ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 124 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1750 by gezelter, Thu Jun 7 12:53:46 2012 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimInfo.cpp
45 > * @author    tlin
46 > * @date  11/02/2004
47 > * @version 1.0
48 > */
49  
50 < #include <iostream>
51 < using namespace std;
50 > #include <algorithm>
51 > #include <set>
52 > #include <map>
53  
54   #include "brains/SimInfo.hpp"
55 < #define __C
56 < #include "brains/fSimulation.h"
55 > #include "math/Vector3.hpp"
56 > #include "primitives/Molecule.hpp"
57 > #include "primitives/StuntDouble.hpp"
58 > #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60 < #include "UseTheForce/DarkSide/simulation_interface.h"
61 < #include "UseTheForce/notifyCutoffs_interface.h"
62 <
63 < //#include "UseTheForce/fortranWrappers.hpp"
16 <
17 < #include "math/MatVec3.h"
18 <
60 > #include "selection/SelectionManager.hpp"
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "brains/mpiSimulation.hpp"
65 > #include <mpi.h>
66   #endif
67  
68 < inline double roundMe( double x ){
69 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
70 < }
71 <          
72 < inline double min( double a, double b ){
73 <  return (a < b ) ? a : b;
74 < }
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94 >      
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107 >      }
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125 >    }
126 >    
127 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 >    //group therefore the total number of cutoff groups in the system is
129 >    //equal to the total number of atoms minus number of atoms belong to
130 >    //cutoff group defined in meta-data file plus the number of cutoff
131 >    //groups defined in meta-data file
132  
133 < SimInfo* currentInfo;
133 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 >    
135 >    //every free atom (atom does not belong to rigid bodies) is an
136 >    //integrable object therefore the total number of integrable objects
137 >    //in the system is equal to the total number of atoms minus number of
138 >    //atoms belong to rigid body defined in meta-data file plus the number
139 >    //of rigid bodies defined in meta-data file
140 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 >      + nGlobalRigidBodies_;
142 >    
143 >    nGlobalMols_ = molStampIds_.size();
144 >    molToProcMap_.resize(nGlobalMols_);
145 >  }
146 >  
147 >  SimInfo::~SimInfo() {
148 >    map<int, Molecule*>::iterator i;
149 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150 >      delete i->second;
151 >    }
152 >    molecules_.clear();
153 >      
154 >    delete sman_;
155 >    delete simParams_;
156 >    delete forceField_;
157 >  }
158  
33 SimInfo::SimInfo(){
159  
160 <  n_constraints = 0;
161 <  nZconstraints = 0;
162 <  n_oriented = 0;
163 <  n_dipoles = 0;
164 <  ndf = 0;
165 <  ndfRaw = 0;
166 <  nZconstraints = 0;
167 <  the_integrator = NULL;
168 <  setTemp = 0;
169 <  thermalTime = 0.0;
170 <  currentTime = 0.0;
171 <  rCut = 0.0;
172 <  rSw = 0.0;
173 <
174 <  haveRcut = 0;
175 <  haveRsw = 0;
176 <  boxIsInit = 0;
160 >  bool SimInfo::addMolecule(Molecule* mol) {
161 >    MoleculeIterator i;
162 >    
163 >    i = molecules_.find(mol->getGlobalIndex());
164 >    if (i == molecules_.end() ) {
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168 >      nAtoms_ += mol->getNAtoms();
169 >      nBonds_ += mol->getNBonds();
170 >      nBends_ += mol->getNBends();
171 >      nTorsions_ += mol->getNTorsions();
172 >      nInversions_ += mol->getNInversions();
173 >      nRigidBodies_ += mol->getNRigidBodies();
174 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
175 >      nCutoffGroups_ += mol->getNCutoffGroups();
176 >      nConstraints_ += mol->getNConstraintPairs();
177 >      
178 >      addInteractionPairs(mol);
179 >      
180 >      return true;
181 >    } else {
182 >      return false;
183 >    }
184 >  }
185    
186 <  resetTime = 1e99;
186 >  bool SimInfo::removeMolecule(Molecule* mol) {
187 >    MoleculeIterator i;
188 >    i = molecules_.find(mol->getGlobalIndex());
189  
190 <  orthoRhombic = 0;
56 <  orthoTolerance = 1E-6;
57 <  useInitXSstate = true;
190 >    if (i != molecules_.end() ) {
191  
192 <  usePBC = 0;
193 <  useLJ = 0;
194 <  useSticky = 0;
195 <  useCharges = 0;
196 <  useDipoles = 0;
197 <  useReactionField = 0;
198 <  useGB = 0;
199 <  useEAM = 0;
200 <  useSolidThermInt = 0;
201 <  useLiquidThermInt = 0;
192 >      assert(mol == i->second);
193 >        
194 >      nAtoms_ -= mol->getNAtoms();
195 >      nBonds_ -= mol->getNBonds();
196 >      nBends_ -= mol->getNBends();
197 >      nTorsions_ -= mol->getNTorsions();
198 >      nInversions_ -= mol->getNInversions();
199 >      nRigidBodies_ -= mol->getNRigidBodies();
200 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
201 >      nCutoffGroups_ -= mol->getNCutoffGroups();
202 >      nConstraints_ -= mol->getNConstraintPairs();
203  
204 <  haveCutoffGroups = false;
204 >      removeInteractionPairs(mol);
205 >      molecules_.erase(mol->getGlobalIndex());
206  
207 <  excludes = Exclude::Instance();
208 <
209 <  myConfiguration = new SimState();
207 >      delete mol;
208 >        
209 >      return true;
210 >    } else {
211 >      return false;
212 >    }
213 >  }    
214  
215 <  has_minimizer = false;
216 <  the_minimizer =NULL;
215 >        
216 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
217 >    i = molecules_.begin();
218 >    return i == molecules_.end() ? NULL : i->second;
219 >  }    
220  
221 <  ngroup = 0;
221 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
222 >    ++i;
223 >    return i == molecules_.end() ? NULL : i->second;    
224 >  }
225  
81 }
226  
227 +  void SimInfo::calcNdf() {
228 +    int ndf_local, nfq_local;
229 +    MoleculeIterator i;
230 +    vector<StuntDouble*>::iterator j;
231 +    vector<Atom*>::iterator k;
232  
233 < SimInfo::~SimInfo(){
233 >    Molecule* mol;
234 >    StuntDouble* integrableObject;
235 >    Atom* atom;
236  
237 <  delete myConfiguration;
237 >    ndf_local = 0;
238 >    nfq_local = 0;
239 >    
240 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
242 >           integrableObject = mol->nextIntegrableObject(j)) {
243  
244 <  map<string, GenericData*>::iterator i;
89 <  
90 <  for(i = properties.begin(); i != properties.end(); i++)
91 <    delete (*i).second;
244 >        ndf_local += 3;
245  
246 < }
246 >        if (integrableObject->isDirectional()) {
247 >          if (integrableObject->isLinear()) {
248 >            ndf_local += 2;
249 >          } else {
250 >            ndf_local += 3;
251 >          }
252 >        }
253 >      }
254 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 >           atom = mol->nextFluctuatingCharge(k)) {
256 >        if (atom->isFluctuatingCharge()) {
257 >          nfq_local++;
258 >        }
259 >      }
260 >    }
261 >    
262 >    ndfLocal_ = ndf_local;
263  
264 < void SimInfo::setBox(double newBox[3]) {
265 <  
97 <  int i, j;
98 <  double tempMat[3][3];
264 >    // n_constraints is local, so subtract them on each processor
265 >    ndf_local -= nConstraints_;
266  
267 <  for(i=0; i<3; i++)
268 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
267 > #ifdef IS_MPI
268 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
269 >    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
270 > #else
271 >    ndf_ = ndf_local;
272 >    nGlobalFluctuatingCharges_ = nfq_local;
273 > #endif
274  
275 <  tempMat[0][0] = newBox[0];
276 <  tempMat[1][1] = newBox[1];
277 <  tempMat[2][2] = newBox[2];
275 >    // nZconstraints_ is global, as are the 3 COM translations for the
276 >    // entire system:
277 >    ndf_ = ndf_ - 3 - nZconstraint_;
278  
279 <  setBoxM( tempMat );
279 >  }
280  
281 < }
282 <
283 < void SimInfo::setBoxM( double theBox[3][3] ){
281 >  int SimInfo::getFdf() {
282 > #ifdef IS_MPI
283 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284 > #else
285 >    fdf_ = fdf_local;
286 > #endif
287 >    return fdf_;
288 >  }
289    
290 <  int i, j;
291 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
292 <                         // ordering in the array is as follows:
293 <                         // [ 0 3 6 ]
294 <                         // [ 1 4 7 ]
295 <                         // [ 2 5 8 ]
296 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
297 <
298 <  if( !boxIsInit ) boxIsInit = 1;
299 <
300 <  for(i=0; i < 3; i++)
301 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
302 <  
303 <  calcBoxL();
127 <  calcHmatInv();
128 <
129 <  for(i=0; i < 3; i++) {
130 <    for (j=0; j < 3; j++) {
131 <      FortranHmat[3*j + i] = Hmat[i][j];
132 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
290 >  unsigned int SimInfo::getNLocalCutoffGroups(){
291 >    int nLocalCutoffAtoms = 0;
292 >    Molecule* mol;
293 >    MoleculeIterator mi;
294 >    CutoffGroup* cg;
295 >    Molecule::CutoffGroupIterator ci;
296 >    
297 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
298 >      
299 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
300 >           cg = mol->nextCutoffGroup(ci)) {
301 >        nLocalCutoffAtoms += cg->getNumAtom();
302 >        
303 >      }        
304      }
305 +    
306 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
307    }
308 +    
309 +  void SimInfo::calcNdfRaw() {
310 +    int ndfRaw_local;
311  
312 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
313 <
314 < }
315 <
312 >    MoleculeIterator i;
313 >    vector<StuntDouble*>::iterator j;
314 >    Molecule* mol;
315 >    StuntDouble* integrableObject;
316  
317 < void SimInfo::getBoxM (double theBox[3][3]) {
317 >    // Raw degrees of freedom that we have to set
318 >    ndfRaw_local = 0;
319 >    
320 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
321 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
322 >           integrableObject = mol->nextIntegrableObject(j)) {
323  
324 <  int i, j;
144 <  for(i=0; i<3; i++)
145 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
146 < }
324 >        ndfRaw_local += 3;
325  
326 +        if (integrableObject->isDirectional()) {
327 +          if (integrableObject->isLinear()) {
328 +            ndfRaw_local += 2;
329 +          } else {
330 +            ndfRaw_local += 3;
331 +          }
332 +        }
333 +            
334 +      }
335 +    }
336 +    
337 + #ifdef IS_MPI
338 +    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
339 + #else
340 +    ndfRaw_ = ndfRaw_local;
341 + #endif
342 +  }
343  
344 < void SimInfo::scaleBox(double scale) {
345 <  double theBox[3][3];
151 <  int i, j;
344 >  void SimInfo::calcNdfTrans() {
345 >    int ndfTrans_local;
346  
347 <  // cerr << "Scaling box by " << scale << "\n";
347 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
348  
155  for(i=0; i<3; i++)
156    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
349  
350 <  setBoxM(theBox);
350 > #ifdef IS_MPI
351 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
352 > #else
353 >    ndfTrans_ = ndfTrans_local;
354 > #endif
355  
356 < }
356 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
357 >
358 >  }
359  
360 < void SimInfo::calcHmatInv( void ) {
361 <  
362 <  int oldOrtho;
363 <  int i,j;
364 <  double smallDiag;
365 <  double tol;
366 <  double sanity[3][3];
367 <
368 <  invertMat3( Hmat, HmatInv );
369 <
370 <  // check to see if Hmat is orthorhombic
371 <  
372 <  oldOrtho = orthoRhombic;
373 <
176 <  smallDiag = fabs(Hmat[0][0]);
177 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
178 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
179 <  tol = smallDiag * orthoTolerance;
360 >  void SimInfo::addInteractionPairs(Molecule* mol) {
361 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
362 >    vector<Bond*>::iterator bondIter;
363 >    vector<Bend*>::iterator bendIter;
364 >    vector<Torsion*>::iterator torsionIter;
365 >    vector<Inversion*>::iterator inversionIter;
366 >    Bond* bond;
367 >    Bend* bend;
368 >    Torsion* torsion;
369 >    Inversion* inversion;
370 >    int a;
371 >    int b;
372 >    int c;
373 >    int d;
374  
375 <  orthoRhombic = 1;
376 <  
377 <  for (i = 0; i < 3; i++ ) {
378 <    for (j = 0 ; j < 3; j++) {
379 <      if (i != j) {
380 <        if (orthoRhombic) {
381 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
382 <        }        
375 >    // atomGroups can be used to add special interaction maps between
376 >    // groups of atoms that are in two separate rigid bodies.
377 >    // However, most site-site interactions between two rigid bodies
378 >    // are probably not special, just the ones between the physically
379 >    // bonded atoms.  Interactions *within* a single rigid body should
380 >    // always be excluded.  These are done at the bottom of this
381 >    // function.
382 >
383 >    map<int, set<int> > atomGroups;
384 >    Molecule::RigidBodyIterator rbIter;
385 >    RigidBody* rb;
386 >    Molecule::IntegrableObjectIterator ii;
387 >    StuntDouble* integrableObject;
388 >    
389 >    for (integrableObject = mol->beginIntegrableObject(ii);
390 >         integrableObject != NULL;
391 >         integrableObject = mol->nextIntegrableObject(ii)) {
392 >      
393 >      if (integrableObject->isRigidBody()) {
394 >        rb = static_cast<RigidBody*>(integrableObject);
395 >        vector<Atom*> atoms = rb->getAtoms();
396 >        set<int> rigidAtoms;
397 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
398 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
399 >        }
400 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
401 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
402 >        }      
403 >      } else {
404 >        set<int> oneAtomSet;
405 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
406 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
407        }
408 <    }
409 <  }
408 >    }  
409 >          
410 >    for (bond= mol->beginBond(bondIter); bond != NULL;
411 >         bond = mol->nextBond(bondIter)) {
412  
413 <  if( oldOrtho != orthoRhombic ){
413 >      a = bond->getAtomA()->getGlobalIndex();
414 >      b = bond->getAtomB()->getGlobalIndex();  
415      
416 <    if( orthoRhombic ) {
417 <      sprintf( painCave.errMsg,
418 <               "OOPSE is switching from the default Non-Orthorhombic\n"
419 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
420 <               "\tThis is usually a good thing, but if you wan't the\n"
200 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
201 <               "\tvariable ( currently set to %G ) smaller.\n",
202 <               orthoTolerance);
203 <      painCave.severity = OOPSE_INFO;
204 <      simError();
416 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
417 >        oneTwoInteractions_.addPair(a, b);
418 >      } else {
419 >        excludedInteractions_.addPair(a, b);
420 >      }
421      }
206    else {
207      sprintf( painCave.errMsg,
208               "OOPSE is switching from the faster Orthorhombic to the more\n"
209               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
210               "\tThis is usually because the box has deformed under\n"
211               "\tNPTf integration. If you wan't to live on the edge with\n"
212               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
213               "\tvariable ( currently set to %G ) larger.\n",
214               orthoTolerance);
215      painCave.severity = OOPSE_WARNING;
216      simError();
217    }
218  }
219 }
422  
423 < void SimInfo::calcBoxL( void ){
423 >    for (bend= mol->beginBend(bendIter); bend != NULL;
424 >         bend = mol->nextBend(bendIter)) {
425  
426 <  double dx, dy, dz, dsq;
426 >      a = bend->getAtomA()->getGlobalIndex();
427 >      b = bend->getAtomB()->getGlobalIndex();        
428 >      c = bend->getAtomC()->getGlobalIndex();
429 >      
430 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
431 >        oneTwoInteractions_.addPair(a, b);      
432 >        oneTwoInteractions_.addPair(b, c);
433 >      } else {
434 >        excludedInteractions_.addPair(a, b);
435 >        excludedInteractions_.addPair(b, c);
436 >      }
437  
438 <  // boxVol = Determinant of Hmat
438 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
439 >        oneThreeInteractions_.addPair(a, c);      
440 >      } else {
441 >        excludedInteractions_.addPair(a, c);
442 >      }
443 >    }
444  
445 <  boxVol = matDet3( Hmat );
445 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
446 >         torsion = mol->nextTorsion(torsionIter)) {
447  
448 <  // boxLx
449 <  
450 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
451 <  dsq = dx*dx + dy*dy + dz*dz;
233 <  boxL[0] = sqrt( dsq );
234 <  //maxCutoff = 0.5 * boxL[0];
448 >      a = torsion->getAtomA()->getGlobalIndex();
449 >      b = torsion->getAtomB()->getGlobalIndex();        
450 >      c = torsion->getAtomC()->getGlobalIndex();        
451 >      d = torsion->getAtomD()->getGlobalIndex();      
452  
453 <  // boxLy
454 <  
455 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
456 <  dsq = dx*dx + dy*dy + dz*dz;
457 <  boxL[1] = sqrt( dsq );
458 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
453 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
454 >        oneTwoInteractions_.addPair(a, b);      
455 >        oneTwoInteractions_.addPair(b, c);
456 >        oneTwoInteractions_.addPair(c, d);
457 >      } else {
458 >        excludedInteractions_.addPair(a, b);
459 >        excludedInteractions_.addPair(b, c);
460 >        excludedInteractions_.addPair(c, d);
461 >      }
462  
463 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
464 +        oneThreeInteractions_.addPair(a, c);      
465 +        oneThreeInteractions_.addPair(b, d);      
466 +      } else {
467 +        excludedInteractions_.addPair(a, c);
468 +        excludedInteractions_.addPair(b, d);
469 +      }
470  
471 <  // boxLz
472 <  
473 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
474 <  dsq = dx*dx + dy*dy + dz*dz;
475 <  boxL[2] = sqrt( dsq );
476 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
471 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
472 >        oneFourInteractions_.addPair(a, d);      
473 >      } else {
474 >        excludedInteractions_.addPair(a, d);
475 >      }
476 >    }
477  
478 <  //calculate the max cutoff
479 <  maxCutoff =  calcMaxCutOff();
253 <  
254 <  checkCutOffs();
478 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
479 >         inversion = mol->nextInversion(inversionIter)) {
480  
481 < }
481 >      a = inversion->getAtomA()->getGlobalIndex();
482 >      b = inversion->getAtomB()->getGlobalIndex();        
483 >      c = inversion->getAtomC()->getGlobalIndex();        
484 >      d = inversion->getAtomD()->getGlobalIndex();        
485  
486 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
487 +        oneTwoInteractions_.addPair(a, b);      
488 +        oneTwoInteractions_.addPair(a, c);
489 +        oneTwoInteractions_.addPair(a, d);
490 +      } else {
491 +        excludedInteractions_.addPair(a, b);
492 +        excludedInteractions_.addPair(a, c);
493 +        excludedInteractions_.addPair(a, d);
494 +      }
495  
496 < double SimInfo::calcMaxCutOff(){
496 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
497 >        oneThreeInteractions_.addPair(b, c);    
498 >        oneThreeInteractions_.addPair(b, d);    
499 >        oneThreeInteractions_.addPair(c, d);      
500 >      } else {
501 >        excludedInteractions_.addPair(b, c);
502 >        excludedInteractions_.addPair(b, d);
503 >        excludedInteractions_.addPair(c, d);
504 >      }
505 >    }
506  
507 <  double ri[3], rj[3], rk[3];
508 <  double rij[3], rjk[3], rki[3];
509 <  double minDist;
507 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
508 >         rb = mol->nextRigidBody(rbIter)) {
509 >      vector<Atom*> atoms = rb->getAtoms();
510 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
511 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
512 >          a = atoms[i]->getGlobalIndex();
513 >          b = atoms[j]->getGlobalIndex();
514 >          excludedInteractions_.addPair(a, b);
515 >        }
516 >      }
517 >    }        
518  
519 <  ri[0] = Hmat[0][0];
266 <  ri[1] = Hmat[1][0];
267 <  ri[2] = Hmat[2][0];
519 >  }
520  
521 <  rj[0] = Hmat[0][1];
522 <  rj[1] = Hmat[1][1];
523 <  rj[2] = Hmat[2][1];
521 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
522 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
523 >    vector<Bond*>::iterator bondIter;
524 >    vector<Bend*>::iterator bendIter;
525 >    vector<Torsion*>::iterator torsionIter;
526 >    vector<Inversion*>::iterator inversionIter;
527 >    Bond* bond;
528 >    Bend* bend;
529 >    Torsion* torsion;
530 >    Inversion* inversion;
531 >    int a;
532 >    int b;
533 >    int c;
534 >    int d;
535  
536 <  rk[0] = Hmat[0][2];
537 <  rk[1] = Hmat[1][2];
538 <  rk[2] = Hmat[2][2];
536 >    map<int, set<int> > atomGroups;
537 >    Molecule::RigidBodyIterator rbIter;
538 >    RigidBody* rb;
539 >    Molecule::IntegrableObjectIterator ii;
540 >    StuntDouble* integrableObject;
541      
542 <  crossProduct3(ri, rj, rij);
543 <  distXY = dotProduct3(rk,rij) / norm3(rij);
542 >    for (integrableObject = mol->beginIntegrableObject(ii);
543 >         integrableObject != NULL;
544 >         integrableObject = mol->nextIntegrableObject(ii)) {
545 >      
546 >      if (integrableObject->isRigidBody()) {
547 >        rb = static_cast<RigidBody*>(integrableObject);
548 >        vector<Atom*> atoms = rb->getAtoms();
549 >        set<int> rigidAtoms;
550 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
551 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
552 >        }
553 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
554 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
555 >        }      
556 >      } else {
557 >        set<int> oneAtomSet;
558 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
559 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
560 >      }
561 >    }  
562  
563 <  crossProduct3(rj,rk, rjk);
564 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
563 >    for (bond= mol->beginBond(bondIter); bond != NULL;
564 >         bond = mol->nextBond(bondIter)) {
565 >      
566 >      a = bond->getAtomA()->getGlobalIndex();
567 >      b = bond->getAtomB()->getGlobalIndex();  
568 >    
569 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
570 >        oneTwoInteractions_.removePair(a, b);
571 >      } else {
572 >        excludedInteractions_.removePair(a, b);
573 >      }
574 >    }
575  
576 <  crossProduct3(rk,ri, rki);
577 <  distZX = dotProduct3(rj,rki) / norm3(rki);
576 >    for (bend= mol->beginBend(bendIter); bend != NULL;
577 >         bend = mol->nextBend(bendIter)) {
578  
579 <  minDist = min(min(distXY, distYZ), distZX);
580 <  return minDist/2;
581 <  
582 < }
579 >      a = bend->getAtomA()->getGlobalIndex();
580 >      b = bend->getAtomB()->getGlobalIndex();        
581 >      c = bend->getAtomC()->getGlobalIndex();
582 >      
583 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
584 >        oneTwoInteractions_.removePair(a, b);      
585 >        oneTwoInteractions_.removePair(b, c);
586 >      } else {
587 >        excludedInteractions_.removePair(a, b);
588 >        excludedInteractions_.removePair(b, c);
589 >      }
590  
591 < void SimInfo::wrapVector( double thePos[3] ){
591 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
592 >        oneThreeInteractions_.removePair(a, c);      
593 >      } else {
594 >        excludedInteractions_.removePair(a, c);
595 >      }
596 >    }
597  
598 <  int i;
599 <  double scaled[3];
598 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
599 >         torsion = mol->nextTorsion(torsionIter)) {
600  
601 <  if( !orthoRhombic ){
602 <    // calc the scaled coordinates.
601 >      a = torsion->getAtomA()->getGlobalIndex();
602 >      b = torsion->getAtomB()->getGlobalIndex();        
603 >      c = torsion->getAtomC()->getGlobalIndex();        
604 >      d = torsion->getAtomD()->getGlobalIndex();      
605    
606 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
607 +        oneTwoInteractions_.removePair(a, b);      
608 +        oneTwoInteractions_.removePair(b, c);
609 +        oneTwoInteractions_.removePair(c, d);
610 +      } else {
611 +        excludedInteractions_.removePair(a, b);
612 +        excludedInteractions_.removePair(b, c);
613 +        excludedInteractions_.removePair(c, d);
614 +      }
615  
616 <    matVecMul3(HmatInv, thePos, scaled);
617 <    
618 <    for(i=0; i<3; i++)
619 <      scaled[i] -= roundMe(scaled[i]);
620 <    
621 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
622 <    
307 <    matVecMul3(Hmat, scaled, thePos);
616 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
617 >        oneThreeInteractions_.removePair(a, c);      
618 >        oneThreeInteractions_.removePair(b, d);      
619 >      } else {
620 >        excludedInteractions_.removePair(a, c);
621 >        excludedInteractions_.removePair(b, d);
622 >      }
623  
624 <  }
625 <  else{
626 <    // calc the scaled coordinates.
627 <    
628 <    for(i=0; i<3; i++)
629 <      scaled[i] = thePos[i]*HmatInv[i][i];
315 <    
316 <    // wrap the scaled coordinates
317 <    
318 <    for(i=0; i<3; i++)
319 <      scaled[i] -= roundMe(scaled[i]);
320 <    
321 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
322 <    
323 <    for(i=0; i<3; i++)
324 <      thePos[i] = scaled[i]*Hmat[i][i];
325 <  }
326 <    
327 < }
624 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
625 >        oneFourInteractions_.removePair(a, d);      
626 >      } else {
627 >        excludedInteractions_.removePair(a, d);
628 >      }
629 >    }
630  
631 +    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
632 +         inversion = mol->nextInversion(inversionIter)) {
633  
634 < int SimInfo::getNDF(){
635 <  int ndf_local;
634 >      a = inversion->getAtomA()->getGlobalIndex();
635 >      b = inversion->getAtomB()->getGlobalIndex();        
636 >      c = inversion->getAtomC()->getGlobalIndex();        
637 >      d = inversion->getAtomD()->getGlobalIndex();        
638  
639 <  ndf_local = 0;
640 <  
641 <  for(int i = 0; i < integrableObjects.size(); i++){
642 <    ndf_local += 3;
643 <    if (integrableObjects[i]->isDirectional()) {
644 <      if (integrableObjects[i]->isLinear())
645 <        ndf_local += 2;
646 <      else
647 <        ndf_local += 3;
639 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
640 >        oneTwoInteractions_.removePair(a, b);      
641 >        oneTwoInteractions_.removePair(a, c);
642 >        oneTwoInteractions_.removePair(a, d);
643 >      } else {
644 >        excludedInteractions_.removePair(a, b);
645 >        excludedInteractions_.removePair(a, c);
646 >        excludedInteractions_.removePair(a, d);
647 >      }
648 >
649 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
650 >        oneThreeInteractions_.removePair(b, c);    
651 >        oneThreeInteractions_.removePair(b, d);    
652 >        oneThreeInteractions_.removePair(c, d);      
653 >      } else {
654 >        excludedInteractions_.removePair(b, c);
655 >        excludedInteractions_.removePair(b, d);
656 >        excludedInteractions_.removePair(c, d);
657 >      }
658      }
659 +
660 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
661 +         rb = mol->nextRigidBody(rbIter)) {
662 +      vector<Atom*> atoms = rb->getAtoms();
663 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
664 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
665 +          a = atoms[i]->getGlobalIndex();
666 +          b = atoms[j]->getGlobalIndex();
667 +          excludedInteractions_.removePair(a, b);
668 +        }
669 +      }
670 +    }        
671 +    
672    }
673 +  
674 +  
675 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
676 +    int curStampId;
677 +    
678 +    //index from 0
679 +    curStampId = moleculeStamps_.size();
680  
681 <  // n_constraints is local, so subtract them on each processor:
681 >    moleculeStamps_.push_back(molStamp);
682 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
683 >  }
684  
347  ndf_local -= n_constraints;
685  
686 < #ifdef IS_MPI
687 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
688 < #else
689 <  ndf = ndf_local;
690 < #endif
691 <
692 <  // nZconstraints is global, as are the 3 COM translations for the
693 <  // entire system:
694 <
695 <  ndf = ndf - 3 - nZconstraints;
696 <
697 <  return ndf;
361 < }
362 <
363 < int SimInfo::getNDFraw() {
364 <  int ndfRaw_local;
365 <
366 <  // Raw degrees of freedom that we have to set
367 <  ndfRaw_local = 0;
368 <
369 <  for(int i = 0; i < integrableObjects.size(); i++){
370 <    ndfRaw_local += 3;
371 <    if (integrableObjects[i]->isDirectional()) {
372 <       if (integrableObjects[i]->isLinear())
373 <        ndfRaw_local += 2;
374 <      else
375 <        ndfRaw_local += 3;
376 <    }
686 >  /**
687 >   * update
688 >   *
689 >   *  Performs the global checks and variable settings after the
690 >   *  objects have been created.
691 >   *
692 >   */
693 >  void SimInfo::update() {  
694 >    setupSimVariables();
695 >    calcNdf();
696 >    calcNdfRaw();
697 >    calcNdfTrans();
698    }
699 +  
700 +  /**
701 +   * getSimulatedAtomTypes
702 +   *
703 +   * Returns an STL set of AtomType* that are actually present in this
704 +   * simulation.  Must query all processors to assemble this information.
705 +   *
706 +   */
707 +  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
708 +    SimInfo::MoleculeIterator mi;
709 +    Molecule* mol;
710 +    Molecule::AtomIterator ai;
711 +    Atom* atom;
712 +    set<AtomType*> atomTypes;
713      
714 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
715 +      for(atom = mol->beginAtom(ai); atom != NULL;
716 +          atom = mol->nextAtom(ai)) {
717 +        atomTypes.insert(atom->getAtomType());
718 +      }      
719 +    }    
720 +    
721   #ifdef IS_MPI
380  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
381 #else
382  ndfRaw = ndfRaw_local;
383 #endif
722  
723 <  return ndfRaw;
724 < }
723 >    // loop over the found atom types on this processor, and add their
724 >    // numerical idents to a vector:
725 >    
726 >    vector<int> foundTypes;
727 >    set<AtomType*>::iterator i;
728 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
729 >      foundTypes.push_back( (*i)->getIdent() );
730  
731 < int SimInfo::getNDFtranslational() {
732 <  int ndfTrans_local;
731 >    // count_local holds the number of found types on this processor
732 >    int count_local = foundTypes.size();
733  
734 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
734 >    int nproc = MPI::COMM_WORLD.Get_size();
735  
736 +    // we need arrays to hold the counts and displacement vectors for
737 +    // all processors
738 +    vector<int> counts(nproc, 0);
739 +    vector<int> disps(nproc, 0);
740  
741 < #ifdef IS_MPI
742 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
743 < #else
744 <  ndfTrans = ndfTrans_local;
745 < #endif
741 >    // fill the counts array
742 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
743 >                              1, MPI::INT);
744 >  
745 >    // use the processor counts to compute the displacement array
746 >    disps[0] = 0;    
747 >    int totalCount = counts[0];
748 >    for (int iproc = 1; iproc < nproc; iproc++) {
749 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
750 >      totalCount += counts[iproc];
751 >    }
752  
753 <  ndfTrans = ndfTrans - 3 - nZconstraints;
753 >    // we need a (possibly redundant) set of all found types:
754 >    vector<int> ftGlobal(totalCount);
755 >    
756 >    // now spray out the foundTypes to all the other processors:    
757 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
758 >                               &ftGlobal[0], &counts[0], &disps[0],
759 >                               MPI::INT);
760  
761 <  return ndfTrans;
403 < }
761 >    vector<int>::iterator j;
762  
763 < int SimInfo::getTotIntegrableObjects() {
764 <  int nObjs_local;
765 <  int nObjs;
763 >    // foundIdents is a stl set, so inserting an already found ident
764 >    // will have no effect.
765 >    set<int> foundIdents;
766  
767 <  nObjs_local =  integrableObjects.size();
768 <
769 <
770 < #ifdef IS_MPI
771 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
772 < #else
773 <  nObjs = nObjs_local;
767 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
768 >      foundIdents.insert((*j));
769 >    
770 >    // now iterate over the foundIdents and get the actual atom types
771 >    // that correspond to these:
772 >    set<int>::iterator it;
773 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
774 >      atomTypes.insert( forceField_->getAtomType((*it)) );
775 >
776   #endif
777  
778 <
419 <  return nObjs;
420 < }
421 <
422 < void SimInfo::refreshSim(){
423 <
424 <  simtype fInfo;
425 <  int isError;
426 <  int n_global;
427 <  int* excl;
428 <
429 <  fInfo.dielect = 0.0;
430 <
431 <  if( useDipoles ){
432 <    if( useReactionField )fInfo.dielect = dielectric;
778 >    return atomTypes;        
779    }
780  
781 <  fInfo.SIM_uses_PBC = usePBC;
782 <  //fInfo.SIM_uses_LJ = 0;
783 <  fInfo.SIM_uses_LJ = useLJ;
784 <  fInfo.SIM_uses_sticky = useSticky;
785 <  //fInfo.SIM_uses_sticky = 0;
786 <  fInfo.SIM_uses_charges = useCharges;
787 <  fInfo.SIM_uses_dipoles = useDipoles;
788 <  //fInfo.SIM_uses_dipoles = 0;
789 <  fInfo.SIM_uses_RF = useReactionField;
790 <  //fInfo.SIM_uses_RF = 0;
791 <  fInfo.SIM_uses_GB = useGB;
792 <  fInfo.SIM_uses_EAM = useEAM;
781 >  void SimInfo::setupSimVariables() {
782 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
783 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
784 >    calcBoxDipole_ = false;
785 >    if ( simParams_->haveAccumulateBoxDipole() )
786 >      if ( simParams_->getAccumulateBoxDipole() ) {
787 >        calcBoxDipole_ = true;      
788 >      }
789 >    
790 >    set<AtomType*>::iterator i;
791 >    set<AtomType*> atomTypes;
792 >    atomTypes = getSimulatedAtomTypes();    
793 >    int usesElectrostatic = 0;
794 >    int usesMetallic = 0;
795 >    int usesDirectional = 0;
796 >    int usesFluctuatingCharges =  0;
797 >    //loop over all of the atom types
798 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
799 >      usesElectrostatic |= (*i)->isElectrostatic();
800 >      usesMetallic |= (*i)->isMetal();
801 >      usesDirectional |= (*i)->isDirectional();
802 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
803 >    }
804 >    
805 > #ifdef IS_MPI    
806 >    int temp;
807 >    temp = usesDirectional;
808 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
809 >    
810 >    temp = usesMetallic;
811 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
812 >    
813 >    temp = usesElectrostatic;
814 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
815  
816 <  n_exclude = excludes->getSize();
817 <  excl = excludes->getFortranArray();
450 <  
451 < #ifdef IS_MPI
452 <  n_global = mpiSim->getNAtomsGlobal();
816 >    temp = usesFluctuatingCharges;
817 >    MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
818   #else
454  n_global = n_atoms;
455 #endif
456  
457  isError = 0;
458  
459  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
460  //it may not be a good idea to pass the address of first element in vector
461  //since c++ standard does not require vector to be stored continuously in meomory
462  //Most of the compilers will organize the memory of vector continuously
463  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
464                  &nGlobalExcludes, globalExcludes, molMembershipArray,
465                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
819  
820 <  if( isError ){
820 >    usesDirectionalAtoms_ = usesDirectional;
821 >    usesMetallicAtoms_ = usesMetallic;
822 >    usesElectrostaticAtoms_ = usesElectrostatic;
823 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
824 >
825 > #endif
826      
827 <    sprintf( painCave.errMsg,
828 <             "There was an error setting the simulation information in fortran.\n" );
829 <    painCave.isFatal = 1;
472 <    painCave.severity = OOPSE_ERROR;
473 <    simError();
827 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
828 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
829 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
830    }
475  
476 #ifdef IS_MPI
477  sprintf( checkPointMsg,
478           "succesfully sent the simulation information to fortran.\n");
479  MPIcheckPoint();
480 #endif // is_mpi
481  
482  this->ndf = this->getNDF();
483  this->ndfRaw = this->getNDFraw();
484  this->ndfTrans = this->getNDFtranslational();
485 }
831  
487 void SimInfo::setDefaultRcut( double theRcut ){
488  
489  haveRcut = 1;
490  rCut = theRcut;
491  rList = rCut + 1.0;
492  
493  notifyFortranCutoffs( &rCut, &rSw, &rList );
494 }
832  
833 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
833 >  vector<int> SimInfo::getGlobalAtomIndices() {
834 >    SimInfo::MoleculeIterator mi;
835 >    Molecule* mol;
836 >    Molecule::AtomIterator ai;
837 >    Atom* atom;
838  
839 <  rSw = theRsw;
499 <  setDefaultRcut( theRcut );
500 < }
501 <
502 <
503 < void SimInfo::checkCutOffs( void ){
504 <  
505 <  if( boxIsInit ){
839 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
840      
841 <    //we need to check cutOffs against the box
842 <    
843 <    if( rCut > maxCutoff ){
844 <      sprintf( painCave.errMsg,
845 <               "cutoffRadius is too large for the current periodic box.\n"
846 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
847 <               "\tThis is larger than half of at least one of the\n"
514 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
515 <               "\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n"
518 <               "\t[ %G %G %G ]\n",
519 <               rCut, currentTime,
520 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
521 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
522 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
523 <      painCave.severity = OOPSE_ERROR;
524 <      painCave.isFatal = 1;
525 <      simError();
526 <    }    
527 <  } else {
528 <    // initialize this stuff before using it, OK?
529 <    sprintf( painCave.errMsg,
530 <             "Trying to check cutoffs without a box.\n"
531 <             "\tOOPSE should have better programmers than that.\n" );
532 <    painCave.severity = OOPSE_ERROR;
533 <    painCave.isFatal = 1;
534 <    simError();      
841 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
842 >      
843 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
844 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
845 >      }
846 >    }
847 >    return GlobalAtomIndices;
848    }
536  
537 }
849  
539 void SimInfo::addProperty(GenericData* prop){
850  
851 <  map<string, GenericData*>::iterator result;
852 <  result = properties.find(prop->getID());
853 <  
854 <  //we can't simply use  properties[prop->getID()] = prop,
855 <  //it will cause memory leak if we already contain a propery which has the same name of prop
856 <  
857 <  if(result != properties.end()){
851 >  vector<int> SimInfo::getGlobalGroupIndices() {
852 >    SimInfo::MoleculeIterator mi;
853 >    Molecule* mol;
854 >    Molecule::CutoffGroupIterator ci;
855 >    CutoffGroup* cg;
856 >
857 >    vector<int> GlobalGroupIndices;
858      
859 <    delete (*result).second;
550 <    (*result).second = prop;
859 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
860        
861 +      //local index of cutoff group is trivial, it only depends on the
862 +      //order of travesing
863 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
864 +           cg = mol->nextCutoffGroup(ci)) {
865 +        GlobalGroupIndices.push_back(cg->getGlobalIndex());
866 +      }        
867 +    }
868 +    return GlobalGroupIndices;
869    }
553  else{
870  
555    properties[prop->getID()] = prop;
871  
872 <  }
872 >  void SimInfo::prepareTopology() {
873 >    int nExclude, nOneTwo, nOneThree, nOneFour;
874 >
875 >    //calculate mass ratio of cutoff group
876 >    SimInfo::MoleculeIterator mi;
877 >    Molecule* mol;
878 >    Molecule::CutoffGroupIterator ci;
879 >    CutoffGroup* cg;
880 >    Molecule::AtomIterator ai;
881 >    Atom* atom;
882 >    RealType totalMass;
883 >
884 >    /**
885 >     * The mass factor is the relative mass of an atom to the total
886 >     * mass of the cutoff group it belongs to.  By default, all atoms
887 >     * are their own cutoff groups, and therefore have mass factors of
888 >     * 1.  We need some special handling for massless atoms, which
889 >     * will be treated as carrying the entire mass of the cutoff
890 >     * group.
891 >     */
892 >    massFactors_.clear();
893 >    massFactors_.resize(getNAtoms(), 1.0);
894      
895 < }
895 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
896 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
897 >           cg = mol->nextCutoffGroup(ci)) {
898  
899 < GenericData* SimInfo::getProperty(const string& propName){
900 <
901 <  map<string, GenericData*>::iterator result;
902 <  
903 <  //string lowerCaseName = ();
904 <  
905 <  result = properties.find(propName);
906 <  
907 <  if(result != properties.end())
908 <    return (*result).second;  
571 <  else  
572 <    return NULL;  
573 < }
899 >        totalMass = cg->getMass();
900 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
901 >          // Check for massless groups - set mfact to 1 if true
902 >          if (totalMass != 0)
903 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
904 >          else
905 >            massFactors_[atom->getLocalIndex()] = 1.0;
906 >        }
907 >      }      
908 >    }
909  
910 +    // Build the identArray_
911  
912 < void SimInfo::getFortranGroupArrays(SimInfo* info,
913 <                                    vector<int>& FglobalGroupMembership,
914 <                                    vector<double>& mfact){
915 <  
916 <  Molecule* myMols;
917 <  Atom** myAtoms;
918 <  int numAtom;
919 <  double mtot;
920 <  int numMol;
585 <  int numCutoffGroups;
586 <  CutoffGroup* myCutoffGroup;
587 <  vector<CutoffGroup*>::iterator iterCutoff;
588 <  Atom* cutoffAtom;
589 <  vector<Atom*>::iterator iterAtom;
590 <  int atomIndex;
591 <  double totalMass;
592 <  
593 <  mfact.clear();
594 <  FglobalGroupMembership.clear();
595 <  
912 >    identArray_.clear();
913 >    identArray_.reserve(getNAtoms());    
914 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
915 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
916 >        identArray_.push_back(atom->getIdent());
917 >      }
918 >    }    
919 >    
920 >    //scan topology
921  
922 <  // Fix the silly fortran indexing problem
922 >    nExclude = excludedInteractions_.getSize();
923 >    nOneTwo = oneTwoInteractions_.getSize();
924 >    nOneThree = oneThreeInteractions_.getSize();
925 >    nOneFour = oneFourInteractions_.getSize();
926 >
927 >    int* excludeList = excludedInteractions_.getPairList();
928 >    int* oneTwoList = oneTwoInteractions_.getPairList();
929 >    int* oneThreeList = oneThreeInteractions_.getPairList();
930 >    int* oneFourList = oneFourInteractions_.getPairList();
931 >
932 >    topologyDone_ = true;
933 >  }
934 >
935 >  void SimInfo::addProperty(GenericData* genData) {
936 >    properties_.addProperty(genData);  
937 >  }
938 >
939 >  void SimInfo::removeProperty(const string& propName) {
940 >    properties_.removeProperty(propName);  
941 >  }
942 >
943 >  void SimInfo::clearProperties() {
944 >    properties_.clearProperties();
945 >  }
946 >
947 >  vector<string> SimInfo::getPropertyNames() {
948 >    return properties_.getPropertyNames();  
949 >  }
950 >      
951 >  vector<GenericData*> SimInfo::getProperties() {
952 >    return properties_.getProperties();
953 >  }
954 >
955 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
956 >    return properties_.getPropertyByName(propName);
957 >  }
958 >
959 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
960 >    if (sman_ == sman) {
961 >      return;
962 >    }    
963 >    delete sman_;
964 >    sman_ = sman;
965 >
966 >    Molecule* mol;
967 >    RigidBody* rb;
968 >    Atom* atom;
969 >    CutoffGroup* cg;
970 >    SimInfo::MoleculeIterator mi;
971 >    Molecule::RigidBodyIterator rbIter;
972 >    Molecule::AtomIterator atomIter;
973 >    Molecule::CutoffGroupIterator cgIter;
974 >
975 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
976 >        
977 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
978 >        atom->setSnapshotManager(sman_);
979 >      }
980 >        
981 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
982 >        rb->setSnapshotManager(sman_);
983 >      }
984 >
985 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
986 >        cg->setSnapshotManager(sman_);
987 >      }
988 >    }    
989 >    
990 >  }
991 >
992 >  Vector3d SimInfo::getComVel(){
993 >    SimInfo::MoleculeIterator i;
994 >    Molecule* mol;
995 >
996 >    Vector3d comVel(0.0);
997 >    RealType totalMass = 0.0;
998 >    
999 >
1000 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1001 >      RealType mass = mol->getMass();
1002 >      totalMass += mass;
1003 >      comVel += mass * mol->getComVel();
1004 >    }  
1005 >
1006   #ifdef IS_MPI
1007 <  numAtom = mpiSim->getNAtomsGlobal();
1008 < #else
1009 <  numAtom = n_atoms;
1007 >    RealType tmpMass = totalMass;
1008 >    Vector3d tmpComVel(comVel);    
1009 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1010 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1011   #endif
603  for (int i = 0; i < numAtom; i++)
604    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
605  
1012  
1013 <  myMols = info->molecules;
608 <  numMol = info->n_mol;
609 <  for(int i  = 0; i < numMol; i++){
610 <    numCutoffGroups = myMols[i].getNCutoffGroups();
611 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
612 <        myCutoffGroup != NULL;
613 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
1013 >    comVel /= totalMass;
1014  
1015 <      totalMass = myCutoffGroup->getMass();
1015 >    return comVel;
1016 >  }
1017 >
1018 >  Vector3d SimInfo::getCom(){
1019 >    SimInfo::MoleculeIterator i;
1020 >    Molecule* mol;
1021 >
1022 >    Vector3d com(0.0);
1023 >    RealType totalMass = 0.0;
1024 >    
1025 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1026 >      RealType mass = mol->getMass();
1027 >      totalMass += mass;
1028 >      com += mass * mol->getCom();
1029 >    }  
1030 >
1031 > #ifdef IS_MPI
1032 >    RealType tmpMass = totalMass;
1033 >    Vector3d tmpCom(com);    
1034 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1035 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1036 > #endif
1037 >
1038 >    com /= totalMass;
1039 >
1040 >    return com;
1041 >
1042 >  }        
1043 >
1044 >  ostream& operator <<(ostream& o, SimInfo& info) {
1045 >
1046 >    return o;
1047 >  }
1048 >  
1049 >  
1050 >   /*
1051 >   Returns center of mass and center of mass velocity in one function call.
1052 >   */
1053 >  
1054 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1055 >      SimInfo::MoleculeIterator i;
1056 >      Molecule* mol;
1057        
1058 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
1059 <          cutoffAtom != NULL;
1060 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
1061 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
1058 >    
1059 >      RealType totalMass = 0.0;
1060 >    
1061 >
1062 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1063 >         RealType mass = mol->getMass();
1064 >         totalMass += mass;
1065 >         com += mass * mol->getCom();
1066 >         comVel += mass * mol->getComVel();          
1067        }  
1068 +      
1069 + #ifdef IS_MPI
1070 +      RealType tmpMass = totalMass;
1071 +      Vector3d tmpCom(com);  
1072 +      Vector3d tmpComVel(comVel);
1073 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1074 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1075 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1076 + #endif
1077 +      
1078 +      com /= totalMass;
1079 +      comVel /= totalMass;
1080 +   }        
1081 +  
1082 +   /*
1083 +   Return intertia tensor for entire system and angular momentum Vector.
1084 +
1085 +
1086 +       [  Ixx -Ixy  -Ixz ]
1087 +    J =| -Iyx  Iyy  -Iyz |
1088 +       [ -Izx -Iyz   Izz ]
1089 +    */
1090 +
1091 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1092 +      
1093 +
1094 +      RealType xx = 0.0;
1095 +      RealType yy = 0.0;
1096 +      RealType zz = 0.0;
1097 +      RealType xy = 0.0;
1098 +      RealType xz = 0.0;
1099 +      RealType yz = 0.0;
1100 +      Vector3d com(0.0);
1101 +      Vector3d comVel(0.0);
1102 +      
1103 +      getComAll(com, comVel);
1104 +      
1105 +      SimInfo::MoleculeIterator i;
1106 +      Molecule* mol;
1107 +      
1108 +      Vector3d thisq(0.0);
1109 +      Vector3d thisv(0.0);
1110 +
1111 +      RealType thisMass = 0.0;
1112 +    
1113 +      
1114 +      
1115 +  
1116 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1117 +        
1118 +         thisq = mol->getCom()-com;
1119 +         thisv = mol->getComVel()-comVel;
1120 +         thisMass = mol->getMass();
1121 +         // Compute moment of intertia coefficients.
1122 +         xx += thisq[0]*thisq[0]*thisMass;
1123 +         yy += thisq[1]*thisq[1]*thisMass;
1124 +         zz += thisq[2]*thisq[2]*thisMass;
1125 +        
1126 +         // compute products of intertia
1127 +         xy += thisq[0]*thisq[1]*thisMass;
1128 +         xz += thisq[0]*thisq[2]*thisMass;
1129 +         yz += thisq[1]*thisq[2]*thisMass;
1130 +            
1131 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1132 +            
1133 +      }  
1134 +      
1135 +      
1136 +      inertiaTensor(0,0) = yy + zz;
1137 +      inertiaTensor(0,1) = -xy;
1138 +      inertiaTensor(0,2) = -xz;
1139 +      inertiaTensor(1,0) = -xy;
1140 +      inertiaTensor(1,1) = xx + zz;
1141 +      inertiaTensor(1,2) = -yz;
1142 +      inertiaTensor(2,0) = -xz;
1143 +      inertiaTensor(2,1) = -yz;
1144 +      inertiaTensor(2,2) = xx + yy;
1145 +      
1146 + #ifdef IS_MPI
1147 +      Mat3x3d tmpI(inertiaTensor);
1148 +      Vector3d tmpAngMom;
1149 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1150 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1151 + #endif
1152 +              
1153 +      return;
1154 +   }
1155 +
1156 +   //Returns the angular momentum of the system
1157 +   Vector3d SimInfo::getAngularMomentum(){
1158 +      
1159 +      Vector3d com(0.0);
1160 +      Vector3d comVel(0.0);
1161 +      Vector3d angularMomentum(0.0);
1162 +      
1163 +      getComAll(com,comVel);
1164 +      
1165 +      SimInfo::MoleculeIterator i;
1166 +      Molecule* mol;
1167 +      
1168 +      Vector3d thisr(0.0);
1169 +      Vector3d thisp(0.0);
1170 +      
1171 +      RealType thisMass;
1172 +      
1173 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1174 +        thisMass = mol->getMass();
1175 +        thisr = mol->getCom()-com;
1176 +        thisp = (mol->getComVel()-comVel)*thisMass;
1177 +        
1178 +        angularMomentum += cross( thisr, thisp );
1179 +        
1180 +      }  
1181 +      
1182 + #ifdef IS_MPI
1183 +      Vector3d tmpAngMom;
1184 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1185 + #endif
1186 +      
1187 +      return angularMomentum;
1188 +   }
1189 +  
1190 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1191 +    return IOIndexToIntegrableObject.at(index);
1192 +  }
1193 +  
1194 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1195 +    IOIndexToIntegrableObject= v;
1196 +  }
1197 +
1198 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1199 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1200 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1201 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1202 +  */
1203 +  void SimInfo::getGyrationalVolume(RealType &volume){
1204 +    Mat3x3d intTensor;
1205 +    RealType det;
1206 +    Vector3d dummyAngMom;
1207 +    RealType sysconstants;
1208 +    RealType geomCnst;
1209 +
1210 +    geomCnst = 3.0/2.0;
1211 +    /* Get the inertial tensor and angular momentum for free*/
1212 +    getInertiaTensor(intTensor,dummyAngMom);
1213 +    
1214 +    det = intTensor.determinant();
1215 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1216 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
1217 +    return;
1218 +  }
1219 +
1220 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1221 +    Mat3x3d intTensor;
1222 +    Vector3d dummyAngMom;
1223 +    RealType sysconstants;
1224 +    RealType geomCnst;
1225 +
1226 +    geomCnst = 3.0/2.0;
1227 +    /* Get the inertial tensor and angular momentum for free*/
1228 +    getInertiaTensor(intTensor,dummyAngMom);
1229 +    
1230 +    detI = intTensor.determinant();
1231 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1232 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
1233 +    return;
1234 +  }
1235 + /*
1236 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1237 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1238 +      sdByGlobalIndex_ = v;
1239      }
1240 +
1241 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1242 +      //assert(index < nAtoms_ + nRigidBodies_);
1243 +      return sdByGlobalIndex_.at(index);
1244 +    }  
1245 + */  
1246 +  int SimInfo::getNGlobalConstraints() {
1247 +    int nGlobalConstraints;
1248 + #ifdef IS_MPI
1249 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1250 +                  MPI_COMM_WORLD);    
1251 + #else
1252 +    nGlobalConstraints =  nConstraints_;
1253 + #endif
1254 +    return nGlobalConstraints;
1255    }
1256  
1257 < }
1257 > }//end namespace OpenMD
1258 >

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 124 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1750 by gezelter, Thu Jun 7 12:53:46 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines