55 |
|
#include "primitives/Molecule.hpp" |
56 |
|
#include "primitives/StuntDouble.hpp" |
57 |
|
#include "UseTheForce/fCutoffPolicy.h" |
58 |
– |
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
58 |
|
#include "UseTheForce/doForces_interface.h" |
59 |
|
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
61 |
– |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
60 |
|
#include "utils/MemoryUtils.hpp" |
61 |
|
#include "utils/simError.h" |
62 |
|
#include "selection/SelectionManager.hpp" |
63 |
|
#include "io/ForceFieldOptions.hpp" |
64 |
|
#include "UseTheForce/ForceField.hpp" |
65 |
+ |
#include "nonbonded/SwitchingFunction.hpp" |
66 |
|
|
67 |
|
|
68 |
|
#ifdef IS_MPI |
70 |
|
#include "UseTheForce/DarkSide/simParallel_interface.h" |
71 |
|
#endif |
72 |
|
|
73 |
+ |
using namespace std; |
74 |
|
namespace OpenMD { |
75 |
– |
std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { |
76 |
– |
std::map<int, std::set<int> >::iterator i = container.find(index); |
77 |
– |
std::set<int> result; |
78 |
– |
if (i != container.end()) { |
79 |
– |
result = i->second; |
80 |
– |
} |
81 |
– |
|
82 |
– |
return result; |
83 |
– |
} |
75 |
|
|
76 |
|
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
77 |
|
forceField_(ff), simParams_(simParams), |
81 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
82 |
|
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
83 |
|
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
84 |
< |
calcBoxDipole_(false), useAtomicVirial_(true) { |
85 |
< |
|
86 |
< |
|
87 |
< |
MoleculeStamp* molStamp; |
88 |
< |
int nMolWithSameStamp; |
89 |
< |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
90 |
< |
int nGroups = 0; //total cutoff groups defined in meta-data file |
91 |
< |
CutoffGroupStamp* cgStamp; |
92 |
< |
RigidBodyStamp* rbStamp; |
93 |
< |
int nRigidAtoms = 0; |
94 |
< |
|
95 |
< |
std::vector<Component*> components = simParams->getComponents(); |
84 |
> |
calcBoxDipole_(false), useAtomicVirial_(true) { |
85 |
> |
|
86 |
> |
MoleculeStamp* molStamp; |
87 |
> |
int nMolWithSameStamp; |
88 |
> |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
89 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
90 |
> |
CutoffGroupStamp* cgStamp; |
91 |
> |
RigidBodyStamp* rbStamp; |
92 |
> |
int nRigidAtoms = 0; |
93 |
> |
|
94 |
> |
vector<Component*> components = simParams->getComponents(); |
95 |
> |
|
96 |
> |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
97 |
> |
molStamp = (*i)->getMoleculeStamp(); |
98 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
99 |
|
|
100 |
< |
for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
101 |
< |
molStamp = (*i)->getMoleculeStamp(); |
102 |
< |
nMolWithSameStamp = (*i)->getNMol(); |
103 |
< |
|
104 |
< |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
105 |
< |
|
106 |
< |
//calculate atoms in molecules |
107 |
< |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
108 |
< |
|
109 |
< |
//calculate atoms in cutoff groups |
110 |
< |
int nAtomsInGroups = 0; |
111 |
< |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
118 |
< |
|
119 |
< |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
120 |
< |
cgStamp = molStamp->getCutoffGroupStamp(j); |
121 |
< |
nAtomsInGroups += cgStamp->getNMembers(); |
122 |
< |
} |
123 |
< |
|
124 |
< |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
125 |
< |
|
126 |
< |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
127 |
< |
|
128 |
< |
//calculate atoms in rigid bodies |
129 |
< |
int nAtomsInRigidBodies = 0; |
130 |
< |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
131 |
< |
|
132 |
< |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
133 |
< |
rbStamp = molStamp->getRigidBodyStamp(j); |
134 |
< |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
135 |
< |
} |
136 |
< |
|
137 |
< |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
138 |
< |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
139 |
< |
|
100 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
101 |
> |
|
102 |
> |
//calculate atoms in molecules |
103 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
104 |
> |
|
105 |
> |
//calculate atoms in cutoff groups |
106 |
> |
int nAtomsInGroups = 0; |
107 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
108 |
> |
|
109 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
110 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
111 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
112 |
|
} |
113 |
< |
|
114 |
< |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
115 |
< |
//group therefore the total number of cutoff groups in the system is |
116 |
< |
//equal to the total number of atoms minus number of atoms belong to |
117 |
< |
//cutoff group defined in meta-data file plus the number of cutoff |
118 |
< |
//groups defined in meta-data file |
119 |
< |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
120 |
< |
|
121 |
< |
//every free atom (atom does not belong to rigid bodies) is an |
122 |
< |
//integrable object therefore the total number of integrable objects |
123 |
< |
//in the system is equal to the total number of atoms minus number of |
124 |
< |
//atoms belong to rigid body defined in meta-data file plus the number |
125 |
< |
//of rigid bodies defined in meta-data file |
126 |
< |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
127 |
< |
+ nGlobalRigidBodies_; |
128 |
< |
|
129 |
< |
nGlobalMols_ = molStampIds_.size(); |
130 |
< |
molToProcMap_.resize(nGlobalMols_); |
131 |
< |
} |
132 |
< |
|
113 |
> |
|
114 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
115 |
> |
|
116 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
117 |
> |
|
118 |
> |
//calculate atoms in rigid bodies |
119 |
> |
int nAtomsInRigidBodies = 0; |
120 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
121 |
> |
|
122 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
123 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
124 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
125 |
> |
} |
126 |
> |
|
127 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
128 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
129 |
> |
|
130 |
> |
} |
131 |
> |
|
132 |
> |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
133 |
> |
//group therefore the total number of cutoff groups in the system is |
134 |
> |
//equal to the total number of atoms minus number of atoms belong to |
135 |
> |
//cutoff group defined in meta-data file plus the number of cutoff |
136 |
> |
//groups defined in meta-data file |
137 |
> |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
138 |
> |
|
139 |
> |
//every free atom (atom does not belong to rigid bodies) is an |
140 |
> |
//integrable object therefore the total number of integrable objects |
141 |
> |
//in the system is equal to the total number of atoms minus number of |
142 |
> |
//atoms belong to rigid body defined in meta-data file plus the number |
143 |
> |
//of rigid bodies defined in meta-data file |
144 |
> |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
145 |
> |
+ nGlobalRigidBodies_; |
146 |
> |
|
147 |
> |
nGlobalMols_ = molStampIds_.size(); |
148 |
> |
molToProcMap_.resize(nGlobalMols_); |
149 |
> |
} |
150 |
> |
|
151 |
|
SimInfo::~SimInfo() { |
152 |
< |
std::map<int, Molecule*>::iterator i; |
152 |
> |
map<int, Molecule*>::iterator i; |
153 |
|
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
154 |
|
delete i->second; |
155 |
|
} |
160 |
|
delete forceField_; |
161 |
|
} |
162 |
|
|
173 |
– |
int SimInfo::getNGlobalConstraints() { |
174 |
– |
int nGlobalConstraints; |
175 |
– |
#ifdef IS_MPI |
176 |
– |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
177 |
– |
MPI_COMM_WORLD); |
178 |
– |
#else |
179 |
– |
nGlobalConstraints = nConstraints_; |
180 |
– |
#endif |
181 |
– |
return nGlobalConstraints; |
182 |
– |
} |
163 |
|
|
164 |
|
bool SimInfo::addMolecule(Molecule* mol) { |
165 |
|
MoleculeIterator i; |
166 |
< |
|
166 |
> |
|
167 |
|
i = molecules_.find(mol->getGlobalIndex()); |
168 |
|
if (i == molecules_.end() ) { |
169 |
< |
|
170 |
< |
molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
171 |
< |
|
169 |
> |
|
170 |
> |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
171 |
> |
|
172 |
|
nAtoms_ += mol->getNAtoms(); |
173 |
|
nBonds_ += mol->getNBonds(); |
174 |
|
nBends_ += mol->getNBends(); |
178 |
|
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
179 |
|
nCutoffGroups_ += mol->getNCutoffGroups(); |
180 |
|
nConstraints_ += mol->getNConstraintPairs(); |
181 |
< |
|
181 |
> |
|
182 |
|
addInteractionPairs(mol); |
183 |
< |
|
183 |
> |
|
184 |
|
return true; |
185 |
|
} else { |
186 |
|
return false; |
187 |
|
} |
188 |
|
} |
189 |
< |
|
189 |
> |
|
190 |
|
bool SimInfo::removeMolecule(Molecule* mol) { |
191 |
|
MoleculeIterator i; |
192 |
|
i = molecules_.find(mol->getGlobalIndex()); |
214 |
|
} else { |
215 |
|
return false; |
216 |
|
} |
237 |
– |
|
238 |
– |
|
217 |
|
} |
218 |
|
|
219 |
|
|
231 |
|
void SimInfo::calcNdf() { |
232 |
|
int ndf_local; |
233 |
|
MoleculeIterator i; |
234 |
< |
std::vector<StuntDouble*>::iterator j; |
234 |
> |
vector<StuntDouble*>::iterator j; |
235 |
|
Molecule* mol; |
236 |
|
StuntDouble* integrableObject; |
237 |
|
|
282 |
|
int ndfRaw_local; |
283 |
|
|
284 |
|
MoleculeIterator i; |
285 |
< |
std::vector<StuntDouble*>::iterator j; |
285 |
> |
vector<StuntDouble*>::iterator j; |
286 |
|
Molecule* mol; |
287 |
|
StuntDouble* integrableObject; |
288 |
|
|
331 |
|
|
332 |
|
void SimInfo::addInteractionPairs(Molecule* mol) { |
333 |
|
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
334 |
< |
std::vector<Bond*>::iterator bondIter; |
335 |
< |
std::vector<Bend*>::iterator bendIter; |
336 |
< |
std::vector<Torsion*>::iterator torsionIter; |
337 |
< |
std::vector<Inversion*>::iterator inversionIter; |
334 |
> |
vector<Bond*>::iterator bondIter; |
335 |
> |
vector<Bend*>::iterator bendIter; |
336 |
> |
vector<Torsion*>::iterator torsionIter; |
337 |
> |
vector<Inversion*>::iterator inversionIter; |
338 |
|
Bond* bond; |
339 |
|
Bend* bend; |
340 |
|
Torsion* torsion; |
352 |
|
// always be excluded. These are done at the bottom of this |
353 |
|
// function. |
354 |
|
|
355 |
< |
std::map<int, std::set<int> > atomGroups; |
355 |
> |
map<int, set<int> > atomGroups; |
356 |
|
Molecule::RigidBodyIterator rbIter; |
357 |
|
RigidBody* rb; |
358 |
|
Molecule::IntegrableObjectIterator ii; |
364 |
|
|
365 |
|
if (integrableObject->isRigidBody()) { |
366 |
|
rb = static_cast<RigidBody*>(integrableObject); |
367 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
368 |
< |
std::set<int> rigidAtoms; |
367 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
368 |
> |
set<int> rigidAtoms; |
369 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
370 |
|
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
371 |
|
} |
372 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
373 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
373 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
374 |
|
} |
375 |
|
} else { |
376 |
< |
std::set<int> oneAtomSet; |
376 |
> |
set<int> oneAtomSet; |
377 |
|
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
378 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
378 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
379 |
|
} |
380 |
|
} |
381 |
|
|
478 |
|
|
479 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
480 |
|
rb = mol->nextRigidBody(rbIter)) { |
481 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
481 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
482 |
|
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
483 |
|
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
484 |
|
a = atoms[i]->getGlobalIndex(); |
492 |
|
|
493 |
|
void SimInfo::removeInteractionPairs(Molecule* mol) { |
494 |
|
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
495 |
< |
std::vector<Bond*>::iterator bondIter; |
496 |
< |
std::vector<Bend*>::iterator bendIter; |
497 |
< |
std::vector<Torsion*>::iterator torsionIter; |
498 |
< |
std::vector<Inversion*>::iterator inversionIter; |
495 |
> |
vector<Bond*>::iterator bondIter; |
496 |
> |
vector<Bend*>::iterator bendIter; |
497 |
> |
vector<Torsion*>::iterator torsionIter; |
498 |
> |
vector<Inversion*>::iterator inversionIter; |
499 |
|
Bond* bond; |
500 |
|
Bend* bend; |
501 |
|
Torsion* torsion; |
505 |
|
int c; |
506 |
|
int d; |
507 |
|
|
508 |
< |
std::map<int, std::set<int> > atomGroups; |
508 |
> |
map<int, set<int> > atomGroups; |
509 |
|
Molecule::RigidBodyIterator rbIter; |
510 |
|
RigidBody* rb; |
511 |
|
Molecule::IntegrableObjectIterator ii; |
517 |
|
|
518 |
|
if (integrableObject->isRigidBody()) { |
519 |
|
rb = static_cast<RigidBody*>(integrableObject); |
520 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
521 |
< |
std::set<int> rigidAtoms; |
520 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
521 |
> |
set<int> rigidAtoms; |
522 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
523 |
|
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
524 |
|
} |
525 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
526 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
526 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
527 |
|
} |
528 |
|
} else { |
529 |
< |
std::set<int> oneAtomSet; |
529 |
> |
set<int> oneAtomSet; |
530 |
|
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
531 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
531 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
532 |
|
} |
533 |
|
} |
534 |
|
|
631 |
|
|
632 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
633 |
|
rb = mol->nextRigidBody(rbIter)) { |
634 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
634 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
635 |
|
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
636 |
|
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
637 |
|
a = atoms[i]->getGlobalIndex(); |
654 |
|
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
655 |
|
} |
656 |
|
|
679 |
– |
void SimInfo::update() { |
657 |
|
|
658 |
< |
setupSimType(); |
658 |
> |
/** |
659 |
> |
* update |
660 |
> |
* |
661 |
> |
* Performs the global checks and variable settings after the objects have been |
662 |
> |
* created. |
663 |
> |
* |
664 |
> |
*/ |
665 |
> |
void SimInfo::update() { |
666 |
> |
|
667 |
> |
setupSimVariables(); |
668 |
> |
setupCutoffs(); |
669 |
> |
setupSwitching(); |
670 |
> |
setupElectrostatics(); |
671 |
> |
setupNeighborlists(); |
672 |
|
|
673 |
|
#ifdef IS_MPI |
674 |
|
setupFortranParallel(); |
675 |
|
#endif |
686 |
– |
|
676 |
|
setupFortranSim(); |
677 |
+ |
fortranInitialized_ = true; |
678 |
|
|
689 |
– |
//setup fortran force field |
690 |
– |
/** @deprecate */ |
691 |
– |
int isError = 0; |
692 |
– |
|
693 |
– |
setupCutoff(); |
694 |
– |
|
695 |
– |
setupElectrostaticSummationMethod( isError ); |
696 |
– |
setupSwitchingFunction(); |
697 |
– |
setupAccumulateBoxDipole(); |
698 |
– |
|
699 |
– |
if(isError){ |
700 |
– |
sprintf( painCave.errMsg, |
701 |
– |
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
702 |
– |
painCave.isFatal = 1; |
703 |
– |
simError(); |
704 |
– |
} |
705 |
– |
|
679 |
|
calcNdf(); |
680 |
|
calcNdfRaw(); |
681 |
|
calcNdfTrans(); |
709 |
– |
|
710 |
– |
fortranInitialized_ = true; |
682 |
|
} |
683 |
< |
|
684 |
< |
std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
683 |
> |
|
684 |
> |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
685 |
|
SimInfo::MoleculeIterator mi; |
686 |
|
Molecule* mol; |
687 |
|
Molecule::AtomIterator ai; |
688 |
|
Atom* atom; |
689 |
< |
std::set<AtomType*> atomTypes; |
690 |
< |
|
691 |
< |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
721 |
< |
|
689 |
> |
set<AtomType*> atomTypes; |
690 |
> |
|
691 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
692 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
693 |
|
atomTypes.insert(atom->getAtomType()); |
694 |
< |
} |
695 |
< |
|
726 |
< |
} |
727 |
< |
|
694 |
> |
} |
695 |
> |
} |
696 |
|
return atomTypes; |
697 |
|
} |
698 |
|
|
699 |
< |
void SimInfo::setupSimType() { |
700 |
< |
std::set<AtomType*>::iterator i; |
701 |
< |
std::set<AtomType*> atomTypes; |
702 |
< |
atomTypes = getUniqueAtomTypes(); |
699 |
> |
/** |
700 |
> |
* setupCutoffs |
701 |
> |
* |
702 |
> |
* Sets the values of cutoffRadius and cutoffMethod |
703 |
> |
* |
704 |
> |
* cutoffRadius : realType |
705 |
> |
* If the cutoffRadius was explicitly set, use that value. |
706 |
> |
* If the cutoffRadius was not explicitly set: |
707 |
> |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
708 |
> |
* No electrostatic atoms? Poll the atom types present in the |
709 |
> |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
710 |
> |
* Use the maximum suggested value that was found. |
711 |
> |
* |
712 |
> |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL) |
713 |
> |
* If cutoffMethod was explicitly set, use that choice. |
714 |
> |
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
715 |
> |
*/ |
716 |
> |
void SimInfo::setupCutoffs() { |
717 |
|
|
718 |
< |
int useLennardJones = 0; |
719 |
< |
int useElectrostatic = 0; |
720 |
< |
int useEAM = 0; |
721 |
< |
int useSC = 0; |
722 |
< |
int useCharge = 0; |
723 |
< |
int useDirectional = 0; |
724 |
< |
int useDipole = 0; |
725 |
< |
int useGayBerne = 0; |
726 |
< |
int useSticky = 0; |
727 |
< |
int useStickyPower = 0; |
728 |
< |
int useShape = 0; |
729 |
< |
int useFLARB = 0; //it is not in AtomType yet |
730 |
< |
int useDirectionalAtom = 0; |
731 |
< |
int useElectrostatics = 0; |
732 |
< |
//usePBC and useRF are from simParams |
733 |
< |
int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
734 |
< |
int useRF; |
735 |
< |
int useSF; |
736 |
< |
int useSP; |
737 |
< |
int useBoxDipole; |
718 |
> |
if (simParams_->haveCutoffRadius()) { |
719 |
> |
cutoffRadius_ = simParams_->getCutoffRadius(); |
720 |
> |
} else { |
721 |
> |
if (usesElectrostaticAtoms_) { |
722 |
> |
sprintf(painCave.errMsg, |
723 |
> |
"SimInfo: No value was set for the cutoffRadius.\n" |
724 |
> |
"\tOpenMD will use a default value of 12.0 angstroms" |
725 |
> |
"\tfor the cutoffRadius.\n"); |
726 |
> |
painCave.isFatal = 0; |
727 |
> |
painCave.severity = OPENMD_INFO; |
728 |
> |
simError(); |
729 |
> |
cutoffRadius_ = 12.0; |
730 |
> |
} else { |
731 |
> |
RealType thisCut; |
732 |
> |
set<AtomType*>::iterator i; |
733 |
> |
set<AtomType*> atomTypes; |
734 |
> |
atomTypes = getSimulatedAtomTypes(); |
735 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
736 |
> |
thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i)); |
737 |
> |
cutoffRadius_ = max(thisCut, cutoffRadius_); |
738 |
> |
} |
739 |
> |
sprintf(painCave.errMsg, |
740 |
> |
"SimInfo: No value was set for the cutoffRadius.\n" |
741 |
> |
"\tOpenMD will use %lf angstroms.\n", |
742 |
> |
cutoffRadius_); |
743 |
> |
painCave.isFatal = 0; |
744 |
> |
painCave.severity = OPENMD_INFO; |
745 |
> |
simError(); |
746 |
> |
} |
747 |
> |
} |
748 |
|
|
749 |
< |
std::string myMethod; |
749 |
> |
InteractionManager::Instance()->setCutoffRadius(cutoffRadius_); |
750 |
|
|
751 |
< |
// set the useRF logical |
752 |
< |
useRF = 0; |
753 |
< |
useSF = 0; |
754 |
< |
useSP = 0; |
755 |
< |
useBoxDipole = 0; |
751 |
> |
map<string, CutoffMethod> stringToCutoffMethod; |
752 |
> |
stringToCutoffMethod["HARD"] = HARD; |
753 |
> |
stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION; |
754 |
> |
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
755 |
> |
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
756 |
> |
|
757 |
> |
if (simParams_->haveCutoffMethod()) { |
758 |
> |
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
759 |
> |
map<string, CutoffMethod>::iterator i; |
760 |
> |
i = stringToCutoffMethod.find(cutMeth); |
761 |
> |
if (i == stringToCutoffMethod.end()) { |
762 |
> |
sprintf(painCave.errMsg, |
763 |
> |
"SimInfo: Could not find chosen cutoffMethod %s\n" |
764 |
> |
"\tShould be one of: " |
765 |
> |
"HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", |
766 |
> |
cutMeth.c_str()); |
767 |
> |
painCave.isFatal = 1; |
768 |
> |
painCave.severity = OPENMD_ERROR; |
769 |
> |
simError(); |
770 |
> |
} else { |
771 |
> |
cutoffMethod_ = i->second; |
772 |
> |
} |
773 |
> |
} else { |
774 |
> |
sprintf(painCave.errMsg, |
775 |
> |
"SimInfo: No value was set for the cutoffMethod.\n" |
776 |
> |
"\tOpenMD will use SHIFTED_FORCE.\n"); |
777 |
> |
painCave.isFatal = 0; |
778 |
> |
painCave.severity = OPENMD_INFO; |
779 |
> |
simError(); |
780 |
> |
cutoffMethod_ = SHIFTED_FORCE; |
781 |
> |
} |
782 |
|
|
783 |
+ |
InteractionManager::Instance()->setCutoffMethod(cutoffMethod_); |
784 |
+ |
} |
785 |
+ |
|
786 |
+ |
/** |
787 |
+ |
* setupSwitching |
788 |
+ |
* |
789 |
+ |
* Sets the values of switchingRadius and |
790 |
+ |
* If the switchingRadius was explicitly set, use that value (but check it) |
791 |
+ |
* If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ |
792 |
+ |
*/ |
793 |
+ |
void SimInfo::setupSwitching() { |
794 |
+ |
|
795 |
+ |
if (simParams_->haveSwitchingRadius()) { |
796 |
+ |
switchingRadius_ = simParams_->getSwitchingRadius(); |
797 |
+ |
if (switchingRadius_ > cutoffRadius_) { |
798 |
+ |
sprintf(painCave.errMsg, |
799 |
+ |
"SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n", |
800 |
+ |
switchingRadius_, cutoffRadius_); |
801 |
+ |
painCave.isFatal = 1; |
802 |
+ |
painCave.severity = OPENMD_ERROR; |
803 |
+ |
simError(); |
804 |
+ |
} |
805 |
+ |
} else { |
806 |
+ |
switchingRadius_ = 0.85 * cutoffRadius_; |
807 |
+ |
sprintf(painCave.errMsg, |
808 |
+ |
"SimInfo: No value was set for the switchingRadius.\n" |
809 |
+ |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
810 |
+ |
"\tswitchingRadius = %f. for this simulation\n", switchingRadius_); |
811 |
+ |
painCave.isFatal = 0; |
812 |
+ |
painCave.severity = OPENMD_WARNING; |
813 |
+ |
simError(); |
814 |
+ |
} |
815 |
+ |
|
816 |
+ |
InteractionManager::Instance()->setSwitchingRadius(switchingRadius_); |
817 |
|
|
818 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
819 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
820 |
< |
toUpper(myMethod); |
821 |
< |
if (myMethod == "REACTION_FIELD"){ |
822 |
< |
useRF = 1; |
823 |
< |
} else if (myMethod == "SHIFTED_FORCE"){ |
824 |
< |
useSF = 1; |
825 |
< |
} else if (myMethod == "SHIFTED_POTENTIAL"){ |
826 |
< |
useSP = 1; |
818 |
> |
SwitchingFunctionType ft; |
819 |
> |
|
820 |
> |
if (simParams_->haveSwitchingFunctionType()) { |
821 |
> |
string funcType = simParams_->getSwitchingFunctionType(); |
822 |
> |
toUpper(funcType); |
823 |
> |
if (funcType == "CUBIC") { |
824 |
> |
ft = cubic; |
825 |
> |
} else { |
826 |
> |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
827 |
> |
ft = fifth_order_poly; |
828 |
> |
} else { |
829 |
> |
// throw error |
830 |
> |
sprintf( painCave.errMsg, |
831 |
> |
"SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n" |
832 |
> |
"\tswitchingFunctionType must be one of: " |
833 |
> |
"\"cubic\" or \"fifth_order_polynomial\".", |
834 |
> |
funcType.c_str() ); |
835 |
> |
painCave.isFatal = 1; |
836 |
> |
painCave.severity = OPENMD_ERROR; |
837 |
> |
simError(); |
838 |
> |
} |
839 |
|
} |
840 |
|
} |
777 |
– |
|
778 |
– |
if (simParams_->haveAccumulateBoxDipole()) |
779 |
– |
if (simParams_->getAccumulateBoxDipole()) |
780 |
– |
useBoxDipole = 1; |
841 |
|
|
842 |
+ |
InteractionManager::Instance()->setSwitchingFunctionType(ft); |
843 |
+ |
} |
844 |
+ |
|
845 |
+ |
/** |
846 |
+ |
* setupSkinThickness |
847 |
+ |
* |
848 |
+ |
* If the skinThickness was explicitly set, use that value (but check it) |
849 |
+ |
* If the skinThickness was not explicitly set: use 1.0 angstroms |
850 |
+ |
*/ |
851 |
+ |
void SimInfo::setupSkinThickness() { |
852 |
+ |
if (simParams_->haveSkinThickness()) { |
853 |
+ |
skinThickness_ = simParams_->getSkinThickness(); |
854 |
+ |
} else { |
855 |
+ |
skinThickness_ = 1.0; |
856 |
+ |
sprintf(painCave.errMsg, |
857 |
+ |
"SimInfo Warning: No value was set for the skinThickness.\n" |
858 |
+ |
"\tOpenMD will use a default value of %f Angstroms\n" |
859 |
+ |
"\tfor this simulation\n", skinThickness_); |
860 |
+ |
painCave.isFatal = 0; |
861 |
+ |
simError(); |
862 |
+ |
} |
863 |
+ |
} |
864 |
+ |
|
865 |
+ |
void SimInfo::setupSimType() { |
866 |
+ |
set<AtomType*>::iterator i; |
867 |
+ |
set<AtomType*> atomTypes; |
868 |
+ |
atomTypes = getSimulatedAtomTypes(); |
869 |
+ |
|
870 |
|
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
871 |
|
|
872 |
+ |
int usesElectrostatic = 0; |
873 |
+ |
int usesMetallic = 0; |
874 |
+ |
int usesDirectional = 0; |
875 |
|
//loop over all of the atom types |
876 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
877 |
< |
useLennardJones |= (*i)->isLennardJones(); |
878 |
< |
useElectrostatic |= (*i)->isElectrostatic(); |
879 |
< |
useEAM |= (*i)->isEAM(); |
789 |
< |
useSC |= (*i)->isSC(); |
790 |
< |
useCharge |= (*i)->isCharge(); |
791 |
< |
useDirectional |= (*i)->isDirectional(); |
792 |
< |
useDipole |= (*i)->isDipole(); |
793 |
< |
useGayBerne |= (*i)->isGayBerne(); |
794 |
< |
useSticky |= (*i)->isSticky(); |
795 |
< |
useStickyPower |= (*i)->isStickyPower(); |
796 |
< |
useShape |= (*i)->isShape(); |
877 |
> |
usesElectrostatic |= (*i)->isElectrostatic(); |
878 |
> |
usesMetallic |= (*i)->isMetal(); |
879 |
> |
usesDirectional |= (*i)->isDirectional(); |
880 |
|
} |
881 |
|
|
799 |
– |
if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
800 |
– |
useDirectionalAtom = 1; |
801 |
– |
} |
802 |
– |
|
803 |
– |
if (useCharge || useDipole) { |
804 |
– |
useElectrostatics = 1; |
805 |
– |
} |
806 |
– |
|
882 |
|
#ifdef IS_MPI |
883 |
|
int temp; |
884 |
+ |
temp = usesDirectional; |
885 |
+ |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
886 |
|
|
887 |
< |
temp = usePBC; |
888 |
< |
MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
887 |
> |
temp = usesMetallic; |
888 |
> |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
889 |
|
|
890 |
< |
temp = useDirectionalAtom; |
891 |
< |
MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
815 |
< |
|
816 |
< |
temp = useLennardJones; |
817 |
< |
MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
818 |
< |
|
819 |
< |
temp = useElectrostatics; |
820 |
< |
MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
821 |
< |
|
822 |
< |
temp = useCharge; |
823 |
< |
MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
824 |
< |
|
825 |
< |
temp = useDipole; |
826 |
< |
MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
827 |
< |
|
828 |
< |
temp = useSticky; |
829 |
< |
MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
830 |
< |
|
831 |
< |
temp = useStickyPower; |
832 |
< |
MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
833 |
< |
|
834 |
< |
temp = useGayBerne; |
835 |
< |
MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
836 |
< |
|
837 |
< |
temp = useEAM; |
838 |
< |
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
839 |
< |
|
840 |
< |
temp = useSC; |
841 |
< |
MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
842 |
< |
|
843 |
< |
temp = useShape; |
844 |
< |
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
845 |
< |
|
846 |
< |
temp = useFLARB; |
847 |
< |
MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
848 |
< |
|
849 |
< |
temp = useRF; |
850 |
< |
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
851 |
< |
|
852 |
< |
temp = useSF; |
853 |
< |
MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
854 |
< |
|
855 |
< |
temp = useSP; |
856 |
< |
MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
857 |
< |
|
858 |
< |
temp = useBoxDipole; |
859 |
< |
MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
860 |
< |
|
861 |
< |
temp = useAtomicVirial_; |
862 |
< |
MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
863 |
< |
|
890 |
> |
temp = usesElectrostatic; |
891 |
> |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
892 |
|
#endif |
893 |
< |
|
894 |
< |
fInfo_.SIM_uses_PBC = usePBC; |
895 |
< |
fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
896 |
< |
fInfo_.SIM_uses_LennardJones = useLennardJones; |
897 |
< |
fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
898 |
< |
fInfo_.SIM_uses_Charges = useCharge; |
871 |
< |
fInfo_.SIM_uses_Dipoles = useDipole; |
872 |
< |
fInfo_.SIM_uses_Sticky = useSticky; |
873 |
< |
fInfo_.SIM_uses_StickyPower = useStickyPower; |
874 |
< |
fInfo_.SIM_uses_GayBerne = useGayBerne; |
875 |
< |
fInfo_.SIM_uses_EAM = useEAM; |
876 |
< |
fInfo_.SIM_uses_SC = useSC; |
877 |
< |
fInfo_.SIM_uses_Shapes = useShape; |
878 |
< |
fInfo_.SIM_uses_FLARB = useFLARB; |
879 |
< |
fInfo_.SIM_uses_RF = useRF; |
880 |
< |
fInfo_.SIM_uses_SF = useSF; |
881 |
< |
fInfo_.SIM_uses_SP = useSP; |
882 |
< |
fInfo_.SIM_uses_BoxDipole = useBoxDipole; |
883 |
< |
fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; |
893 |
> |
fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
894 |
> |
fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
895 |
> |
fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
896 |
> |
fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
897 |
> |
fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
898 |
> |
fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
899 |
|
} |
900 |
|
|
901 |
|
void SimInfo::setupFortranSim() { |
902 |
|
int isError; |
903 |
|
int nExclude, nOneTwo, nOneThree, nOneFour; |
904 |
< |
std::vector<int> fortranGlobalGroupMembership; |
904 |
> |
vector<int> fortranGlobalGroupMembership; |
905 |
|
|
906 |
+ |
notifyFortranSkinThickness(&skinThickness_); |
907 |
+ |
|
908 |
+ |
int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0; |
909 |
+ |
int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0; |
910 |
+ |
notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf); |
911 |
+ |
|
912 |
|
isError = 0; |
913 |
|
|
914 |
|
//globalGroupMembership_ is filled by SimCreator |
917 |
|
} |
918 |
|
|
919 |
|
//calculate mass ratio of cutoff group |
920 |
< |
std::vector<RealType> mfact; |
920 |
> |
vector<RealType> mfact; |
921 |
|
SimInfo::MoleculeIterator mi; |
922 |
|
Molecule* mol; |
923 |
|
Molecule::CutoffGroupIterator ci; |
944 |
|
} |
945 |
|
|
946 |
|
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
947 |
< |
std::vector<int> identArray; |
947 |
> |
vector<int> identArray; |
948 |
|
|
949 |
|
//to avoid memory reallocation, reserve enough space identArray |
950 |
|
identArray.reserve(getNAtoms()); |
957 |
|
|
958 |
|
//fill molMembershipArray |
959 |
|
//molMembershipArray is filled by SimCreator |
960 |
< |
std::vector<int> molMembershipArray(nGlobalAtoms_); |
960 |
> |
vector<int> molMembershipArray(nGlobalAtoms_); |
961 |
|
for (int i = 0; i < nGlobalAtoms_; i++) { |
962 |
|
molMembershipArray[i] = globalMolMembership_[i] + 1; |
963 |
|
} |
1010 |
|
void SimInfo::setupFortranParallel() { |
1011 |
|
#ifdef IS_MPI |
1012 |
|
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
1013 |
< |
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
1014 |
< |
std::vector<int> localToGlobalCutoffGroupIndex; |
1013 |
> |
vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
1014 |
> |
vector<int> localToGlobalCutoffGroupIndex; |
1015 |
|
SimInfo::MoleculeIterator mi; |
1016 |
|
Molecule::AtomIterator ai; |
1017 |
|
Molecule::CutoffGroupIterator ci; |
1063 |
|
#endif |
1064 |
|
} |
1065 |
|
|
1045 |
– |
void SimInfo::setupCutoff() { |
1046 |
– |
|
1047 |
– |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
1066 |
|
|
1049 |
– |
// Check the cutoff policy |
1050 |
– |
int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
1051 |
– |
|
1052 |
– |
// Set LJ shifting bools to false |
1053 |
– |
ljsp_ = 0; |
1054 |
– |
ljsf_ = 0; |
1055 |
– |
|
1056 |
– |
std::string myPolicy; |
1057 |
– |
if (forceFieldOptions_.haveCutoffPolicy()){ |
1058 |
– |
myPolicy = forceFieldOptions_.getCutoffPolicy(); |
1059 |
– |
}else if (simParams_->haveCutoffPolicy()) { |
1060 |
– |
myPolicy = simParams_->getCutoffPolicy(); |
1061 |
– |
} |
1062 |
– |
|
1063 |
– |
if (!myPolicy.empty()){ |
1064 |
– |
toUpper(myPolicy); |
1065 |
– |
if (myPolicy == "MIX") { |
1066 |
– |
cp = MIX_CUTOFF_POLICY; |
1067 |
– |
} else { |
1068 |
– |
if (myPolicy == "MAX") { |
1069 |
– |
cp = MAX_CUTOFF_POLICY; |
1070 |
– |
} else { |
1071 |
– |
if (myPolicy == "TRADITIONAL") { |
1072 |
– |
cp = TRADITIONAL_CUTOFF_POLICY; |
1073 |
– |
} else { |
1074 |
– |
// throw error |
1075 |
– |
sprintf( painCave.errMsg, |
1076 |
– |
"SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
1077 |
– |
painCave.isFatal = 1; |
1078 |
– |
simError(); |
1079 |
– |
} |
1080 |
– |
} |
1081 |
– |
} |
1082 |
– |
} |
1083 |
– |
notifyFortranCutoffPolicy(&cp); |
1084 |
– |
|
1085 |
– |
// Check the Skin Thickness for neighborlists |
1086 |
– |
RealType skin; |
1087 |
– |
if (simParams_->haveSkinThickness()) { |
1088 |
– |
skin = simParams_->getSkinThickness(); |
1089 |
– |
notifyFortranSkinThickness(&skin); |
1090 |
– |
} |
1091 |
– |
|
1092 |
– |
// Check if the cutoff was set explicitly: |
1093 |
– |
if (simParams_->haveCutoffRadius()) { |
1094 |
– |
rcut_ = simParams_->getCutoffRadius(); |
1095 |
– |
if (simParams_->haveSwitchingRadius()) { |
1096 |
– |
rsw_ = simParams_->getSwitchingRadius(); |
1097 |
– |
} else { |
1098 |
– |
if (fInfo_.SIM_uses_Charges | |
1099 |
– |
fInfo_.SIM_uses_Dipoles | |
1100 |
– |
fInfo_.SIM_uses_RF) { |
1101 |
– |
|
1102 |
– |
rsw_ = 0.85 * rcut_; |
1103 |
– |
sprintf(painCave.errMsg, |
1104 |
– |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1105 |
– |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
1106 |
– |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1107 |
– |
painCave.isFatal = 0; |
1108 |
– |
simError(); |
1109 |
– |
} else { |
1110 |
– |
rsw_ = rcut_; |
1111 |
– |
sprintf(painCave.errMsg, |
1112 |
– |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1113 |
– |
"\tOpenMD will use the same value as the cutoffRadius.\n" |
1114 |
– |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1115 |
– |
painCave.isFatal = 0; |
1116 |
– |
simError(); |
1117 |
– |
} |
1118 |
– |
} |
1119 |
– |
|
1120 |
– |
if (simParams_->haveElectrostaticSummationMethod()) { |
1121 |
– |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1122 |
– |
toUpper(myMethod); |
1123 |
– |
|
1124 |
– |
if (myMethod == "SHIFTED_POTENTIAL") { |
1125 |
– |
ljsp_ = 1; |
1126 |
– |
} else if (myMethod == "SHIFTED_FORCE") { |
1127 |
– |
ljsf_ = 1; |
1128 |
– |
} |
1129 |
– |
} |
1130 |
– |
|
1131 |
– |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1132 |
– |
|
1133 |
– |
} else { |
1134 |
– |
|
1135 |
– |
// For electrostatic atoms, we'll assume a large safe value: |
1136 |
– |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
1137 |
– |
sprintf(painCave.errMsg, |
1138 |
– |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
1139 |
– |
"\tOpenMD will use a default value of 15.0 angstroms" |
1140 |
– |
"\tfor the cutoffRadius.\n"); |
1141 |
– |
painCave.isFatal = 0; |
1142 |
– |
simError(); |
1143 |
– |
rcut_ = 15.0; |
1144 |
– |
|
1145 |
– |
if (simParams_->haveElectrostaticSummationMethod()) { |
1146 |
– |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1147 |
– |
toUpper(myMethod); |
1148 |
– |
|
1149 |
– |
// For the time being, we're tethering the LJ shifted behavior to the |
1150 |
– |
// electrostaticSummationMethod keyword options |
1151 |
– |
if (myMethod == "SHIFTED_POTENTIAL") { |
1152 |
– |
ljsp_ = 1; |
1153 |
– |
} else if (myMethod == "SHIFTED_FORCE") { |
1154 |
– |
ljsf_ = 1; |
1155 |
– |
} |
1156 |
– |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1157 |
– |
if (simParams_->haveSwitchingRadius()){ |
1158 |
– |
sprintf(painCave.errMsg, |
1159 |
– |
"SimInfo Warning: A value was set for the switchingRadius\n" |
1160 |
– |
"\teven though the electrostaticSummationMethod was\n" |
1161 |
– |
"\tset to %s\n", myMethod.c_str()); |
1162 |
– |
painCave.isFatal = 1; |
1163 |
– |
simError(); |
1164 |
– |
} |
1165 |
– |
} |
1166 |
– |
} |
1167 |
– |
|
1168 |
– |
if (simParams_->haveSwitchingRadius()){ |
1169 |
– |
rsw_ = simParams_->getSwitchingRadius(); |
1170 |
– |
} else { |
1171 |
– |
sprintf(painCave.errMsg, |
1172 |
– |
"SimCreator Warning: No value was set for switchingRadius.\n" |
1173 |
– |
"\tOpenMD will use a default value of\n" |
1174 |
– |
"\t0.85 * cutoffRadius for the switchingRadius\n"); |
1175 |
– |
painCave.isFatal = 0; |
1176 |
– |
simError(); |
1177 |
– |
rsw_ = 0.85 * rcut_; |
1178 |
– |
} |
1179 |
– |
|
1180 |
– |
Electrostatic::setElectrostaticCutoffRadius(rcut_, rsw_); |
1181 |
– |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1182 |
– |
|
1183 |
– |
} else { |
1184 |
– |
// We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1185 |
– |
// We'll punt and let fortran figure out the cutoffs later. |
1186 |
– |
|
1187 |
– |
notifyFortranYouAreOnYourOwn(); |
1188 |
– |
|
1189 |
– |
} |
1190 |
– |
} |
1191 |
– |
} |
1192 |
– |
|
1193 |
– |
void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
1194 |
– |
|
1195 |
– |
int errorOut; |
1196 |
– |
ElectrostaticSummationMethod esm = NONE; |
1197 |
– |
ElectrostaticScreeningMethod sm = UNDAMPED; |
1198 |
– |
RealType alphaVal; |
1199 |
– |
RealType dielectric; |
1200 |
– |
|
1201 |
– |
errorOut = isError; |
1202 |
– |
|
1203 |
– |
if (simParams_->haveElectrostaticSummationMethod()) { |
1204 |
– |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1205 |
– |
toUpper(myMethod); |
1206 |
– |
if (myMethod == "NONE") { |
1207 |
– |
esm = NONE; |
1208 |
– |
} else { |
1209 |
– |
if (myMethod == "SWITCHING_FUNCTION") { |
1210 |
– |
esm = SWITCHING_FUNCTION; |
1211 |
– |
} else { |
1212 |
– |
if (myMethod == "SHIFTED_POTENTIAL") { |
1213 |
– |
esm = SHIFTED_POTENTIAL; |
1214 |
– |
} else { |
1215 |
– |
if (myMethod == "SHIFTED_FORCE") { |
1216 |
– |
esm = SHIFTED_FORCE; |
1217 |
– |
} else { |
1218 |
– |
if (myMethod == "REACTION_FIELD") { |
1219 |
– |
esm = REACTION_FIELD; |
1220 |
– |
dielectric = simParams_->getDielectric(); |
1221 |
– |
if (!simParams_->haveDielectric()) { |
1222 |
– |
// throw warning |
1223 |
– |
sprintf( painCave.errMsg, |
1224 |
– |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
1225 |
– |
"\tA default value of %f will be used for the dielectric.\n", dielectric); |
1226 |
– |
painCave.isFatal = 0; |
1227 |
– |
simError(); |
1228 |
– |
} |
1229 |
– |
} else { |
1230 |
– |
// throw error |
1231 |
– |
sprintf( painCave.errMsg, |
1232 |
– |
"SimInfo error: Unknown electrostaticSummationMethod.\n" |
1233 |
– |
"\t(Input file specified %s .)\n" |
1234 |
– |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
1235 |
– |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
1236 |
– |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
1237 |
– |
painCave.isFatal = 1; |
1238 |
– |
simError(); |
1239 |
– |
} |
1240 |
– |
} |
1241 |
– |
} |
1242 |
– |
} |
1243 |
– |
} |
1244 |
– |
} |
1245 |
– |
|
1246 |
– |
if (simParams_->haveElectrostaticScreeningMethod()) { |
1247 |
– |
std::string myScreen = simParams_->getElectrostaticScreeningMethod(); |
1248 |
– |
toUpper(myScreen); |
1249 |
– |
if (myScreen == "UNDAMPED") { |
1250 |
– |
sm = UNDAMPED; |
1251 |
– |
} else { |
1252 |
– |
if (myScreen == "DAMPED") { |
1253 |
– |
sm = DAMPED; |
1254 |
– |
if (!simParams_->haveDampingAlpha()) { |
1255 |
– |
// first set a cutoff dependent alpha value |
1256 |
– |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
1257 |
– |
alphaVal = 0.5125 - rcut_* 0.025; |
1258 |
– |
// for values rcut > 20.5, alpha is zero |
1259 |
– |
if (alphaVal < 0) alphaVal = 0; |
1260 |
– |
|
1261 |
– |
// throw warning |
1262 |
– |
sprintf( painCave.errMsg, |
1263 |
– |
"SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1264 |
– |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); |
1265 |
– |
painCave.isFatal = 0; |
1266 |
– |
simError(); |
1267 |
– |
} else { |
1268 |
– |
alphaVal = simParams_->getDampingAlpha(); |
1269 |
– |
} |
1270 |
– |
|
1271 |
– |
} else { |
1272 |
– |
// throw error |
1273 |
– |
sprintf( painCave.errMsg, |
1274 |
– |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
1275 |
– |
"\t(Input file specified %s .)\n" |
1276 |
– |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
1277 |
– |
"or \"damped\".\n", myScreen.c_str() ); |
1278 |
– |
painCave.isFatal = 1; |
1279 |
– |
simError(); |
1280 |
– |
} |
1281 |
– |
} |
1282 |
– |
} |
1283 |
– |
|
1284 |
– |
|
1285 |
– |
Electrostatic::setElectrostaticSummationMethod( esm ); |
1286 |
– |
Electrostatic::setElectrostaticScreeningMethod( sm ); |
1287 |
– |
Electrostatic::setDampingAlpha( alphaVal ); |
1288 |
– |
Electrostatic::setReactionFieldDielectric( dielectric ); |
1289 |
– |
initFortranFF( &errorOut ); |
1290 |
– |
} |
1291 |
– |
|
1067 |
|
void SimInfo::setupSwitchingFunction() { |
1293 |
– |
int ft = CUBIC; |
1068 |
|
|
1295 |
– |
if (simParams_->haveSwitchingFunctionType()) { |
1296 |
– |
std::string funcType = simParams_->getSwitchingFunctionType(); |
1297 |
– |
toUpper(funcType); |
1298 |
– |
if (funcType == "CUBIC") { |
1299 |
– |
ft = CUBIC; |
1300 |
– |
} else { |
1301 |
– |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1302 |
– |
ft = FIFTH_ORDER_POLY; |
1303 |
– |
} else { |
1304 |
– |
// throw error |
1305 |
– |
sprintf( painCave.errMsg, |
1306 |
– |
"SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1307 |
– |
painCave.isFatal = 1; |
1308 |
– |
simError(); |
1309 |
– |
} |
1310 |
– |
} |
1311 |
– |
} |
1312 |
– |
|
1313 |
– |
// send switching function notification to switcheroo |
1314 |
– |
setFunctionType(&ft); |
1315 |
– |
|
1069 |
|
} |
1070 |
|
|
1071 |
|
void SimInfo::setupAccumulateBoxDipole() { |
1073 |
|
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1074 |
|
if ( simParams_->haveAccumulateBoxDipole() ) |
1075 |
|
if ( simParams_->getAccumulateBoxDipole() ) { |
1323 |
– |
setAccumulateBoxDipole(); |
1076 |
|
calcBoxDipole_ = true; |
1077 |
|
} |
1078 |
|
|
1082 |
|
properties_.addProperty(genData); |
1083 |
|
} |
1084 |
|
|
1085 |
< |
void SimInfo::removeProperty(const std::string& propName) { |
1085 |
> |
void SimInfo::removeProperty(const string& propName) { |
1086 |
|
properties_.removeProperty(propName); |
1087 |
|
} |
1088 |
|
|
1090 |
|
properties_.clearProperties(); |
1091 |
|
} |
1092 |
|
|
1093 |
< |
std::vector<std::string> SimInfo::getPropertyNames() { |
1093 |
> |
vector<string> SimInfo::getPropertyNames() { |
1094 |
|
return properties_.getPropertyNames(); |
1095 |
|
} |
1096 |
|
|
1097 |
< |
std::vector<GenericData*> SimInfo::getProperties() { |
1097 |
> |
vector<GenericData*> SimInfo::getProperties() { |
1098 |
|
return properties_.getProperties(); |
1099 |
|
} |
1100 |
|
|
1101 |
< |
GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
1101 |
> |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
1102 |
|
return properties_.getPropertyByName(propName); |
1103 |
|
} |
1104 |
|
|
1181 |
|
|
1182 |
|
} |
1183 |
|
|
1184 |
< |
std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1184 |
> |
ostream& operator <<(ostream& o, SimInfo& info) { |
1185 |
|
|
1186 |
|
return o; |
1187 |
|
} |
1224 |
|
|
1225 |
|
|
1226 |
|
[ Ixx -Ixy -Ixz ] |
1227 |
< |
J =| -Iyx Iyy -Iyz | |
1227 |
> |
J =| -Iyx Iyy -Iyz | |
1228 |
|
[ -Izx -Iyz Izz ] |
1229 |
|
*/ |
1230 |
|
|
1331 |
|
return IOIndexToIntegrableObject.at(index); |
1332 |
|
} |
1333 |
|
|
1334 |
< |
void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { |
1334 |
> |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1335 |
|
IOIndexToIntegrableObject= v; |
1336 |
|
} |
1337 |
|
|
1373 |
|
return; |
1374 |
|
} |
1375 |
|
/* |
1376 |
< |
void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { |
1376 |
> |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1377 |
|
assert( v.size() == nAtoms_ + nRigidBodies_); |
1378 |
|
sdByGlobalIndex_ = v; |
1379 |
|
} |
1383 |
|
return sdByGlobalIndex_.at(index); |
1384 |
|
} |
1385 |
|
*/ |
1386 |
+ |
int SimInfo::getNGlobalConstraints() { |
1387 |
+ |
int nGlobalConstraints; |
1388 |
+ |
#ifdef IS_MPI |
1389 |
+ |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1390 |
+ |
MPI_COMM_WORLD); |
1391 |
+ |
#else |
1392 |
+ |
nGlobalConstraints = nConstraints_; |
1393 |
+ |
#endif |
1394 |
+ |
return nGlobalConstraints; |
1395 |
+ |
} |
1396 |
+ |
|
1397 |
|
}//end namespace OpenMD |
1398 |
|
|