596 <        exclude_.removePair(a, c);
597 <        exclude_.removePair(a, d);
598 <        exclude_.removePair(b, c);
599 <        exclude_.removePair(b, d);
600 <        exclude_.removePair(c, d);        
595 >      a = torsion->getAtomA()->getGlobalIndex();
596 >      b = torsion->getAtomB()->getGlobalIndex();        
597 >      c = torsion->getAtomC()->getGlobalIndex();        
598 >      d = torsion->getAtomD()->getGlobalIndex();      
599 >  
600 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
601 >        oneTwoInteractions_.removePair(a, b);      
602 >        oneTwoInteractions_.removePair(b, c);
603 >        oneTwoInteractions_.removePair(c, d);
604 >      } else {
605 >        excludedInteractions_.removePair(a, b);
606 >        excludedInteractions_.removePair(b, c);
607 >        excludedInteractions_.removePair(c, d);
608 >      }
609 >
610 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
611 >        oneThreeInteractions_.removePair(a, c);      
612 >        oneThreeInteractions_.removePair(b, d);      
613 >      } else {
614 >        excludedInteractions_.removePair(a, c);
615 >        excludedInteractions_.removePair(b, d);
616 >      }
617 >
618 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
619 >        oneFourInteractions_.removePair(a, d);      
620 >      } else {
621 >        excludedInteractions_.removePair(a, d);
622 >      }
623      }
624  
625 < }
625 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
626 >         inversion = mol->nextInversion(inversionIter)) {
627  
628 +      a = inversion->getAtomA()->getGlobalIndex();
629 +      b = inversion->getAtomB()->getGlobalIndex();        
630 +      c = inversion->getAtomC()->getGlobalIndex();        
631 +      d = inversion->getAtomD()->getGlobalIndex();        
632  
633 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
634 <    int curStampId;
633 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
634 >        oneTwoInteractions_.removePair(a, b);      
635 >        oneTwoInteractions_.removePair(a, c);
636 >        oneTwoInteractions_.removePair(a, d);
637 >      } else {
638 >        excludedInteractions_.removePair(a, b);
639 >        excludedInteractions_.removePair(a, c);
640 >        excludedInteractions_.removePair(a, d);
641 >      }
642  
643 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
644 +        oneThreeInteractions_.removePair(b, c);    
645 +        oneThreeInteractions_.removePair(b, d);    
646 +        oneThreeInteractions_.removePair(c, d);      
647 +      } else {
648 +        excludedInteractions_.removePair(b, c);
649 +        excludedInteractions_.removePair(b, d);
650 +        excludedInteractions_.removePair(c, d);
651 +      }
652 +    }
653 +
654 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
655 +         rb = mol->nextRigidBody(rbIter)) {
656 +      std::vector<Atom*> atoms = rb->getAtoms();
657 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
658 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
659 +          a = atoms[i]->getGlobalIndex();
660 +          b = atoms[j]->getGlobalIndex();
661 +          excludedInteractions_.removePair(a, b);
662 +        }
663 +      }
664 +    }        
665 +    
666 +  }
667 +  
668 +  
669 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
670 +    int curStampId;
671 +    
672      //index from 0
673      curStampId = moleculeStamps_.size();
674  
675      moleculeStamps_.push_back(molStamp);
676      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
677 < }
677 >  }
678  
679 < void SimInfo::update() {
679 >  void SimInfo::update() {
680  
681      setupSimType();
682  
# Line 437 | Line 689 | void SimInfo::update() {
689      //setup fortran force field
690      /** @deprecate */    
691      int isError = 0;
440    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
441    if(isError){
442        sprintf( painCave.errMsg,
443         "ForceField error: There was an error initializing the forceField in fortran.\n" );
444        painCave.isFatal = 1;
445        simError();
446    }
447  
692      
693      setupCutoff();
694 +    
695 +    setupElectrostaticSummationMethod( isError );
696 +    setupSwitchingFunction();
697 +    setupAccumulateBoxDipole();
698  
699 +    if(isError){
700 +      sprintf( painCave.errMsg,
701 +               "ForceField error: There was an error initializing the forceField in fortran.\n" );
702 +      painCave.isFatal = 1;
703 +      simError();
704 +    }
705 +
706      calcNdf();
707      calcNdfRaw();
708      calcNdfTrans();
709  
710      fortranInitialized_ = true;
711 < }
711 >  }
712  
713 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
713 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
714      SimInfo::MoleculeIterator mi;
715      Molecule* mol;
716      Molecule::AtomIterator ai;
# Line 464 | Line 719 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
719  
720      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
721  
722 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
723 <            atomTypes.insert(atom->getAtomType());
724 <        }
722 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
723 >        atomTypes.insert(atom->getAtomType());
724 >      }
725          
726      }
727  
728      return atomTypes;        
729 < }
729 >  }
730  
731 < void SimInfo::setupSimType() {
731 >  void SimInfo::setupSimType() {
732      std::set<AtomType*>::iterator i;
733      std::set<AtomType*> atomTypes;
734      atomTypes = getUniqueAtomTypes();
# Line 481 | Line 736 | void SimInfo::setupSimType() {
736      int useLennardJones = 0;
737      int useElectrostatic = 0;
738      int useEAM = 0;
739 +    int useSC = 0;
740      int useCharge = 0;
741      int useDirectional = 0;
742      int useDipole = 0;
743      int useGayBerne = 0;
744      int useSticky = 0;
745 +    int useStickyPower = 0;
746      int useShape = 0;
747      int useFLARB = 0; //it is not in AtomType yet
748      int useDirectionalAtom = 0;    
749      int useElectrostatics = 0;
750      //usePBC and useRF are from simParams
751 <    int usePBC = simParams_->getPBC();
752 <    int useRF = simParams_->getUseRF();
751 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
752 >    int useRF;
753 >    int useSF;
754 >    int useSP;
755 >    int useBoxDipole;
756  
757 +    std::string myMethod;
758 +
759 +    // set the useRF logical
760 +    useRF = 0;
761 +    useSF = 0;
762 +    useSP = 0;
763 +    useBoxDipole = 0;
764 +
765 +    if (simParams_->haveElectrostaticSummationMethod()) {
766 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
767 +      toUpper(myMethod);
768 +      if (myMethod == "REACTION_FIELD"){
769 +        useRF = 1;
770 +      } else if (myMethod == "SHIFTED_FORCE"){
771 +        useSF = 1;
772 +      } else if (myMethod == "SHIFTED_POTENTIAL"){
773 +        useSP = 1;
774 +      }
775 +    }
776 +    
777 +    if (simParams_->haveAccumulateBoxDipole())
778 +      if (simParams_->getAccumulateBoxDipole())
779 +        useBoxDipole = 1;
780 +
781 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
782 +
783      //loop over all of the atom types
784      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
785 <        useLennardJones |= (*i)->isLennardJones();
786 <        useElectrostatic |= (*i)->isElectrostatic();
787 <        useEAM |= (*i)->isEAM();
788 <        useCharge |= (*i)->isCharge();
789 <        useDirectional |= (*i)->isDirectional();
790 <        useDipole |= (*i)->isDipole();
791 <        useGayBerne |= (*i)->isGayBerne();
792 <        useSticky |= (*i)->isSticky();
793 <        useShape |= (*i)->isShape();
785 >      useLennardJones |= (*i)->isLennardJones();
786 >      useElectrostatic |= (*i)->isElectrostatic();
787 >      useEAM |= (*i)->isEAM();
788 >      useSC |= (*i)->isSC();
789 >      useCharge |= (*i)->isCharge();
790 >      useDirectional |= (*i)->isDirectional();
791 >      useDipole |= (*i)->isDipole();
792 >      useGayBerne |= (*i)->isGayBerne();
793 >      useSticky |= (*i)->isSticky();
794 >      useStickyPower |= (*i)->isStickyPower();
795 >      useShape |= (*i)->isShape();
796      }
797  
798 <    if (useSticky || useDipole || useGayBerne || useShape) {
799 <        useDirectionalAtom = 1;
798 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
799 >      useDirectionalAtom = 1;
800      }
801  
802      if (useCharge || useDipole) {
803 <        useElectrostatics = 1;
803 >      useElectrostatics = 1;
804      }
805  
806   #ifdef IS_MPI    
# Line 539 | Line 827 | void SimInfo::setupSimType() {
827      temp = useSticky;
828      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
829  
830 +    temp = useStickyPower;
831 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
832 +    
833      temp = useGayBerne;
834      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
835  
836      temp = useEAM;
837      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
838  
839 +    temp = useSC;
840 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
841 +    
842      temp = useShape;
843      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
844  
# Line 553 | Line 847 | void SimInfo::setupSimType() {
847  
848      temp = useRF;
849      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
556    
557 #endif
850  
851 +    temp = useSF;
852 +    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
853 +
854 +    temp = useSP;
855 +    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
856 +
857 +    temp = useBoxDipole;
858 +    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
859 +
860 +    temp = useAtomicVirial_;
861 +    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
862 +
863 + #endif
864      fInfo_.SIM_uses_PBC = usePBC;    
865      fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
866      fInfo_.SIM_uses_LennardJones = useLennardJones;
# Line 563 | Line 868 | void SimInfo::setupSimType() {
868      fInfo_.SIM_uses_Charges = useCharge;
869      fInfo_.SIM_uses_Dipoles = useDipole;
870      fInfo_.SIM_uses_Sticky = useSticky;
871 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
872      fInfo_.SIM_uses_GayBerne = useGayBerne;
873      fInfo_.SIM_uses_EAM = useEAM;
874 +    fInfo_.SIM_uses_SC = useSC;
875      fInfo_.SIM_uses_Shapes = useShape;
876      fInfo_.SIM_uses_FLARB = useFLARB;
877      fInfo_.SIM_uses_RF = useRF;
878 +    fInfo_.SIM_uses_SF = useSF;
879 +    fInfo_.SIM_uses_SP = useSP;
880 +    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
881 +    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
882 +  }
883  
884 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
573 <
574 <        if (simParams_->haveDielectric()) {
575 <            fInfo_.dielect = simParams_->getDielectric();
576 <        } else {
577 <            sprintf(painCave.errMsg,
578 <                    "SimSetup Error: No Dielectric constant was set.\n"
579 <                    "\tYou are trying to use Reaction Field without"
580 <                    "\tsetting a dielectric constant!\n");
581 <            painCave.isFatal = 1;
582 <            simError();
583 <        }
584 <        
585 <    } else {
586 <        fInfo_.dielect = 0.0;
587 <    }
588 <
589 < }
590 <
591 < void SimInfo::setupFortranSim() {
884 >  void SimInfo::setupFortranSim() {
885      int isError;
886 <    int nExclude;
886 >    int nExclude, nOneTwo, nOneThree, nOneFour;
887      std::vector<int> fortranGlobalGroupMembership;
888      
596    nExclude = exclude_.getSize();
889      isError = 0;
890  
891      //globalGroupMembership_ is filled by SimCreator    
892      for (int i = 0; i < nGlobalAtoms_; i++) {
893 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
893 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
894      }
895  
896      //calculate mass ratio of cutoff group
897 <    std::vector<double> mfact;
897 >    std::vector<RealType> mfact;
898      SimInfo::MoleculeIterator mi;
899      Molecule* mol;
900      Molecule::CutoffGroupIterator ci;
901      CutoffGroup* cg;
902      Molecule::AtomIterator ai;
903      Atom* atom;
904 <    double totalMass;
904 >    RealType totalMass;
905  
906      //to avoid memory reallocation, reserve enough space for mfact
907      mfact.reserve(getNCutoffGroups());
908      
909      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
910 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
910 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
911  
912 <            totalMass = cg->getMass();
913 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
914 <                        mfact.push_back(atom->getMass()/totalMass);
915 <            }
916 <
917 <        }      
912 >        totalMass = cg->getMass();
913 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
914 >          // Check for massless groups - set mfact to 1 if true
915 >          if (totalMass != 0)
916 >            mfact.push_back(atom->getMass()/totalMass);
917 >          else
918 >            mfact.push_back( 1.0 );
919 >        }
920 >      }      
921      }
922  
923      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 632 | Line 927 | void SimInfo::setupFortranSim() {
927      identArray.reserve(getNAtoms());
928      
929      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
930 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
931 <            identArray.push_back(atom->getIdent());
932 <        }
930 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
931 >        identArray.push_back(atom->getIdent());
932 >      }
933      }    
934  
935      //fill molMembershipArray
936      //molMembershipArray is filled by SimCreator    
937      std::vector<int> molMembershipArray(nGlobalAtoms_);
938      for (int i = 0; i < nGlobalAtoms_; i++) {
939 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
939 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
940      }
941      
942      //setup fortran simulation
648    //gloalExcludes and molMembershipArray should go away (They are never used)
649    //why the hell fortran need to know molecule?
650    //OOPSE = Object-Obfuscated Parallel Simulation Engine
651    int nGlobalExcludes = 0;
652    int* globalExcludes = NULL;
653    int* excludeList = exclude_.getExcludeList();
654    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
655                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
656                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
943  
944 <    if( isError ){
944 >    nExclude = excludedInteractions_.getSize();
945 >    nOneTwo = oneTwoInteractions_.getSize();
946 >    nOneThree = oneThreeInteractions_.getSize();
947 >    nOneFour = oneFourInteractions_.getSize();
948  
949 <        sprintf( painCave.errMsg,
950 <                 "There was an error setting the simulation information in fortran.\n" );
951 <        painCave.isFatal = 1;
952 <        painCave.severity = OOPSE_ERROR;
664 <        simError();
665 <    }
949 >    int* excludeList = excludedInteractions_.getPairList();
950 >    int* oneTwoList = oneTwoInteractions_.getPairList();
951 >    int* oneThreeList = oneThreeInteractions_.getPairList();
952 >    int* oneFourList = oneFourInteractions_.getPairList();
953  
954 < #ifdef IS_MPI
954 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
955 >                   &nExclude, excludeList,
956 >                   &nOneTwo, oneTwoList,
957 >                   &nOneThree, oneThreeList,
958 >                   &nOneFour, oneFourList,
959 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
960 >                   &fortranGlobalGroupMembership[0], &isError);
961 >    
962 >    if( isError ){
963 >      
964 >      sprintf( painCave.errMsg,
965 >               "There was an error setting the simulation information in fortran.\n" );
966 >      painCave.isFatal = 1;
967 >      painCave.severity = OPENMD_ERROR;
968 >      simError();
969 >    }
970 >    
971 >    
972      sprintf( checkPointMsg,
973 <       "succesfully sent the simulation information to fortran.\n");
974 <    MPIcheckPoint();
975 < #endif // is_mpi
976 < }
973 >             "succesfully sent the simulation information to fortran.\n");
974 >    
975 >    errorCheckPoint();
976 >    
977 >    // Setup number of neighbors in neighbor list if present
978 >    if (simParams_->haveNeighborListNeighbors()) {
979 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
980 >      setNeighbors(&nlistNeighbors);
981 >    }
982 >  
983  
984 +  }
985  
986 < #ifdef IS_MPI
987 < void SimInfo::setupFortranParallel() {
988 <    
986 >
987 >  void SimInfo::setupFortranParallel() {
988 > #ifdef IS_MPI    
989      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
990      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
991      std::vector<int> localToGlobalCutoffGroupIndex;
# Line 689 | Line 1000 | void SimInfo::setupFortranParallel() {
1000  
1001      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1002  
1003 <        //local index(index in DataStorge) of atom is important
1004 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1005 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1006 <        }
1003 >      //local index(index in DataStorge) of atom is important
1004 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1005 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1006 >      }
1007  
1008 <        //local index of cutoff group is trivial, it only depends on the order of travesing
1009 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1010 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1011 <        }        
1008 >      //local index of cutoff group is trivial, it only depends on the order of travesing
1009 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1010 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1011 >      }        
1012          
1013      }
1014  
# Line 717 | Line 1028 | void SimInfo::setupFortranParallel() {
1028                      &localToGlobalCutoffGroupIndex[0], &isError);
1029  
1030      if (isError) {
1031 <        sprintf(painCave.errMsg,
1032 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
1033 <        painCave.isFatal = 1;
1034 <        simError();
1031 >      sprintf(painCave.errMsg,
1032 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1033 >      painCave.isFatal = 1;
1034 >      simError();
1035      }
1036  
1037      sprintf(checkPointMsg, " mpiRefresh successful.\n");
1038 <    MPIcheckPoint();
1038 >    errorCheckPoint();
1039  
729
730 }
731
1040   #endif
1041 +  }
1042  
1043 < double SimInfo::calcMaxCutoffRadius() {
1043 >  void SimInfo::setupCutoff() {          
1044 >    
1045 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1046  
1047 +    // Check the cutoff policy
1048 +    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1049  
1050 <    std::set<AtomType*> atomTypes;
1051 <    std::set<AtomType*>::iterator i;
1052 <    std::vector<double> cutoffRadius;
1050 >    // Set LJ shifting bools to false
1051 >    ljsp_ = 0;
1052 >    ljsf_ = 0;
1053  
1054 <    //get the unique atom types
1055 <    atomTypes = getUniqueAtomTypes();
1056 <
1057 <    //query the max cutoff radius among these atom types
1058 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
746 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
1054 >    std::string myPolicy;
1055 >    if (forceFieldOptions_.haveCutoffPolicy()){
1056 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
1057 >    }else if (simParams_->haveCutoffPolicy()) {
1058 >      myPolicy = simParams_->getCutoffPolicy();
1059      }
1060  
1061 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
1062 < #ifdef IS_MPI
1063 <    //pick the max cutoff radius among the processors
1064 < #endif
1061 >    if (!myPolicy.empty()){
1062 >      toUpper(myPolicy);
1063 >      if (myPolicy == "MIX") {
1064 >        cp = MIX_CUTOFF_POLICY;
1065 >      } else {
1066 >        if (myPolicy == "MAX") {
1067 >          cp = MAX_CUTOFF_POLICY;
1068 >        } else {
1069 >          if (myPolicy == "TRADITIONAL") {            
1070 >            cp = TRADITIONAL_CUTOFF_POLICY;
1071 >          } else {
1072 >            // throw error        
1073 >            sprintf( painCave.errMsg,
1074 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1075 >            painCave.isFatal = 1;
1076 >            simError();
1077 >          }    
1078 >        }          
1079 >      }
1080 >    }          
1081 >    notifyFortranCutoffPolicy(&cp);
1082  
1083 <    return maxCutoffRadius;
1084 < }
1083 >    // Check the Skin Thickness for neighborlists
1084 >    RealType skin;
1085 >    if (simParams_->haveSkinThickness()) {
1086 >      skin = simParams_->getSkinThickness();
1087 >      notifyFortranSkinThickness(&skin);
1088 >    }            
1089 >        
1090 >    // Check if the cutoff was set explicitly:
1091 >    if (simParams_->haveCutoffRadius()) {
1092 >      rcut_ = simParams_->getCutoffRadius();
1093 >      if (simParams_->haveSwitchingRadius()) {
1094 >        rsw_  = simParams_->getSwitchingRadius();
1095 >      } else {
1096 >        if (fInfo_.SIM_uses_Charges |
1097 >            fInfo_.SIM_uses_Dipoles |
1098 >            fInfo_.SIM_uses_RF) {
1099 >          
1100 >          rsw_ = 0.85 * rcut_;
1101 >          sprintf(painCave.errMsg,
1102 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1103 >                  "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
1104 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1105 >        painCave.isFatal = 0;
1106 >        simError();
1107 >        } else {
1108 >          rsw_ = rcut_;
1109 >          sprintf(painCave.errMsg,
1110 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1111 >                  "\tOpenMD will use the same value as the cutoffRadius.\n"
1112 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1113 >          painCave.isFatal = 0;
1114 >          simError();
1115 >        }
1116 >      }
1117  
1118 < void SimInfo::getCutoff(double& rcut, double& rsw) {
1119 <    
1120 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1118 >      if (simParams_->haveElectrostaticSummationMethod()) {
1119 >        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1120 >        toUpper(myMethod);
1121          
1122 <        if (!simParams_->haveRcut()){
1123 <            sprintf(painCave.errMsg,
1124 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1125 <                "\tOOPSE will use a default value of 15.0 angstroms"
1122 >        if (myMethod == "SHIFTED_POTENTIAL") {
1123 >          ljsp_ = 1;
1124 >        } else if (myMethod == "SHIFTED_FORCE") {
1125 >          ljsf_ = 1;
1126 >        }
1127 >      }
1128 >
1129 >      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1130 >      
1131 >    } else {
1132 >      
1133 >      // For electrostatic atoms, we'll assume a large safe value:
1134 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1135 >        sprintf(painCave.errMsg,
1136 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1137 >                "\tOpenMD will use a default value of 15.0 angstroms"
1138                  "\tfor the cutoffRadius.\n");
1139 <            painCave.isFatal = 0;
1140 <            simError();
1141 <            rcut = 15.0;
1142 <        } else{
1143 <            rcut = simParams_->getRcut();
1139 >        painCave.isFatal = 0;
1140 >        simError();
1141 >        rcut_ = 15.0;
1142 >      
1143 >        if (simParams_->haveElectrostaticSummationMethod()) {
1144 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1145 >          toUpper(myMethod);
1146 >          
1147 >          // For the time being, we're tethering the LJ shifted behavior to the
1148 >          // electrostaticSummationMethod keyword options
1149 >          if (myMethod == "SHIFTED_POTENTIAL") {
1150 >            ljsp_ = 1;
1151 >          } else if (myMethod == "SHIFTED_FORCE") {
1152 >            ljsf_ = 1;
1153 >          }
1154 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1155 >            if (simParams_->haveSwitchingRadius()){
1156 >              sprintf(painCave.errMsg,
1157 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1158 >                      "\teven though the electrostaticSummationMethod was\n"
1159 >                      "\tset to %s\n", myMethod.c_str());
1160 >              painCave.isFatal = 1;
1161 >              simError();            
1162 >            }
1163 >          }
1164          }
1165 <
1166 <        if (!simParams_->haveRsw()){
1167 <            sprintf(painCave.errMsg,
1168 <                "SimCreator Warning: No value was set for switchingRadius.\n"
1169 <                "\tOOPSE will use a default value of\n"
1170 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
1171 <            painCave.isFatal = 0;
1172 <            simError();
1173 <            rsw = 0.95 * rcut;
1174 <        } else{
1175 <            rsw = simParams_->getRsw();
1165 >      
1166 >        if (simParams_->haveSwitchingRadius()){
1167 >          rsw_ = simParams_->getSwitchingRadius();
1168 >        } else {        
1169 >          sprintf(painCave.errMsg,
1170 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1171 >                  "\tOpenMD will use a default value of\n"
1172 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1173 >          painCave.isFatal = 0;
1174 >          simError();
1175 >          rsw_ = 0.85 * rcut_;
1176          }
1177  
1178 <    } else {
1179 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1180 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
1178 >        Electrostatic::setElectrostaticCutoffRadius(rcut_, rsw_);
1179 >        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1180 >
1181 >      } else {
1182 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1183 >        // We'll punt and let fortran figure out the cutoffs later.
1184          
1185 <        if (simParams_->haveRcut()) {
790 <            rcut = simParams_->getRcut();
791 <        } else {
792 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
793 <            rcut = calcMaxCutoffRadius();
794 <        }
1185 >        notifyFortranYouAreOnYourOwn();
1186  
1187 <        if (simParams_->haveRsw()) {
797 <            rsw  = simParams_->getRsw();
798 <        } else {
799 <            rsw = rcut;
800 <        }
801 <    
1187 >      }
1188      }
1189 < }
1189 >  }
1190  
1191 < void SimInfo::setupCutoff() {
1192 <    getCutoff(rcut_, rsw_);    
1193 <    double rnblist = rcut_ + 1; // skin of neighbor list
1191 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1192 >    
1193 >    int errorOut;
1194 >    ElectrostaticSummationMethod esm = NONE;
1195 >    ElectrostaticScreeningMethod sm = UNDAMPED;
1196 >    RealType alphaVal;
1197 >    RealType dielectric;
1198 >    
1199 >    errorOut = isError;
1200  
1201 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1202 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
1203 < }
1204 <
1205 < void SimInfo::addProperty(GenericData* genData) {
1206 <    properties_.addProperty(genData);  
1207 < }
1208 <
1209 < void SimInfo::removeProperty(const std::string& propName) {
1210 <    properties_.removeProperty(propName);  
1211 < }
1212 <
1213 < void SimInfo::clearProperties() {
1214 <    properties_.clearProperties();
1215 < }
1216 <
1217 < std::vector<std::string> SimInfo::getPropertyNames() {
1218 <    return properties_.getPropertyNames();  
1219 < }
1220 <      
1221 < std::vector<GenericData*> SimInfo::getProperties() {
1222 <    return properties_.getProperties();
1223 < }
1224 <
1225 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1226 <    return properties_.getPropertyByName(propName);
1227 < }
1228 <
1229 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1230 <    if (sman_ == sman_) {
1231 <        return;
1201 >    if (simParams_->haveElectrostaticSummationMethod()) {
1202 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1203 >      toUpper(myMethod);
1204 >      if (myMethod == "NONE") {
1205 >        esm = NONE;
1206 >      } else {
1207 >        if (myMethod == "SWITCHING_FUNCTION") {
1208 >          esm = SWITCHING_FUNCTION;
1209 >        } else {
1210 >          if (myMethod == "SHIFTED_POTENTIAL") {
1211 >            esm = SHIFTED_POTENTIAL;
1212 >          } else {
1213 >            if (myMethod == "SHIFTED_FORCE") {            
1214 >              esm = SHIFTED_FORCE;
1215 >            } else {
1216 >              if (myMethod == "REACTION_FIELD") {
1217 >                esm = REACTION_FIELD;
1218 >                dielectric = simParams_->getDielectric();
1219 >                if (!simParams_->haveDielectric()) {
1220 >                  // throw warning
1221 >                  sprintf( painCave.errMsg,
1222 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1223 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1224 >                  painCave.isFatal = 0;
1225 >                  simError();
1226 >                }
1227 >              } else {
1228 >                // throw error        
1229 >                sprintf( painCave.errMsg,
1230 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1231 >                         "\t(Input file specified %s .)\n"
1232 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1233 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1234 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1235 >                painCave.isFatal = 1;
1236 >                simError();
1237 >              }    
1238 >            }          
1239 >          }
1240 >        }
1241 >      }
1242      }
1243      
1244 +    if (simParams_->haveElectrostaticScreeningMethod()) {
1245 +      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1246 +      toUpper(myScreen);
1247 +      if (myScreen == "UNDAMPED") {
1248 +        sm = UNDAMPED;
1249 +      } else {
1250 +        if (myScreen == "DAMPED") {
1251 +          sm = DAMPED;
1252 +          if (!simParams_->haveDampingAlpha()) {
1253 +            // first set a cutoff dependent alpha value
1254 +            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1255 +            alphaVal = 0.5125 - rcut_* 0.025;
1256 +            // for values rcut > 20.5, alpha is zero
1257 +            if (alphaVal < 0) alphaVal = 0;
1258 +
1259 +            // throw warning
1260 +            sprintf( painCave.errMsg,
1261 +                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1262 +                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1263 +            painCave.isFatal = 0;
1264 +            simError();
1265 +          } else {
1266 +            alphaVal = simParams_->getDampingAlpha();
1267 +          }
1268 +          
1269 +        } else {
1270 +          // throw error        
1271 +          sprintf( painCave.errMsg,
1272 +                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1273 +                   "\t(Input file specified %s .)\n"
1274 +                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1275 +                   "or \"damped\".\n", myScreen.c_str() );
1276 +          painCave.isFatal = 1;
1277 +          simError();
1278 +        }
1279 +      }
1280 +    }
1281 +    
1282 +
1283 +    Electrostatic::setElectrostaticSummationMethod( esm );
1284 +    Electrostatic::setElectrostaticScreeningMethod( sm );
1285 +    Electrostatic::setDampingAlpha( alphaVal );
1286 +    Electrostatic::setReactionFieldDielectric( dielectric );
1287 +    initFortranFF( &errorOut );
1288 +  }
1289 +
1290 +  void SimInfo::setupSwitchingFunction() {    
1291 +    int ft = CUBIC;
1292 +
1293 +    if (simParams_->haveSwitchingFunctionType()) {
1294 +      std::string funcType = simParams_->getSwitchingFunctionType();
1295 +      toUpper(funcType);
1296 +      if (funcType == "CUBIC") {
1297 +        ft = CUBIC;
1298 +      } else {
1299 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1300 +          ft = FIFTH_ORDER_POLY;
1301 +        } else {
1302 +          // throw error        
1303 +          sprintf( painCave.errMsg,
1304 +                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1305 +          painCave.isFatal = 1;
1306 +          simError();
1307 +        }          
1308 +      }
1309 +    }
1310 +
1311 +    // send switching function notification to switcheroo
1312 +    setFunctionType(&ft);
1313 +
1314 +  }
1315 +
1316 +  void SimInfo::setupAccumulateBoxDipole() {    
1317 +
1318 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1319 +    if ( simParams_->haveAccumulateBoxDipole() )
1320 +      if ( simParams_->getAccumulateBoxDipole() ) {
1321 +        setAccumulateBoxDipole();
1322 +        calcBoxDipole_ = true;
1323 +      }
1324 +
1325 +  }
1326 +
1327 +  void SimInfo::addProperty(GenericData* genData) {
1328 +    properties_.addProperty(genData);  
1329 +  }
1330 +
1331 +  void SimInfo::removeProperty(const std::string& propName) {
1332 +    properties_.removeProperty(propName);  
1333 +  }
1334 +
1335 +  void SimInfo::clearProperties() {
1336 +    properties_.clearProperties();
1337 +  }
1338 +
1339 +  std::vector<std::string> SimInfo::getPropertyNames() {
1340 +    return properties_.getPropertyNames();  
1341 +  }
1342 +      
1343 +  std::vector<GenericData*> SimInfo::getProperties() {
1344 +    return properties_.getProperties();
1345 +  }
1346 +
1347 +  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1348 +    return properties_.getPropertyByName(propName);
1349 +  }
1350 +
1351 +  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1352 +    if (sman_ == sman) {
1353 +      return;
1354 +    }    
1355      delete sman_;
1356      sman_ = sman;
1357  
# Line 851 | Line 1364 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1364  
1365      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1366          
1367 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1368 <            atom->setSnapshotManager(sman_);
1369 <        }
1367 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1368 >        atom->setSnapshotManager(sman_);
1369 >      }
1370          
1371 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1372 <            rb->setSnapshotManager(sman_);
1373 <        }
1371 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1372 >        rb->setSnapshotManager(sman_);
1373 >      }
1374      }    
1375      
1376 < }
1376 >  }
1377  
1378 < Vector3d SimInfo::getComVel(){
1378 >  Vector3d SimInfo::getComVel(){
1379      SimInfo::MoleculeIterator i;
1380      Molecule* mol;
1381  
1382      Vector3d comVel(0.0);
1383 <    double totalMass = 0.0;
1383 >    RealType totalMass = 0.0;
1384      
1385  
1386      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1387 <        double mass = mol->getMass();
1388 <        totalMass += mass;
1389 <        comVel += mass * mol->getComVel();
1387 >      RealType mass = mol->getMass();
1388 >      totalMass += mass;
1389 >      comVel += mass * mol->getComVel();
1390      }  
1391  
1392   #ifdef IS_MPI
1393 <    double tmpMass = totalMass;
1393 >    RealType tmpMass = totalMass;
1394      Vector3d tmpComVel(comVel);    
1395 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1396 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1395 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1396 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1397   #endif
1398  
1399      comVel /= totalMass;
1400  
1401      return comVel;
1402 < }
1402 >  }
1403  
1404 < Vector3d SimInfo::getCom(){
1404 >  Vector3d SimInfo::getCom(){
1405      SimInfo::MoleculeIterator i;
1406      Molecule* mol;
1407  
1408      Vector3d com(0.0);
1409 <    double totalMass = 0.0;
1409 >    RealType totalMass = 0.0;
1410      
1411      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1412 <        double mass = mol->getMass();
1413 <        totalMass += mass;
1414 <        com += mass * mol->getCom();
1412 >      RealType mass = mol->getMass();
1413 >      totalMass += mass;
1414 >      com += mass * mol->getCom();
1415      }  
1416  
1417   #ifdef IS_MPI
1418 <    double tmpMass = totalMass;
1418 >    RealType tmpMass = totalMass;
1419      Vector3d tmpCom(com);    
1420 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1421 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1420 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1421 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1422   #endif
1423  
1424      com /= totalMass;
1425  
1426      return com;
1427  
1428 < }        
1428 >  }        
1429  
1430 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1430 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1431  
1432      return o;
1433 < }
1433 >  }
1434 >  
1435 >  
1436 >   /*
1437 >   Returns center of mass and center of mass velocity in one function call.
1438 >   */
1439 >  
1440 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1441 >      SimInfo::MoleculeIterator i;
1442 >      Molecule* mol;
1443 >      
1444 >    
1445 >      RealType totalMass = 0.0;
1446 >    
1447  
1448 < }//end namespace oopse
1448 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1449 >         RealType mass = mol->getMass();
1450 >         totalMass += mass;
1451 >         com += mass * mol->getCom();
1452 >         comVel += mass * mol->getComVel();          
1453 >      }  
1454 >      
1455 > #ifdef IS_MPI
1456 >      RealType tmpMass = totalMass;
1457 >      Vector3d tmpCom(com);  
1458 >      Vector3d tmpComVel(comVel);
1459 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1460 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1461 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1462 > #endif
1463 >      
1464 >      com /= totalMass;
1465 >      comVel /= totalMass;
1466 >   }        
1467 >  
1468 >   /*
1469 >   Return intertia tensor for entire system and angular momentum Vector.
1470  
1471 +
1472 +       [  Ixx -Ixy  -Ixz ]
1473 +    J =| -Iyx  Iyy  -Iyz |
1474 +       [ -Izx -Iyz   Izz ]
1475 +    */
1476 +
1477 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1478 +      
1479 +
1480 +      RealType xx = 0.0;
1481 +      RealType yy = 0.0;
1482 +      RealType zz = 0.0;
1483 +      RealType xy = 0.0;
1484 +      RealType xz = 0.0;
1485 +      RealType yz = 0.0;
1486 +      Vector3d com(0.0);
1487 +      Vector3d comVel(0.0);
1488 +      
1489 +      getComAll(com, comVel);
1490 +      
1491 +      SimInfo::MoleculeIterator i;
1492 +      Molecule* mol;
1493 +      
1494 +      Vector3d thisq(0.0);
1495 +      Vector3d thisv(0.0);
1496 +
1497 +      RealType thisMass = 0.0;
1498 +    
1499 +      
1500 +      
1501 +  
1502 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1503 +        
1504 +         thisq = mol->getCom()-com;
1505 +         thisv = mol->getComVel()-comVel;
1506 +         thisMass = mol->getMass();
1507 +         // Compute moment of intertia coefficients.
1508 +         xx += thisq[0]*thisq[0]*thisMass;
1509 +         yy += thisq[1]*thisq[1]*thisMass;
1510 +         zz += thisq[2]*thisq[2]*thisMass;
1511 +        
1512 +         // compute products of intertia
1513 +         xy += thisq[0]*thisq[1]*thisMass;
1514 +         xz += thisq[0]*thisq[2]*thisMass;
1515 +         yz += thisq[1]*thisq[2]*thisMass;
1516 +            
1517 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1518 +            
1519 +      }  
1520 +      
1521 +      
1522 +      inertiaTensor(0,0) = yy + zz;
1523 +      inertiaTensor(0,1) = -xy;
1524 +      inertiaTensor(0,2) = -xz;
1525 +      inertiaTensor(1,0) = -xy;
1526 +      inertiaTensor(1,1) = xx + zz;
1527 +      inertiaTensor(1,2) = -yz;
1528 +      inertiaTensor(2,0) = -xz;
1529 +      inertiaTensor(2,1) = -yz;
1530 +      inertiaTensor(2,2) = xx + yy;
1531 +      
1532 + #ifdef IS_MPI
1533 +      Mat3x3d tmpI(inertiaTensor);
1534 +      Vector3d tmpAngMom;
1535 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1536 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1537 + #endif
1538 +              
1539 +      return;
1540 +   }
1541 +
1542 +   //Returns the angular momentum of the system
1543 +   Vector3d SimInfo::getAngularMomentum(){
1544 +      
1545 +      Vector3d com(0.0);
1546 +      Vector3d comVel(0.0);
1547 +      Vector3d angularMomentum(0.0);
1548 +      
1549 +      getComAll(com,comVel);
1550 +      
1551 +      SimInfo::MoleculeIterator i;
1552 +      Molecule* mol;
1553 +      
1554 +      Vector3d thisr(0.0);
1555 +      Vector3d thisp(0.0);
1556 +      
1557 +      RealType thisMass;
1558 +      
1559 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1560 +        thisMass = mol->getMass();
1561 +        thisr = mol->getCom()-com;
1562 +        thisp = (mol->getComVel()-comVel)*thisMass;
1563 +        
1564 +        angularMomentum += cross( thisr, thisp );
1565 +        
1566 +      }  
1567 +      
1568 + #ifdef IS_MPI
1569 +      Vector3d tmpAngMom;
1570 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1571 + #endif
1572 +      
1573 +      return angularMomentum;
1574 +   }
1575 +  
1576 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1577 +    return IOIndexToIntegrableObject.at(index);
1578 +  }
1579 +  
1580 +  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1581 +    IOIndexToIntegrableObject= v;
1582 +  }
1583 +
1584 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1585 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1586 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1587 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1588 +  */
1589 +  void SimInfo::getGyrationalVolume(RealType &volume){
1590 +    Mat3x3d intTensor;
1591 +    RealType det;
1592 +    Vector3d dummyAngMom;
1593 +    RealType sysconstants;
1594 +    RealType geomCnst;
1595 +
1596 +    geomCnst = 3.0/2.0;
1597 +    /* Get the inertial tensor and angular momentum for free*/
1598 +    getInertiaTensor(intTensor,dummyAngMom);
1599 +    
1600 +    det = intTensor.determinant();
1601 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1602 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1603 +    return;
1604 +  }
1605 +
1606 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1607 +    Mat3x3d intTensor;
1608 +    Vector3d dummyAngMom;
1609 +    RealType sysconstants;
1610 +    RealType geomCnst;
1611 +
1612 +    geomCnst = 3.0/2.0;
1613 +    /* Get the inertial tensor and angular momentum for free*/
1614 +    getInertiaTensor(intTensor,dummyAngMom);
1615 +    
1616 +    detI = intTensor.determinant();
1617 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1618 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1619 +    return;
1620 +  }
1621 + /*
1622 +   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1623 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1624 +      sdByGlobalIndex_ = v;
1625 +    }
1626 +
1627 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1628 +      //assert(index < nAtoms_ + nRigidBodies_);
1629 +      return sdByGlobalIndex_.at(index);
1630 +    }  
1631 + */  
1632 + }//end namespace OpenMD
1633 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 331 by tim, Sun Feb 13 21:18:27 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1505 by gezelter, Sun Oct 3 22:18:59 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines