ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 1241 by gezelter, Fri Apr 25 15:14:47 2008 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1767 by gezelter, Fri Jul 6 22:01:58 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
63 <
71 <
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
75 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 <    std::map<int, std::set<int> >::iterator i = container.find(index);
80 <    std::set<int> result;
81 <    if (i != container.end()) {
82 <        result = i->second;
83 <    }
84 <
85 <    return result;
86 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false),
79 <    useAtomicVirial_(true) {
80 <
81 <      MoleculeStamp* molStamp;
82 <      int nMolWithSameStamp;
83 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
85 <      CutoffGroupStamp* cgStamp;    
86 <      RigidBodyStamp* rbStamp;
87 <      int nRigidAtoms = 0;
88 <      std::vector<Component*> components = simParams->getComponents();
89 <      
90 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
91 <        molStamp = (*i)->getMoleculeStamp();
92 <        nMolWithSameStamp = (*i)->getNMol();
93 <        
94 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
95 <
96 <        //calculate atoms in molecules
97 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
98 <
99 <        //calculate atoms in cutoff groups
100 <        int nAtomsInGroups = 0;
101 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
102 <        
103 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
104 <          cgStamp = molStamp->getCutoffGroupStamp(j);
105 <          nAtomsInGroups += cgStamp->getNMembers();
106 <        }
107 <
108 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
109 <
110 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
111 <
112 <        //calculate atoms in rigid bodies
113 <        int nAtomsInRigidBodies = 0;
114 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
115 <        
116 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
117 <          rbStamp = molStamp->getRigidBodyStamp(j);
118 <          nAtomsInRigidBodies += rbStamp->getNMembers();
119 <        }
120 <
121 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
122 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
123 <        
124 <      }
142 <
143 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
144 <      //group therefore the total number of cutoff groups in the system is
145 <      //equal to the total number of atoms minus number of atoms belong to
146 <      //cutoff group defined in meta-data file plus the number of cutoff
147 <      //groups defined in meta-data file
148 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
149 <
150 <      //every free atom (atom does not belong to rigid bodies) is an
151 <      //integrable object therefore the total number of integrable objects
152 <      //in the system is equal to the total number of atoms minus number of
153 <      //atoms belong to rigid body defined in meta-data file plus the number
154 <      //of rigid bodies defined in meta-data file
155 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
156 <                                                + nGlobalRigidBodies_;
157 <  
158 <      nGlobalMols_ = molStampIds_.size();
159 <      molToProcMap_.resize(nGlobalMols_);
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94 >      
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107 >      }
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125      }
126 +    
127 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 +    //group therefore the total number of cutoff groups in the system is
129 +    //equal to the total number of atoms minus number of atoms belong to
130 +    //cutoff group defined in meta-data file plus the number of cutoff
131 +    //groups defined in meta-data file
132  
133 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 +    
135 +    //every free atom (atom does not belong to rigid bodies) is an
136 +    //integrable object therefore the total number of integrable objects
137 +    //in the system is equal to the total number of atoms minus number of
138 +    //atoms belong to rigid body defined in meta-data file plus the number
139 +    //of rigid bodies defined in meta-data file
140 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 +      + nGlobalRigidBodies_;
142 +    
143 +    nGlobalMols_ = molStampIds_.size();
144 +    molToProcMap_.resize(nGlobalMols_);
145 +  }
146 +  
147    SimInfo::~SimInfo() {
148 <    std::map<int, Molecule*>::iterator i;
148 >    map<int, Molecule*>::iterator i;
149      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150        delete i->second;
151      }
# Line 171 | Line 156 | namespace oopse {
156      delete forceField_;
157    }
158  
174  int SimInfo::getNGlobalConstraints() {
175    int nGlobalConstraints;
176 #ifdef IS_MPI
177    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178                  MPI_COMM_WORLD);    
179 #else
180    nGlobalConstraints =  nConstraints_;
181 #endif
182    return nGlobalConstraints;
183  }
159  
160    bool SimInfo::addMolecule(Molecule* mol) {
161      MoleculeIterator i;
162 <
162 >    
163      i = molecules_.find(mol->getGlobalIndex());
164      if (i == molecules_.end() ) {
165 <
166 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
167 <        
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168        nAtoms_ += mol->getNAtoms();
169        nBonds_ += mol->getNBonds();
170        nBends_ += mol->getNBends();
171        nTorsions_ += mol->getNTorsions();
172 +      nInversions_ += mol->getNInversions();
173        nRigidBodies_ += mol->getNRigidBodies();
174        nIntegrableObjects_ += mol->getNIntegrableObjects();
175        nCutoffGroups_ += mol->getNCutoffGroups();
176        nConstraints_ += mol->getNConstraintPairs();
177 <
178 <      addExcludePairs(mol);
179 <        
177 >      
178 >      addInteractionPairs(mol);
179 >      
180        return true;
181      } else {
182        return false;
183      }
184    }
185 <
185 >  
186    bool SimInfo::removeMolecule(Molecule* mol) {
187      MoleculeIterator i;
188      i = molecules_.find(mol->getGlobalIndex());
# Line 219 | Line 195 | namespace oopse {
195        nBonds_ -= mol->getNBonds();
196        nBends_ -= mol->getNBends();
197        nTorsions_ -= mol->getNTorsions();
198 +      nInversions_ -= mol->getNInversions();
199        nRigidBodies_ -= mol->getNRigidBodies();
200        nIntegrableObjects_ -= mol->getNIntegrableObjects();
201        nCutoffGroups_ -= mol->getNCutoffGroups();
202        nConstraints_ -= mol->getNConstraintPairs();
203  
204 <      removeExcludePairs(mol);
204 >      removeInteractionPairs(mol);
205        molecules_.erase(mol->getGlobalIndex());
206  
207        delete mol;
# Line 233 | Line 210 | namespace oopse {
210      } else {
211        return false;
212      }
236
237
213    }    
214  
215          
# Line 250 | Line 225 | namespace oopse {
225  
226  
227    void SimInfo::calcNdf() {
228 <    int ndf_local;
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230 <    std::vector<StuntDouble*>::iterator j;
230 >    vector<StuntDouble*>::iterator j;
231 >    vector<Atom*>::iterator k;
232 >
233      Molecule* mol;
234      StuntDouble* integrableObject;
235 +    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
# Line 271 | Line 250 | namespace oopse {
250              ndf_local += 3;
251            }
252          }
274            
253        }
254 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 +           atom = mol->nextFluctuatingCharge(k)) {
256 +        if (atom->isFluctuatingCharge()) {
257 +          nfq_local++;
258 +        }
259 +      }
260      }
261      
262 +    ndfLocal_ = ndf_local;
263 +
264      // n_constraints is local, so subtract them on each processor
265      ndf_local -= nConstraints_;
266  
267   #ifdef IS_MPI
268      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
269 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
270   #else
271      ndf_ = ndf_local;
272 +    nGlobalFluctuatingCharges_ = nfq_local;
273   #endif
274  
275      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 298 | Line 286 | namespace oopse {
286   #endif
287      return fdf_;
288    }
289 +  
290 +  unsigned int SimInfo::getNLocalCutoffGroups(){
291 +    int nLocalCutoffAtoms = 0;
292 +    Molecule* mol;
293 +    MoleculeIterator mi;
294 +    CutoffGroup* cg;
295 +    Molecule::CutoffGroupIterator ci;
296      
297 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
298 +      
299 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
300 +           cg = mol->nextCutoffGroup(ci)) {
301 +        nLocalCutoffAtoms += cg->getNumAtom();
302 +        
303 +      }        
304 +    }
305 +    
306 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
307 +  }
308 +    
309    void SimInfo::calcNdfRaw() {
310      int ndfRaw_local;
311  
312      MoleculeIterator i;
313 <    std::vector<StuntDouble*>::iterator j;
313 >    vector<StuntDouble*>::iterator j;
314      Molecule* mol;
315      StuntDouble* integrableObject;
316  
# Line 350 | Line 357 | namespace oopse {
357  
358    }
359  
360 <  void SimInfo::addExcludePairs(Molecule* mol) {
361 <    std::vector<Bond*>::iterator bondIter;
362 <    std::vector<Bend*>::iterator bendIter;
363 <    std::vector<Torsion*>::iterator torsionIter;
360 >  void SimInfo::addInteractionPairs(Molecule* mol) {
361 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
362 >    vector<Bond*>::iterator bondIter;
363 >    vector<Bend*>::iterator bendIter;
364 >    vector<Torsion*>::iterator torsionIter;
365 >    vector<Inversion*>::iterator inversionIter;
366      Bond* bond;
367      Bend* bend;
368      Torsion* torsion;
369 +    Inversion* inversion;
370      int a;
371      int b;
372      int c;
373      int d;
374  
375 <    std::map<int, std::set<int> > atomGroups;
375 >    // atomGroups can be used to add special interaction maps between
376 >    // groups of atoms that are in two separate rigid bodies.
377 >    // However, most site-site interactions between two rigid bodies
378 >    // are probably not special, just the ones between the physically
379 >    // bonded atoms.  Interactions *within* a single rigid body should
380 >    // always be excluded.  These are done at the bottom of this
381 >    // function.
382  
383 +    map<int, set<int> > atomGroups;
384      Molecule::RigidBodyIterator rbIter;
385      RigidBody* rb;
386      Molecule::IntegrableObjectIterator ii;
387      StuntDouble* integrableObject;
388      
389 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
390 <           integrableObject = mol->nextIntegrableObject(ii)) {
391 <
389 >    for (integrableObject = mol->beginIntegrableObject(ii);
390 >         integrableObject != NULL;
391 >         integrableObject = mol->nextIntegrableObject(ii)) {
392 >      
393        if (integrableObject->isRigidBody()) {
394 <          rb = static_cast<RigidBody*>(integrableObject);
395 <          std::vector<Atom*> atoms = rb->getAtoms();
396 <          std::set<int> rigidAtoms;
397 <          for (int i = 0; i < atoms.size(); ++i) {
398 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
399 <          }
400 <          for (int i = 0; i < atoms.size(); ++i) {
401 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
402 <          }      
394 >        rb = static_cast<RigidBody*>(integrableObject);
395 >        vector<Atom*> atoms = rb->getAtoms();
396 >        set<int> rigidAtoms;
397 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
398 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
399 >        }
400 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
401 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
402 >        }      
403        } else {
404 <        std::set<int> oneAtomSet;
404 >        set<int> oneAtomSet;
405          oneAtomSet.insert(integrableObject->getGlobalIndex());
406 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
406 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
407        }
408      }  
409 +          
410 +    for (bond= mol->beginBond(bondIter); bond != NULL;
411 +         bond = mol->nextBond(bondIter)) {
412  
392    
393    
394    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
413        a = bond->getAtomA()->getGlobalIndex();
414 <      b = bond->getAtomB()->getGlobalIndex();        
415 <      exclude_.addPair(a, b);
414 >      b = bond->getAtomB()->getGlobalIndex();  
415 >    
416 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
417 >        oneTwoInteractions_.addPair(a, b);
418 >      } else {
419 >        excludedInteractions_.addPair(a, b);
420 >      }
421      }
422  
423 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
423 >    for (bend= mol->beginBend(bendIter); bend != NULL;
424 >         bend = mol->nextBend(bendIter)) {
425 >
426        a = bend->getAtomA()->getGlobalIndex();
427        b = bend->getAtomB()->getGlobalIndex();        
428        c = bend->getAtomC()->getGlobalIndex();
404      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
405      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
406      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
407
408      exclude_.addPairs(rigidSetA, rigidSetB);
409      exclude_.addPairs(rigidSetA, rigidSetC);
410      exclude_.addPairs(rigidSetB, rigidSetC);
429        
430 <      //exclude_.addPair(a, b);
431 <      //exclude_.addPair(a, c);
432 <      //exclude_.addPair(b, c);        
430 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
431 >        oneTwoInteractions_.addPair(a, b);      
432 >        oneTwoInteractions_.addPair(b, c);
433 >      } else {
434 >        excludedInteractions_.addPair(a, b);
435 >        excludedInteractions_.addPair(b, c);
436 >      }
437 >
438 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
439 >        oneThreeInteractions_.addPair(a, c);      
440 >      } else {
441 >        excludedInteractions_.addPair(a, c);
442 >      }
443      }
444  
445 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
445 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
446 >         torsion = mol->nextTorsion(torsionIter)) {
447 >
448        a = torsion->getAtomA()->getGlobalIndex();
449        b = torsion->getAtomB()->getGlobalIndex();        
450        c = torsion->getAtomC()->getGlobalIndex();        
451 <      d = torsion->getAtomD()->getGlobalIndex();        
422 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
423 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
424 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
425 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
451 >      d = torsion->getAtomD()->getGlobalIndex();      
452  
453 <      exclude_.addPairs(rigidSetA, rigidSetB);
454 <      exclude_.addPairs(rigidSetA, rigidSetC);
455 <      exclude_.addPairs(rigidSetA, rigidSetD);
456 <      exclude_.addPairs(rigidSetB, rigidSetC);
457 <      exclude_.addPairs(rigidSetB, rigidSetD);
458 <      exclude_.addPairs(rigidSetC, rigidSetD);
453 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
454 >        oneTwoInteractions_.addPair(a, b);      
455 >        oneTwoInteractions_.addPair(b, c);
456 >        oneTwoInteractions_.addPair(c, d);
457 >      } else {
458 >        excludedInteractions_.addPair(a, b);
459 >        excludedInteractions_.addPair(b, c);
460 >        excludedInteractions_.addPair(c, d);
461 >      }
462  
463 <      /*
464 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
465 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
466 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
467 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
468 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
469 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
470 <        
471 <      
472 <      exclude_.addPair(a, b);
473 <      exclude_.addPair(a, c);
474 <      exclude_.addPair(a, d);
475 <      exclude_.addPair(b, c);
447 <      exclude_.addPair(b, d);
448 <      exclude_.addPair(c, d);        
449 <      */
463 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
464 >        oneThreeInteractions_.addPair(a, c);      
465 >        oneThreeInteractions_.addPair(b, d);      
466 >      } else {
467 >        excludedInteractions_.addPair(a, c);
468 >        excludedInteractions_.addPair(b, d);
469 >      }
470 >
471 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
472 >        oneFourInteractions_.addPair(a, d);      
473 >      } else {
474 >        excludedInteractions_.addPair(a, d);
475 >      }
476      }
477  
478 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
479 <      std::vector<Atom*> atoms = rb->getAtoms();
480 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
481 <        for (int j = i + 1; j < atoms.size(); ++j) {
478 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
479 >         inversion = mol->nextInversion(inversionIter)) {
480 >
481 >      a = inversion->getAtomA()->getGlobalIndex();
482 >      b = inversion->getAtomB()->getGlobalIndex();        
483 >      c = inversion->getAtomC()->getGlobalIndex();        
484 >      d = inversion->getAtomD()->getGlobalIndex();        
485 >
486 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
487 >        oneTwoInteractions_.addPair(a, b);      
488 >        oneTwoInteractions_.addPair(a, c);
489 >        oneTwoInteractions_.addPair(a, d);
490 >      } else {
491 >        excludedInteractions_.addPair(a, b);
492 >        excludedInteractions_.addPair(a, c);
493 >        excludedInteractions_.addPair(a, d);
494 >      }
495 >
496 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
497 >        oneThreeInteractions_.addPair(b, c);    
498 >        oneThreeInteractions_.addPair(b, d);    
499 >        oneThreeInteractions_.addPair(c, d);      
500 >      } else {
501 >        excludedInteractions_.addPair(b, c);
502 >        excludedInteractions_.addPair(b, d);
503 >        excludedInteractions_.addPair(c, d);
504 >      }
505 >    }
506 >
507 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
508 >         rb = mol->nextRigidBody(rbIter)) {
509 >      vector<Atom*> atoms = rb->getAtoms();
510 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
511 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
512            a = atoms[i]->getGlobalIndex();
513            b = atoms[j]->getGlobalIndex();
514 <          exclude_.addPair(a, b);
514 >          excludedInteractions_.addPair(a, b);
515          }
516        }
517      }        
518  
519    }
520  
521 <  void SimInfo::removeExcludePairs(Molecule* mol) {
522 <    std::vector<Bond*>::iterator bondIter;
523 <    std::vector<Bend*>::iterator bendIter;
524 <    std::vector<Torsion*>::iterator torsionIter;
521 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
522 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
523 >    vector<Bond*>::iterator bondIter;
524 >    vector<Bend*>::iterator bendIter;
525 >    vector<Torsion*>::iterator torsionIter;
526 >    vector<Inversion*>::iterator inversionIter;
527      Bond* bond;
528      Bend* bend;
529      Torsion* torsion;
530 +    Inversion* inversion;
531      int a;
532      int b;
533      int c;
534      int d;
535  
536 <    std::map<int, std::set<int> > atomGroups;
478 <
536 >    map<int, set<int> > atomGroups;
537      Molecule::RigidBodyIterator rbIter;
538      RigidBody* rb;
539      Molecule::IntegrableObjectIterator ii;
540      StuntDouble* integrableObject;
541      
542 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
543 <           integrableObject = mol->nextIntegrableObject(ii)) {
544 <
542 >    for (integrableObject = mol->beginIntegrableObject(ii);
543 >         integrableObject != NULL;
544 >         integrableObject = mol->nextIntegrableObject(ii)) {
545 >      
546        if (integrableObject->isRigidBody()) {
547 <          rb = static_cast<RigidBody*>(integrableObject);
548 <          std::vector<Atom*> atoms = rb->getAtoms();
549 <          std::set<int> rigidAtoms;
550 <          for (int i = 0; i < atoms.size(); ++i) {
551 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
552 <          }
553 <          for (int i = 0; i < atoms.size(); ++i) {
554 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
555 <          }      
547 >        rb = static_cast<RigidBody*>(integrableObject);
548 >        vector<Atom*> atoms = rb->getAtoms();
549 >        set<int> rigidAtoms;
550 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
551 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
552 >        }
553 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
554 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
555 >        }      
556        } else {
557 <        std::set<int> oneAtomSet;
557 >        set<int> oneAtomSet;
558          oneAtomSet.insert(integrableObject->getGlobalIndex());
559 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
559 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
560        }
561      }  
562  
563 <    
564 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
563 >    for (bond= mol->beginBond(bondIter); bond != NULL;
564 >         bond = mol->nextBond(bondIter)) {
565 >      
566        a = bond->getAtomA()->getGlobalIndex();
567 <      b = bond->getAtomB()->getGlobalIndex();        
568 <      exclude_.removePair(a, b);
567 >      b = bond->getAtomB()->getGlobalIndex();  
568 >    
569 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
570 >        oneTwoInteractions_.removePair(a, b);
571 >      } else {
572 >        excludedInteractions_.removePair(a, b);
573 >      }
574      }
575  
576 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
576 >    for (bend= mol->beginBend(bendIter); bend != NULL;
577 >         bend = mol->nextBend(bendIter)) {
578 >
579        a = bend->getAtomA()->getGlobalIndex();
580        b = bend->getAtomB()->getGlobalIndex();        
581        c = bend->getAtomC()->getGlobalIndex();
515
516      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
517      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
518      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
519
520      exclude_.removePairs(rigidSetA, rigidSetB);
521      exclude_.removePairs(rigidSetA, rigidSetC);
522      exclude_.removePairs(rigidSetB, rigidSetC);
582        
583 <      //exclude_.removePair(a, b);
584 <      //exclude_.removePair(a, c);
585 <      //exclude_.removePair(b, c);        
583 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
584 >        oneTwoInteractions_.removePair(a, b);      
585 >        oneTwoInteractions_.removePair(b, c);
586 >      } else {
587 >        excludedInteractions_.removePair(a, b);
588 >        excludedInteractions_.removePair(b, c);
589 >      }
590 >
591 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
592 >        oneThreeInteractions_.removePair(a, c);      
593 >      } else {
594 >        excludedInteractions_.removePair(a, c);
595 >      }
596      }
597  
598 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
598 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
599 >         torsion = mol->nextTorsion(torsionIter)) {
600 >
601        a = torsion->getAtomA()->getGlobalIndex();
602        b = torsion->getAtomB()->getGlobalIndex();        
603        c = torsion->getAtomC()->getGlobalIndex();        
604 <      d = torsion->getAtomD()->getGlobalIndex();        
604 >      d = torsion->getAtomD()->getGlobalIndex();      
605 >  
606 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
607 >        oneTwoInteractions_.removePair(a, b);      
608 >        oneTwoInteractions_.removePair(b, c);
609 >        oneTwoInteractions_.removePair(c, d);
610 >      } else {
611 >        excludedInteractions_.removePair(a, b);
612 >        excludedInteractions_.removePair(b, c);
613 >        excludedInteractions_.removePair(c, d);
614 >      }
615  
616 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
617 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
618 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
619 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
616 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
617 >        oneThreeInteractions_.removePair(a, c);      
618 >        oneThreeInteractions_.removePair(b, d);      
619 >      } else {
620 >        excludedInteractions_.removePair(a, c);
621 >        excludedInteractions_.removePair(b, d);
622 >      }
623  
624 <      exclude_.removePairs(rigidSetA, rigidSetB);
625 <      exclude_.removePairs(rigidSetA, rigidSetC);
626 <      exclude_.removePairs(rigidSetA, rigidSetD);
627 <      exclude_.removePairs(rigidSetB, rigidSetC);
628 <      exclude_.removePairs(rigidSetB, rigidSetD);
629 <      exclude_.removePairs(rigidSetC, rigidSetD);
624 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
625 >        oneFourInteractions_.removePair(a, d);      
626 >      } else {
627 >        excludedInteractions_.removePair(a, d);
628 >      }
629 >    }
630  
631 <      /*
632 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
549 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
550 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
551 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
552 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
553 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
631 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
632 >         inversion = mol->nextInversion(inversionIter)) {
633  
634 <      
635 <      exclude_.removePair(a, b);
636 <      exclude_.removePair(a, c);
637 <      exclude_.removePair(a, d);
638 <      exclude_.removePair(b, c);
639 <      exclude_.removePair(b, d);
640 <      exclude_.removePair(c, d);        
641 <      */
634 >      a = inversion->getAtomA()->getGlobalIndex();
635 >      b = inversion->getAtomB()->getGlobalIndex();        
636 >      c = inversion->getAtomC()->getGlobalIndex();        
637 >      d = inversion->getAtomD()->getGlobalIndex();        
638 >
639 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
640 >        oneTwoInteractions_.removePair(a, b);      
641 >        oneTwoInteractions_.removePair(a, c);
642 >        oneTwoInteractions_.removePair(a, d);
643 >      } else {
644 >        excludedInteractions_.removePair(a, b);
645 >        excludedInteractions_.removePair(a, c);
646 >        excludedInteractions_.removePair(a, d);
647 >      }
648 >
649 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
650 >        oneThreeInteractions_.removePair(b, c);    
651 >        oneThreeInteractions_.removePair(b, d);    
652 >        oneThreeInteractions_.removePair(c, d);      
653 >      } else {
654 >        excludedInteractions_.removePair(b, c);
655 >        excludedInteractions_.removePair(b, d);
656 >        excludedInteractions_.removePair(c, d);
657 >      }
658      }
659  
660 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
661 <      std::vector<Atom*> atoms = rb->getAtoms();
662 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
663 <        for (int j = i + 1; j < atoms.size(); ++j) {
660 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
661 >         rb = mol->nextRigidBody(rbIter)) {
662 >      vector<Atom*> atoms = rb->getAtoms();
663 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
664 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
665            a = atoms[i]->getGlobalIndex();
666            b = atoms[j]->getGlobalIndex();
667 <          exclude_.removePair(a, b);
667 >          excludedInteractions_.removePair(a, b);
668          }
669        }
670      }        
671 <
671 >    
672    }
673 <
674 <
673 >  
674 >  
675    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
676      int curStampId;
677 <
677 >    
678      //index from 0
679      curStampId = moleculeStamps_.size();
680  
# Line 586 | Line 682 | namespace oopse {
682      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
683    }
684  
589  void SimInfo::update() {
590
591    setupSimType();
592
593 #ifdef IS_MPI
594    setupFortranParallel();
595 #endif
596
597    setupFortranSim();
598
599    //setup fortran force field
600    /** @deprecate */    
601    int isError = 0;
602    
603    setupCutoff();
604    
605    setupElectrostaticSummationMethod( isError );
606    setupSwitchingFunction();
607    setupAccumulateBoxDipole();
608
609    if(isError){
610      sprintf( painCave.errMsg,
611               "ForceField error: There was an error initializing the forceField in fortran.\n" );
612      painCave.isFatal = 1;
613      simError();
614    }
685  
686 +  /**
687 +   * update
688 +   *
689 +   *  Performs the global checks and variable settings after the
690 +   *  objects have been created.
691 +   *
692 +   */
693 +  void SimInfo::update() {  
694 +    setupSimVariables();
695      calcNdf();
696      calcNdfRaw();
697      calcNdfTrans();
619
620    fortranInitialized_ = true;
698    }
699 <
700 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
699 >  
700 >  /**
701 >   * getSimulatedAtomTypes
702 >   *
703 >   * Returns an STL set of AtomType* that are actually present in this
704 >   * simulation.  Must query all processors to assemble this information.
705 >   *
706 >   */
707 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
708      SimInfo::MoleculeIterator mi;
709      Molecule* mol;
710      Molecule::AtomIterator ai;
711      Atom* atom;
712 <    std::set<AtomType*> atomTypes;
713 <
712 >    set<AtomType*> atomTypes;
713 >    
714      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
715 <
716 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
715 >      for(atom = mol->beginAtom(ai); atom != NULL;
716 >          atom = mol->nextAtom(ai)) {
717          atomTypes.insert(atom->getAtomType());
718 <      }
719 <        
636 <    }
637 <
638 <    return atomTypes;        
639 <  }
640 <
641 <  void SimInfo::setupSimType() {
642 <    std::set<AtomType*>::iterator i;
643 <    std::set<AtomType*> atomTypes;
644 <    atomTypes = getUniqueAtomTypes();
718 >      }      
719 >    }    
720      
721 <    int useLennardJones = 0;
647 <    int useElectrostatic = 0;
648 <    int useEAM = 0;
649 <    int useSC = 0;
650 <    int useCharge = 0;
651 <    int useDirectional = 0;
652 <    int useDipole = 0;
653 <    int useGayBerne = 0;
654 <    int useSticky = 0;
655 <    int useStickyPower = 0;
656 <    int useShape = 0;
657 <    int useFLARB = 0; //it is not in AtomType yet
658 <    int useDirectionalAtom = 0;    
659 <    int useElectrostatics = 0;
660 <    //usePBC and useRF are from simParams
661 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
662 <    int useRF;
663 <    int useSF;
664 <    int useSP;
665 <    int useBoxDipole;
721 > #ifdef IS_MPI
722  
723 <    std::string myMethod;
724 <
669 <    // set the useRF logical
670 <    useRF = 0;
671 <    useSF = 0;
672 <    useSP = 0;
673 <
674 <
675 <    if (simParams_->haveElectrostaticSummationMethod()) {
676 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
677 <      toUpper(myMethod);
678 <      if (myMethod == "REACTION_FIELD"){
679 <        useRF = 1;
680 <      } else if (myMethod == "SHIFTED_FORCE"){
681 <        useSF = 1;
682 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
683 <        useSP = 1;
684 <      }
685 <    }
723 >    // loop over the found atom types on this processor, and add their
724 >    // numerical idents to a vector:
725      
726 <    if (simParams_->haveAccumulateBoxDipole())
727 <      if (simParams_->getAccumulateBoxDipole())
728 <        useBoxDipole = 1;
726 >    vector<int> foundTypes;
727 >    set<AtomType*>::iterator i;
728 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
729 >      foundTypes.push_back( (*i)->getIdent() );
730  
731 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
731 >    // count_local holds the number of found types on this processor
732 >    int count_local = foundTypes.size();
733  
734 <    //loop over all of the atom types
694 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
695 <      useLennardJones |= (*i)->isLennardJones();
696 <      useElectrostatic |= (*i)->isElectrostatic();
697 <      useEAM |= (*i)->isEAM();
698 <      useSC |= (*i)->isSC();
699 <      useCharge |= (*i)->isCharge();
700 <      useDirectional |= (*i)->isDirectional();
701 <      useDipole |= (*i)->isDipole();
702 <      useGayBerne |= (*i)->isGayBerne();
703 <      useSticky |= (*i)->isSticky();
704 <      useStickyPower |= (*i)->isStickyPower();
705 <      useShape |= (*i)->isShape();
706 <    }
734 >    int nproc = MPI::COMM_WORLD.Get_size();
735  
736 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
737 <      useDirectionalAtom = 1;
738 <    }
736 >    // we need arrays to hold the counts and displacement vectors for
737 >    // all processors
738 >    vector<int> counts(nproc, 0);
739 >    vector<int> disps(nproc, 0);
740  
741 <    if (useCharge || useDipole) {
742 <      useElectrostatics = 1;
741 >    // fill the counts array
742 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
743 >                              1, MPI::INT);
744 >  
745 >    // use the processor counts to compute the displacement array
746 >    disps[0] = 0;    
747 >    int totalCount = counts[0];
748 >    for (int iproc = 1; iproc < nproc; iproc++) {
749 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
750 >      totalCount += counts[iproc];
751      }
752  
753 < #ifdef IS_MPI    
754 <    int temp;
753 >    // we need a (possibly redundant) set of all found types:
754 >    vector<int> ftGlobal(totalCount);
755 >    
756 >    // now spray out the foundTypes to all the other processors:    
757 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
758 >                               &ftGlobal[0], &counts[0], &disps[0],
759 >                               MPI::INT);
760  
761 <    temp = usePBC;
720 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
761 >    vector<int>::iterator j;
762  
763 <    temp = useDirectionalAtom;
764 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
763 >    // foundIdents is a stl set, so inserting an already found ident
764 >    // will have no effect.
765 >    set<int> foundIdents;
766  
767 <    temp = useLennardJones;
768 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
727 <
728 <    temp = useElectrostatics;
729 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
730 <
731 <    temp = useCharge;
732 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
733 <
734 <    temp = useDipole;
735 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
736 <
737 <    temp = useSticky;
738 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
739 <
740 <    temp = useStickyPower;
741 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
768 >      foundIdents.insert((*j));
769      
770 <    temp = useGayBerne;
771 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
770 >    // now iterate over the foundIdents and get the actual atom types
771 >    // that correspond to these:
772 >    set<int>::iterator it;
773 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
774 >      atomTypes.insert( forceField_->getAtomType((*it)) );
775 >
776 > #endif
777  
778 <    temp = useEAM;
779 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
778 >    return atomTypes;        
779 >  }
780  
781 <    temp = useSC;
782 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
781 >  void SimInfo::setupSimVariables() {
782 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
783 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
784 >    calcBoxDipole_ = false;
785 >    if ( simParams_->haveAccumulateBoxDipole() )
786 >      if ( simParams_->getAccumulateBoxDipole() ) {
787 >        calcBoxDipole_ = true;      
788 >      }
789      
790 <    temp = useShape;
791 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
790 >    set<AtomType*>::iterator i;
791 >    set<AtomType*> atomTypes;
792 >    atomTypes = getSimulatedAtomTypes();    
793 >    bool usesElectrostatic = false;
794 >    bool usesMetallic = false;
795 >    bool usesDirectional = false;
796 >    bool usesFluctuatingCharges =  false;
797 >    //loop over all of the atom types
798 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
799 >      usesElectrostatic |= (*i)->isElectrostatic();
800 >      usesMetallic |= (*i)->isMetal();
801 >      usesDirectional |= (*i)->isDirectional();
802 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
803 >    }
804  
805 <    temp = useFLARB;
806 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
805 > #ifdef IS_MPI
806 >    bool temp;
807 >    temp = usesDirectional;
808 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
809 >                              MPI::LOR);
810 >        
811 >    temp = usesMetallic;
812 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
813 >                              MPI::LOR);
814 >    
815 >    temp = usesElectrostatic;
816 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
817 >                              MPI::LOR);
818  
819 <    temp = useRF;
820 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
819 >    temp = usesFluctuatingCharges;
820 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
821 >                              MPI::LOR);
822 > #else
823  
824 <    temp = useSF;
825 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
824 >    usesDirectionalAtoms_ = usesDirectional;
825 >    usesMetallicAtoms_ = usesMetallic;
826 >    usesElectrostaticAtoms_ = usesElectrostatic;
827 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
828  
829 <    temp = useSP;
830 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
829 > #endif
830 >    
831 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
832 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
833 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
834 >  }
835  
767    temp = useBoxDipole;
768    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
836  
837 <    temp = useAtomicVirial_;
838 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
837 >  vector<int> SimInfo::getGlobalAtomIndices() {
838 >    SimInfo::MoleculeIterator mi;
839 >    Molecule* mol;
840 >    Molecule::AtomIterator ai;
841 >    Atom* atom;
842  
843 < #endif
844 <
845 <    fInfo_.SIM_uses_PBC = usePBC;    
846 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
847 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
848 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
849 <    fInfo_.SIM_uses_Charges = useCharge;
850 <    fInfo_.SIM_uses_Dipoles = useDipole;
851 <    fInfo_.SIM_uses_Sticky = useSticky;
782 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
783 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
784 <    fInfo_.SIM_uses_EAM = useEAM;
785 <    fInfo_.SIM_uses_SC = useSC;
786 <    fInfo_.SIM_uses_Shapes = useShape;
787 <    fInfo_.SIM_uses_FLARB = useFLARB;
788 <    fInfo_.SIM_uses_RF = useRF;
789 <    fInfo_.SIM_uses_SF = useSF;
790 <    fInfo_.SIM_uses_SP = useSP;
791 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
792 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
843 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
844 >    
845 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
846 >      
847 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
848 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
849 >      }
850 >    }
851 >    return GlobalAtomIndices;
852    }
853  
795  void SimInfo::setupFortranSim() {
796    int isError;
797    int nExclude;
798    std::vector<int> fortranGlobalGroupMembership;
799    
800    nExclude = exclude_.getSize();
801    isError = 0;
854  
855 <    //globalGroupMembership_ is filled by SimCreator    
856 <    for (int i = 0; i < nGlobalAtoms_; i++) {
857 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
855 >  vector<int> SimInfo::getGlobalGroupIndices() {
856 >    SimInfo::MoleculeIterator mi;
857 >    Molecule* mol;
858 >    Molecule::CutoffGroupIterator ci;
859 >    CutoffGroup* cg;
860 >
861 >    vector<int> GlobalGroupIndices;
862 >    
863 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
864 >      
865 >      //local index of cutoff group is trivial, it only depends on the
866 >      //order of travesing
867 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
868 >           cg = mol->nextCutoffGroup(ci)) {
869 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
870 >      }        
871      }
872 +    return GlobalGroupIndices;
873 +  }
874  
875 +
876 +  void SimInfo::prepareTopology() {
877 +    int nExclude, nOneTwo, nOneThree, nOneFour;
878 +
879      //calculate mass ratio of cutoff group
809    std::vector<RealType> mfact;
880      SimInfo::MoleculeIterator mi;
881      Molecule* mol;
882      Molecule::CutoffGroupIterator ci;
# Line 815 | Line 885 | namespace oopse {
885      Atom* atom;
886      RealType totalMass;
887  
888 <    //to avoid memory reallocation, reserve enough space for mfact
889 <    mfact.reserve(getNCutoffGroups());
888 >    /**
889 >     * The mass factor is the relative mass of an atom to the total
890 >     * mass of the cutoff group it belongs to.  By default, all atoms
891 >     * are their own cutoff groups, and therefore have mass factors of
892 >     * 1.  We need some special handling for massless atoms, which
893 >     * will be treated as carrying the entire mass of the cutoff
894 >     * group.
895 >     */
896 >    massFactors_.clear();
897 >    massFactors_.resize(getNAtoms(), 1.0);
898      
899      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
900 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
900 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
901 >           cg = mol->nextCutoffGroup(ci)) {
902  
903          totalMass = cg->getMass();
904          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
905            // Check for massless groups - set mfact to 1 if true
906 <          if (totalMass != 0)
907 <            mfact.push_back(atom->getMass()/totalMass);
906 >          if (totalMass != 0)
907 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
908            else
909 <            mfact.push_back( 1.0 );
909 >            massFactors_[atom->getLocalIndex()] = 1.0;
910          }
832
911        }      
912      }
913  
914 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
837 <    std::vector<int> identArray;
914 >    // Build the identArray_
915  
916 <    //to avoid memory reallocation, reserve enough space identArray
917 <    identArray.reserve(getNAtoms());
841 <    
916 >    identArray_.clear();
917 >    identArray_.reserve(getNAtoms());    
918      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
919        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
920 <        identArray.push_back(atom->getIdent());
920 >        identArray_.push_back(atom->getIdent());
921        }
922      }    
847
848    //fill molMembershipArray
849    //molMembershipArray is filled by SimCreator    
850    std::vector<int> molMembershipArray(nGlobalAtoms_);
851    for (int i = 0; i < nGlobalAtoms_; i++) {
852      molMembershipArray[i] = globalMolMembership_[i] + 1;
853    }
923      
924 <    //setup fortran simulation
856 <    int nGlobalExcludes = 0;
857 <    int* globalExcludes = NULL;
858 <    int* excludeList = exclude_.getExcludeList();
859 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
860 <                   &nExclude, excludeList , &nGlobalExcludes, globalExcludes,
861 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
862 <                   &fortranGlobalGroupMembership[0], &isError);
863 <    
864 <    if( isError ){
865 <      
866 <      sprintf( painCave.errMsg,
867 <               "There was an error setting the simulation information in fortran.\n" );
868 <      painCave.isFatal = 1;
869 <      painCave.severity = OOPSE_ERROR;
870 <      simError();
871 <    }
872 <    
873 <    
874 <    sprintf( checkPointMsg,
875 <             "succesfully sent the simulation information to fortran.\n");
876 <    
877 <    errorCheckPoint();
878 <    
879 <    // Setup number of neighbors in neighbor list if present
880 <    if (simParams_->haveNeighborListNeighbors()) {
881 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
882 <      setNeighbors(&nlistNeighbors);
883 <    }
884 <  
924 >    //scan topology
925  
926 <  }
926 >    nExclude = excludedInteractions_.getSize();
927 >    nOneTwo = oneTwoInteractions_.getSize();
928 >    nOneThree = oneThreeInteractions_.getSize();
929 >    nOneFour = oneFourInteractions_.getSize();
930  
931 <
932 <  void SimInfo::setupFortranParallel() {
933 < #ifdef IS_MPI    
934 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
892 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
893 <    std::vector<int> localToGlobalCutoffGroupIndex;
894 <    SimInfo::MoleculeIterator mi;
895 <    Molecule::AtomIterator ai;
896 <    Molecule::CutoffGroupIterator ci;
897 <    Molecule* mol;
898 <    Atom* atom;
899 <    CutoffGroup* cg;
900 <    mpiSimData parallelData;
901 <    int isError;
902 <
903 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
904 <
905 <      //local index(index in DataStorge) of atom is important
906 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
907 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
908 <      }
909 <
910 <      //local index of cutoff group is trivial, it only depends on the order of travesing
911 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
912 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
913 <      }        
914 <        
915 <    }
916 <
917 <    //fill up mpiSimData struct
918 <    parallelData.nMolGlobal = getNGlobalMolecules();
919 <    parallelData.nMolLocal = getNMolecules();
920 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
921 <    parallelData.nAtomsLocal = getNAtoms();
922 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
923 <    parallelData.nGroupsLocal = getNCutoffGroups();
924 <    parallelData.myNode = worldRank;
925 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
926 <
927 <    //pass mpiSimData struct and index arrays to fortran
928 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
929 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
930 <                    &localToGlobalCutoffGroupIndex[0], &isError);
931 <
932 <    if (isError) {
933 <      sprintf(painCave.errMsg,
934 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
935 <      painCave.isFatal = 1;
936 <      simError();
937 <    }
938 <
939 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
940 <    errorCheckPoint();
941 <
942 < #endif
943 <  }
944 <
945 <  void SimInfo::setupCutoff() {          
946 <    
947 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
948 <
949 <    // Check the cutoff policy
950 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
951 <
952 <    // Set LJ shifting bools to false
953 <    ljsp_ = false;
954 <    ljsf_ = false;
955 <
956 <    std::string myPolicy;
957 <    if (forceFieldOptions_.haveCutoffPolicy()){
958 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
959 <    }else if (simParams_->haveCutoffPolicy()) {
960 <      myPolicy = simParams_->getCutoffPolicy();
961 <    }
962 <
963 <    if (!myPolicy.empty()){
964 <      toUpper(myPolicy);
965 <      if (myPolicy == "MIX") {
966 <        cp = MIX_CUTOFF_POLICY;
967 <      } else {
968 <        if (myPolicy == "MAX") {
969 <          cp = MAX_CUTOFF_POLICY;
970 <        } else {
971 <          if (myPolicy == "TRADITIONAL") {            
972 <            cp = TRADITIONAL_CUTOFF_POLICY;
973 <          } else {
974 <            // throw error        
975 <            sprintf( painCave.errMsg,
976 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
977 <            painCave.isFatal = 1;
978 <            simError();
979 <          }    
980 <        }          
981 <      }
982 <    }          
983 <    notifyFortranCutoffPolicy(&cp);
984 <
985 <    // Check the Skin Thickness for neighborlists
986 <    RealType skin;
987 <    if (simParams_->haveSkinThickness()) {
988 <      skin = simParams_->getSkinThickness();
989 <      notifyFortranSkinThickness(&skin);
990 <    }            
991 <        
992 <    // Check if the cutoff was set explicitly:
993 <    if (simParams_->haveCutoffRadius()) {
994 <      rcut_ = simParams_->getCutoffRadius();
995 <      if (simParams_->haveSwitchingRadius()) {
996 <        rsw_  = simParams_->getSwitchingRadius();
997 <      } else {
998 <        if (fInfo_.SIM_uses_Charges |
999 <            fInfo_.SIM_uses_Dipoles |
1000 <            fInfo_.SIM_uses_RF) {
1001 <          
1002 <          rsw_ = 0.85 * rcut_;
1003 <          sprintf(painCave.errMsg,
1004 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1005 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1006 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1007 <        painCave.isFatal = 0;
1008 <        simError();
1009 <        } else {
1010 <          rsw_ = rcut_;
1011 <          sprintf(painCave.errMsg,
1012 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1013 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1014 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1015 <          painCave.isFatal = 0;
1016 <          simError();
1017 <        }
1018 <      }
1019 <
1020 <      if (simParams_->haveElectrostaticSummationMethod()) {
1021 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1022 <        toUpper(myMethod);
1023 <        
1024 <        if (myMethod == "SHIFTED_POTENTIAL") {
1025 <          ljsp_ = true;
1026 <        } else if (myMethod == "SHIFTED_FORCE") {
1027 <          ljsf_ = true;
1028 <        }
1029 <      }
1030 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1031 <      
1032 <    } else {
1033 <      
1034 <      // For electrostatic atoms, we'll assume a large safe value:
1035 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1036 <        sprintf(painCave.errMsg,
1037 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1038 <                "\tOOPSE will use a default value of 15.0 angstroms"
1039 <                "\tfor the cutoffRadius.\n");
1040 <        painCave.isFatal = 0;
1041 <        simError();
1042 <        rcut_ = 15.0;
1043 <      
1044 <        if (simParams_->haveElectrostaticSummationMethod()) {
1045 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1046 <          toUpper(myMethod);
1047 <      
1048 <      // For the time being, we're tethering the LJ shifted behavior to the
1049 <      // electrostaticSummationMethod keyword options
1050 <          if (myMethod == "SHIFTED_POTENTIAL") {
1051 <            ljsp_ = true;
1052 <          } else if (myMethod == "SHIFTED_FORCE") {
1053 <            ljsf_ = true;
1054 <          }
1055 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1056 <            if (simParams_->haveSwitchingRadius()){
1057 <              sprintf(painCave.errMsg,
1058 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1059 <                      "\teven though the electrostaticSummationMethod was\n"
1060 <                      "\tset to %s\n", myMethod.c_str());
1061 <              painCave.isFatal = 1;
1062 <              simError();            
1063 <            }
1064 <          }
1065 <        }
1066 <      
1067 <        if (simParams_->haveSwitchingRadius()){
1068 <          rsw_ = simParams_->getSwitchingRadius();
1069 <        } else {        
1070 <          sprintf(painCave.errMsg,
1071 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1072 <                  "\tOOPSE will use a default value of\n"
1073 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1074 <          painCave.isFatal = 0;
1075 <          simError();
1076 <          rsw_ = 0.85 * rcut_;
1077 <        }
1078 <
1079 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1080 <
1081 <      } else {
1082 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1083 <        // We'll punt and let fortran figure out the cutoffs later.
1084 <        
1085 <        notifyFortranYouAreOnYourOwn();
1086 <
1087 <      }
1088 <    }
1089 <  }
931 >    int* excludeList = excludedInteractions_.getPairList();
932 >    int* oneTwoList = oneTwoInteractions_.getPairList();
933 >    int* oneThreeList = oneThreeInteractions_.getPairList();
934 >    int* oneFourList = oneFourInteractions_.getPairList();
935  
936 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1092 <    
1093 <    int errorOut;
1094 <    int esm =  NONE;
1095 <    int sm = UNDAMPED;
1096 <    RealType alphaVal;
1097 <    RealType dielectric;
1098 <    
1099 <    errorOut = isError;
1100 <
1101 <    if (simParams_->haveElectrostaticSummationMethod()) {
1102 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1103 <      toUpper(myMethod);
1104 <      if (myMethod == "NONE") {
1105 <        esm = NONE;
1106 <      } else {
1107 <        if (myMethod == "SWITCHING_FUNCTION") {
1108 <          esm = SWITCHING_FUNCTION;
1109 <        } else {
1110 <          if (myMethod == "SHIFTED_POTENTIAL") {
1111 <            esm = SHIFTED_POTENTIAL;
1112 <          } else {
1113 <            if (myMethod == "SHIFTED_FORCE") {            
1114 <              esm = SHIFTED_FORCE;
1115 <            } else {
1116 <              if (myMethod == "REACTION_FIELD") {
1117 <                esm = REACTION_FIELD;
1118 <                dielectric = simParams_->getDielectric();
1119 <                if (!simParams_->haveDielectric()) {
1120 <                  // throw warning
1121 <                  sprintf( painCave.errMsg,
1122 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1123 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1124 <                  painCave.isFatal = 0;
1125 <                  simError();
1126 <                }
1127 <              } else {
1128 <                // throw error        
1129 <                sprintf( painCave.errMsg,
1130 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1131 <                         "\t(Input file specified %s .)\n"
1132 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1133 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1134 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1135 <                painCave.isFatal = 1;
1136 <                simError();
1137 <              }    
1138 <            }          
1139 <          }
1140 <        }
1141 <      }
1142 <    }
1143 <    
1144 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1145 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1146 <      toUpper(myScreen);
1147 <      if (myScreen == "UNDAMPED") {
1148 <        sm = UNDAMPED;
1149 <      } else {
1150 <        if (myScreen == "DAMPED") {
1151 <          sm = DAMPED;
1152 <          if (!simParams_->haveDampingAlpha()) {
1153 <            // first set a cutoff dependent alpha value
1154 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1155 <            alphaVal = 0.5125 - rcut_* 0.025;
1156 <            // for values rcut > 20.5, alpha is zero
1157 <            if (alphaVal < 0) alphaVal = 0;
1158 <
1159 <            // throw warning
1160 <            sprintf( painCave.errMsg,
1161 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1162 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1163 <            painCave.isFatal = 0;
1164 <            simError();
1165 <          } else {
1166 <            alphaVal = simParams_->getDampingAlpha();
1167 <          }
1168 <          
1169 <        } else {
1170 <          // throw error        
1171 <          sprintf( painCave.errMsg,
1172 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1173 <                   "\t(Input file specified %s .)\n"
1174 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1175 <                   "or \"damped\".\n", myScreen.c_str() );
1176 <          painCave.isFatal = 1;
1177 <          simError();
1178 <        }
1179 <      }
1180 <    }
1181 <    
1182 <    // let's pass some summation method variables to fortran
1183 <    setElectrostaticSummationMethod( &esm );
1184 <    setFortranElectrostaticMethod( &esm );
1185 <    setScreeningMethod( &sm );
1186 <    setDampingAlpha( &alphaVal );
1187 <    setReactionFieldDielectric( &dielectric );
1188 <    initFortranFF( &errorOut );
936 >    topologyDone_ = true;
937    }
938  
1191  void SimInfo::setupSwitchingFunction() {    
1192    int ft = CUBIC;
1193
1194    if (simParams_->haveSwitchingFunctionType()) {
1195      std::string funcType = simParams_->getSwitchingFunctionType();
1196      toUpper(funcType);
1197      if (funcType == "CUBIC") {
1198        ft = CUBIC;
1199      } else {
1200        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1201          ft = FIFTH_ORDER_POLY;
1202        } else {
1203          // throw error        
1204          sprintf( painCave.errMsg,
1205                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1206          painCave.isFatal = 1;
1207          simError();
1208        }          
1209      }
1210    }
1211
1212    // send switching function notification to switcheroo
1213    setFunctionType(&ft);
1214
1215  }
1216
1217  void SimInfo::setupAccumulateBoxDipole() {    
1218
1219    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1220    if ( simParams_->haveAccumulateBoxDipole() )
1221      if ( simParams_->getAccumulateBoxDipole() ) {
1222        setAccumulateBoxDipole();
1223        calcBoxDipole_ = true;
1224      }
1225
1226  }
1227
939    void SimInfo::addProperty(GenericData* genData) {
940      properties_.addProperty(genData);  
941    }
942  
943 <  void SimInfo::removeProperty(const std::string& propName) {
943 >  void SimInfo::removeProperty(const string& propName) {
944      properties_.removeProperty(propName);  
945    }
946  
# Line 1237 | Line 948 | namespace oopse {
948      properties_.clearProperties();
949    }
950  
951 <  std::vector<std::string> SimInfo::getPropertyNames() {
951 >  vector<string> SimInfo::getPropertyNames() {
952      return properties_.getPropertyNames();  
953    }
954        
955 <  std::vector<GenericData*> SimInfo::getProperties() {
955 >  vector<GenericData*> SimInfo::getProperties() {
956      return properties_.getProperties();
957    }
958  
959 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
959 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
960      return properties_.getPropertyByName(propName);
961    }
962  
# Line 1259 | Line 970 | namespace oopse {
970      Molecule* mol;
971      RigidBody* rb;
972      Atom* atom;
973 +    CutoffGroup* cg;
974      SimInfo::MoleculeIterator mi;
975      Molecule::RigidBodyIterator rbIter;
976 <    Molecule::AtomIterator atomIter;;
976 >    Molecule::AtomIterator atomIter;
977 >    Molecule::CutoffGroupIterator cgIter;
978  
979      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
980          
# Line 1272 | Line 985 | namespace oopse {
985        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
986          rb->setSnapshotManager(sman_);
987        }
988 +
989 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
990 +        cg->setSnapshotManager(sman_);
991 +      }
992      }    
993      
994    }
995  
1279  Vector3d SimInfo::getComVel(){
1280    SimInfo::MoleculeIterator i;
1281    Molecule* mol;
996  
997 <    Vector3d comVel(0.0);
1284 <    RealType totalMass = 0.0;
1285 <    
1286 <
1287 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1288 <      RealType mass = mol->getMass();
1289 <      totalMass += mass;
1290 <      comVel += mass * mol->getComVel();
1291 <    }  
1292 <
1293 < #ifdef IS_MPI
1294 <    RealType tmpMass = totalMass;
1295 <    Vector3d tmpComVel(comVel);    
1296 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1297 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1298 < #endif
1299 <
1300 <    comVel /= totalMass;
1301 <
1302 <    return comVel;
1303 <  }
1304 <
1305 <  Vector3d SimInfo::getCom(){
1306 <    SimInfo::MoleculeIterator i;
1307 <    Molecule* mol;
1308 <
1309 <    Vector3d com(0.0);
1310 <    RealType totalMass = 0.0;
1311 <    
1312 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1313 <      RealType mass = mol->getMass();
1314 <      totalMass += mass;
1315 <      com += mass * mol->getCom();
1316 <    }  
1317 <
1318 < #ifdef IS_MPI
1319 <    RealType tmpMass = totalMass;
1320 <    Vector3d tmpCom(com);    
1321 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1322 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1323 < #endif
1324 <
1325 <    com /= totalMass;
1326 <
1327 <    return com;
997 >  ostream& operator <<(ostream& o, SimInfo& info) {
998  
1329  }        
1330
1331  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1332
999      return o;
1000    }
1001    
1002 <  
1337 <   /*
1338 <   Returns center of mass and center of mass velocity in one function call.
1339 <   */
1340 <  
1341 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1342 <      SimInfo::MoleculeIterator i;
1343 <      Molecule* mol;
1344 <      
1345 <    
1346 <      RealType totalMass = 0.0;
1347 <    
1348 <
1349 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1350 <         RealType mass = mol->getMass();
1351 <         totalMass += mass;
1352 <         com += mass * mol->getCom();
1353 <         comVel += mass * mol->getComVel();          
1354 <      }  
1355 <      
1356 < #ifdef IS_MPI
1357 <      RealType tmpMass = totalMass;
1358 <      Vector3d tmpCom(com);  
1359 <      Vector3d tmpComVel(comVel);
1360 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1361 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1362 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1363 < #endif
1364 <      
1365 <      com /= totalMass;
1366 <      comVel /= totalMass;
1367 <   }        
1368 <  
1369 <   /*
1370 <   Return intertia tensor for entire system and angular momentum Vector.
1371 <
1372 <
1373 <       [  Ixx -Ixy  -Ixz ]
1374 <  J =| -Iyx  Iyy  -Iyz |
1375 <       [ -Izx -Iyz   Izz ]
1376 <    */
1377 <
1378 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1379 <      
1380 <
1381 <      RealType xx = 0.0;
1382 <      RealType yy = 0.0;
1383 <      RealType zz = 0.0;
1384 <      RealType xy = 0.0;
1385 <      RealType xz = 0.0;
1386 <      RealType yz = 0.0;
1387 <      Vector3d com(0.0);
1388 <      Vector3d comVel(0.0);
1389 <      
1390 <      getComAll(com, comVel);
1391 <      
1392 <      SimInfo::MoleculeIterator i;
1393 <      Molecule* mol;
1394 <      
1395 <      Vector3d thisq(0.0);
1396 <      Vector3d thisv(0.0);
1397 <
1398 <      RealType thisMass = 0.0;
1399 <    
1400 <      
1401 <      
1402 <  
1403 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1404 <        
1405 <         thisq = mol->getCom()-com;
1406 <         thisv = mol->getComVel()-comVel;
1407 <         thisMass = mol->getMass();
1408 <         // Compute moment of intertia coefficients.
1409 <         xx += thisq[0]*thisq[0]*thisMass;
1410 <         yy += thisq[1]*thisq[1]*thisMass;
1411 <         zz += thisq[2]*thisq[2]*thisMass;
1412 <        
1413 <         // compute products of intertia
1414 <         xy += thisq[0]*thisq[1]*thisMass;
1415 <         xz += thisq[0]*thisq[2]*thisMass;
1416 <         yz += thisq[1]*thisq[2]*thisMass;
1417 <            
1418 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1419 <            
1420 <      }  
1421 <      
1422 <      
1423 <      inertiaTensor(0,0) = yy + zz;
1424 <      inertiaTensor(0,1) = -xy;
1425 <      inertiaTensor(0,2) = -xz;
1426 <      inertiaTensor(1,0) = -xy;
1427 <      inertiaTensor(1,1) = xx + zz;
1428 <      inertiaTensor(1,2) = -yz;
1429 <      inertiaTensor(2,0) = -xz;
1430 <      inertiaTensor(2,1) = -yz;
1431 <      inertiaTensor(2,2) = xx + yy;
1432 <      
1433 < #ifdef IS_MPI
1434 <      Mat3x3d tmpI(inertiaTensor);
1435 <      Vector3d tmpAngMom;
1436 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1437 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1438 < #endif
1439 <              
1440 <      return;
1441 <   }
1442 <
1443 <   //Returns the angular momentum of the system
1444 <   Vector3d SimInfo::getAngularMomentum(){
1445 <      
1446 <      Vector3d com(0.0);
1447 <      Vector3d comVel(0.0);
1448 <      Vector3d angularMomentum(0.0);
1449 <      
1450 <      getComAll(com,comVel);
1451 <      
1452 <      SimInfo::MoleculeIterator i;
1453 <      Molecule* mol;
1454 <      
1455 <      Vector3d thisr(0.0);
1456 <      Vector3d thisp(0.0);
1457 <      
1458 <      RealType thisMass;
1459 <      
1460 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1461 <        thisMass = mol->getMass();
1462 <        thisr = mol->getCom()-com;
1463 <        thisp = (mol->getComVel()-comVel)*thisMass;
1464 <        
1465 <        angularMomentum += cross( thisr, thisp );
1466 <        
1467 <      }  
1468 <      
1469 < #ifdef IS_MPI
1470 <      Vector3d tmpAngMom;
1471 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1472 < #endif
1473 <      
1474 <      return angularMomentum;
1475 <   }
1476 <  
1002 >  
1003    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1004      return IOIndexToIntegrableObject.at(index);
1005    }
1006    
1007 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1007 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1008      IOIndexToIntegrableObject= v;
1009    }
1484
1485  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1486     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1487     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1488     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1489  */
1490  void SimInfo::getGyrationalVolume(RealType &volume){
1491    Mat3x3d intTensor;
1492    RealType det;
1493    Vector3d dummyAngMom;
1494    RealType sysconstants;
1495    RealType geomCnst;
1496
1497    geomCnst = 3.0/2.0;
1498    /* Get the inertial tensor and angular momentum for free*/
1499    getInertiaTensor(intTensor,dummyAngMom);
1500    
1501    det = intTensor.determinant();
1502    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1503    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1504    return;
1505  }
1506
1507  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1508    Mat3x3d intTensor;
1509    Vector3d dummyAngMom;
1510    RealType sysconstants;
1511    RealType geomCnst;
1512
1513    geomCnst = 3.0/2.0;
1514    /* Get the inertial tensor and angular momentum for free*/
1515    getInertiaTensor(intTensor,dummyAngMom);
1516    
1517    detI = intTensor.determinant();
1518    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1519    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1520    return;
1521  }
1010   /*
1011 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1011 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1012        assert( v.size() == nAtoms_ + nRigidBodies_);
1013        sdByGlobalIndex_ = v;
1014      }
# Line 1530 | Line 1018 | namespace oopse {
1018        return sdByGlobalIndex_.at(index);
1019      }  
1020   */  
1021 < }//end namespace oopse
1021 >  int SimInfo::getNGlobalConstraints() {
1022 >    int nGlobalConstraints;
1023 > #ifdef IS_MPI
1024 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1025 >                  MPI_COMM_WORLD);    
1026 > #else
1027 >    nGlobalConstraints =  nConstraints_;
1028 > #endif
1029 >    return nGlobalConstraints;
1030 >  }
1031  
1032 + }//end namespace OpenMD
1033 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 1241 by gezelter, Fri Apr 25 15:14:47 2008 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1767 by gezelter, Fri Jul 6 22:01:58 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines