48 |
|
|
49 |
|
#include <algorithm> |
50 |
|
#include <set> |
51 |
+ |
#include <map> |
52 |
|
|
53 |
|
#include "brains/SimInfo.hpp" |
54 |
|
#include "math/Vector3.hpp" |
55 |
|
#include "primitives/Molecule.hpp" |
56 |
+ |
#include "primitives/StuntDouble.hpp" |
57 |
+ |
#include "UseTheForce/fCutoffPolicy.h" |
58 |
+ |
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
59 |
+ |
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
60 |
+ |
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
61 |
|
#include "UseTheForce/doForces_interface.h" |
62 |
< |
#include "UseTheForce/notifyCutoffs_interface.h" |
62 |
> |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
63 |
> |
#include "UseTheForce/DarkSide/electrostatic_interface.h" |
64 |
> |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
65 |
|
#include "utils/MemoryUtils.hpp" |
66 |
|
#include "utils/simError.h" |
67 |
|
#include "selection/SelectionManager.hpp" |
68 |
+ |
#include "io/ForceFieldOptions.hpp" |
69 |
+ |
#include "UseTheForce/ForceField.hpp" |
70 |
|
|
71 |
+ |
|
72 |
|
#ifdef IS_MPI |
73 |
|
#include "UseTheForce/mpiComponentPlan.h" |
74 |
|
#include "UseTheForce/DarkSide/simParallel_interface.h" |
75 |
|
#endif |
76 |
|
|
77 |
|
namespace oopse { |
78 |
+ |
std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { |
79 |
+ |
std::map<int, std::set<int> >::iterator i = container.find(index); |
80 |
+ |
std::set<int> result; |
81 |
+ |
if (i != container.end()) { |
82 |
+ |
result = i->second; |
83 |
+ |
} |
84 |
|
|
85 |
< |
SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, |
86 |
< |
ForceField* ff, Globals* simParams) : |
87 |
< |
stamps_(stamps), forceField_(ff), simParams_(simParams), |
88 |
< |
ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
85 |
> |
return result; |
86 |
> |
} |
87 |
> |
|
88 |
> |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
89 |
> |
forceField_(ff), simParams_(simParams), |
90 |
> |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
91 |
|
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
92 |
|
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
93 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
94 |
|
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
95 |
< |
sman_(NULL), fortranInitialized_(false) { |
95 |
> |
sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false), |
96 |
> |
useAtomicVirial_(true) { |
97 |
|
|
78 |
– |
|
79 |
– |
std::vector<std::pair<MoleculeStamp*, int> >::iterator i; |
98 |
|
MoleculeStamp* molStamp; |
99 |
|
int nMolWithSameStamp; |
100 |
|
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
101 |
< |
int nGroups = 0; //total cutoff groups defined in meta-data file |
101 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
102 |
|
CutoffGroupStamp* cgStamp; |
103 |
|
RigidBodyStamp* rbStamp; |
104 |
|
int nRigidAtoms = 0; |
105 |
< |
|
106 |
< |
for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { |
107 |
< |
molStamp = i->first; |
108 |
< |
nMolWithSameStamp = i->second; |
105 |
> |
std::vector<Component*> components = simParams->getComponents(); |
106 |
> |
|
107 |
> |
for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
108 |
> |
molStamp = (*i)->getMoleculeStamp(); |
109 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
110 |
|
|
111 |
|
addMoleculeStamp(molStamp, nMolWithSameStamp); |
112 |
|
|
113 |
|
//calculate atoms in molecules |
114 |
|
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
115 |
|
|
97 |
– |
|
116 |
|
//calculate atoms in cutoff groups |
117 |
|
int nAtomsInGroups = 0; |
118 |
|
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
119 |
|
|
120 |
|
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
121 |
< |
cgStamp = molStamp->getCutoffGroup(j); |
121 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
122 |
|
nAtomsInGroups += cgStamp->getNMembers(); |
123 |
|
} |
124 |
|
|
125 |
|
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
126 |
+ |
|
127 |
|
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
128 |
|
|
129 |
|
//calculate atoms in rigid bodies |
131 |
|
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
132 |
|
|
133 |
|
for (int j=0; j < nRigidBodiesInStamp; j++) { |
134 |
< |
rbStamp = molStamp->getRigidBody(j); |
134 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
135 |
|
nAtomsInRigidBodies += rbStamp->getNMembers(); |
136 |
|
} |
137 |
|
|
140 |
|
|
141 |
|
} |
142 |
|
|
143 |
< |
//every free atom (atom does not belong to cutoff groups) is a cutoff group |
144 |
< |
//therefore the total number of cutoff groups in the system is equal to |
145 |
< |
//the total number of atoms minus number of atoms belong to cutoff group defined in meta-data |
146 |
< |
//file plus the number of cutoff groups defined in meta-data file |
143 |
> |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
144 |
> |
//group therefore the total number of cutoff groups in the system is |
145 |
> |
//equal to the total number of atoms minus number of atoms belong to |
146 |
> |
//cutoff group defined in meta-data file plus the number of cutoff |
147 |
> |
//groups defined in meta-data file |
148 |
|
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
149 |
|
|
150 |
< |
//every free atom (atom does not belong to rigid bodies) is an integrable object |
151 |
< |
//therefore the total number of integrable objects in the system is equal to |
152 |
< |
//the total number of atoms minus number of atoms belong to rigid body defined in meta-data |
153 |
< |
//file plus the number of rigid bodies defined in meta-data file |
154 |
< |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_; |
155 |
< |
|
150 |
> |
//every free atom (atom does not belong to rigid bodies) is an |
151 |
> |
//integrable object therefore the total number of integrable objects |
152 |
> |
//in the system is equal to the total number of atoms minus number of |
153 |
> |
//atoms belong to rigid body defined in meta-data file plus the number |
154 |
> |
//of rigid bodies defined in meta-data file |
155 |
> |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
156 |
> |
+ nGlobalRigidBodies_; |
157 |
> |
|
158 |
|
nGlobalMols_ = molStampIds_.size(); |
159 |
|
|
160 |
|
#ifdef IS_MPI |
170 |
|
} |
171 |
|
molecules_.clear(); |
172 |
|
|
151 |
– |
delete stamps_; |
173 |
|
delete sman_; |
174 |
|
delete simParams_; |
175 |
|
delete forceField_; |
276 |
|
} |
277 |
|
} |
278 |
|
|
279 |
< |
}//end for (integrableObject) |
280 |
< |
}// end for (mol) |
279 |
> |
} |
280 |
> |
} |
281 |
|
|
282 |
|
// n_constraints is local, so subtract them on each processor |
283 |
|
ndf_local -= nConstraints_; |
294 |
|
|
295 |
|
} |
296 |
|
|
297 |
+ |
int SimInfo::getFdf() { |
298 |
+ |
#ifdef IS_MPI |
299 |
+ |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
300 |
+ |
#else |
301 |
+ |
fdf_ = fdf_local; |
302 |
+ |
#endif |
303 |
+ |
return fdf_; |
304 |
+ |
} |
305 |
+ |
|
306 |
|
void SimInfo::calcNdfRaw() { |
307 |
|
int ndfRaw_local; |
308 |
|
|
365 |
|
int b; |
366 |
|
int c; |
367 |
|
int d; |
368 |
+ |
|
369 |
+ |
std::map<int, std::set<int> > atomGroups; |
370 |
+ |
|
371 |
+ |
Molecule::RigidBodyIterator rbIter; |
372 |
+ |
RigidBody* rb; |
373 |
+ |
Molecule::IntegrableObjectIterator ii; |
374 |
+ |
StuntDouble* integrableObject; |
375 |
|
|
376 |
+ |
for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
377 |
+ |
integrableObject = mol->nextIntegrableObject(ii)) { |
378 |
+ |
|
379 |
+ |
if (integrableObject->isRigidBody()) { |
380 |
+ |
rb = static_cast<RigidBody*>(integrableObject); |
381 |
+ |
std::vector<Atom*> atoms = rb->getAtoms(); |
382 |
+ |
std::set<int> rigidAtoms; |
383 |
+ |
for (int i = 0; i < atoms.size(); ++i) { |
384 |
+ |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
385 |
+ |
} |
386 |
+ |
for (int i = 0; i < atoms.size(); ++i) { |
387 |
+ |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
388 |
+ |
} |
389 |
+ |
} else { |
390 |
+ |
std::set<int> oneAtomSet; |
391 |
+ |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
392 |
+ |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
393 |
+ |
} |
394 |
+ |
} |
395 |
+ |
|
396 |
+ |
|
397 |
+ |
|
398 |
|
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
399 |
|
a = bond->getAtomA()->getGlobalIndex(); |
400 |
|
b = bond->getAtomB()->getGlobalIndex(); |
405 |
|
a = bend->getAtomA()->getGlobalIndex(); |
406 |
|
b = bend->getAtomB()->getGlobalIndex(); |
407 |
|
c = bend->getAtomC()->getGlobalIndex(); |
408 |
+ |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
409 |
+ |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
410 |
+ |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
411 |
|
|
412 |
< |
exclude_.addPair(a, b); |
413 |
< |
exclude_.addPair(a, c); |
414 |
< |
exclude_.addPair(b, c); |
412 |
> |
exclude_.addPairs(rigidSetA, rigidSetB); |
413 |
> |
exclude_.addPairs(rigidSetA, rigidSetC); |
414 |
> |
exclude_.addPairs(rigidSetB, rigidSetC); |
415 |
> |
|
416 |
> |
//exclude_.addPair(a, b); |
417 |
> |
//exclude_.addPair(a, c); |
418 |
> |
//exclude_.addPair(b, c); |
419 |
|
} |
420 |
|
|
421 |
|
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
423 |
|
b = torsion->getAtomB()->getGlobalIndex(); |
424 |
|
c = torsion->getAtomC()->getGlobalIndex(); |
425 |
|
d = torsion->getAtomD()->getGlobalIndex(); |
426 |
+ |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
427 |
+ |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
428 |
+ |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
429 |
+ |
std::set<int> rigidSetD = getRigidSet(d, atomGroups); |
430 |
|
|
431 |
+ |
exclude_.addPairs(rigidSetA, rigidSetB); |
432 |
+ |
exclude_.addPairs(rigidSetA, rigidSetC); |
433 |
+ |
exclude_.addPairs(rigidSetA, rigidSetD); |
434 |
+ |
exclude_.addPairs(rigidSetB, rigidSetC); |
435 |
+ |
exclude_.addPairs(rigidSetB, rigidSetD); |
436 |
+ |
exclude_.addPairs(rigidSetC, rigidSetD); |
437 |
+ |
|
438 |
+ |
/* |
439 |
+ |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end()); |
440 |
+ |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end()); |
441 |
+ |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end()); |
442 |
+ |
exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end()); |
443 |
+ |
exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end()); |
444 |
+ |
exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end()); |
445 |
+ |
|
446 |
+ |
|
447 |
|
exclude_.addPair(a, b); |
448 |
|
exclude_.addPair(a, c); |
449 |
|
exclude_.addPair(a, d); |
450 |
|
exclude_.addPair(b, c); |
451 |
|
exclude_.addPair(b, d); |
452 |
|
exclude_.addPair(c, d); |
453 |
+ |
*/ |
454 |
|
} |
455 |
|
|
369 |
– |
Molecule::RigidBodyIterator rbIter; |
370 |
– |
RigidBody* rb; |
456 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
457 |
|
std::vector<Atom*> atoms = rb->getAtoms(); |
458 |
|
for (int i = 0; i < atoms.size() -1 ; ++i) { |
477 |
|
int b; |
478 |
|
int c; |
479 |
|
int d; |
480 |
+ |
|
481 |
+ |
std::map<int, std::set<int> > atomGroups; |
482 |
+ |
|
483 |
+ |
Molecule::RigidBodyIterator rbIter; |
484 |
+ |
RigidBody* rb; |
485 |
+ |
Molecule::IntegrableObjectIterator ii; |
486 |
+ |
StuntDouble* integrableObject; |
487 |
|
|
488 |
+ |
for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
489 |
+ |
integrableObject = mol->nextIntegrableObject(ii)) { |
490 |
+ |
|
491 |
+ |
if (integrableObject->isRigidBody()) { |
492 |
+ |
rb = static_cast<RigidBody*>(integrableObject); |
493 |
+ |
std::vector<Atom*> atoms = rb->getAtoms(); |
494 |
+ |
std::set<int> rigidAtoms; |
495 |
+ |
for (int i = 0; i < atoms.size(); ++i) { |
496 |
+ |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
497 |
+ |
} |
498 |
+ |
for (int i = 0; i < atoms.size(); ++i) { |
499 |
+ |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
500 |
+ |
} |
501 |
+ |
} else { |
502 |
+ |
std::set<int> oneAtomSet; |
503 |
+ |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
504 |
+ |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
505 |
+ |
} |
506 |
+ |
} |
507 |
+ |
|
508 |
+ |
|
509 |
|
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
510 |
|
a = bond->getAtomA()->getGlobalIndex(); |
511 |
|
b = bond->getAtomB()->getGlobalIndex(); |
517 |
|
b = bend->getAtomB()->getGlobalIndex(); |
518 |
|
c = bend->getAtomC()->getGlobalIndex(); |
519 |
|
|
520 |
< |
exclude_.removePair(a, b); |
521 |
< |
exclude_.removePair(a, c); |
522 |
< |
exclude_.removePair(b, c); |
520 |
> |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
521 |
> |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
522 |
> |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
523 |
> |
|
524 |
> |
exclude_.removePairs(rigidSetA, rigidSetB); |
525 |
> |
exclude_.removePairs(rigidSetA, rigidSetC); |
526 |
> |
exclude_.removePairs(rigidSetB, rigidSetC); |
527 |
> |
|
528 |
> |
//exclude_.removePair(a, b); |
529 |
> |
//exclude_.removePair(a, c); |
530 |
> |
//exclude_.removePair(b, c); |
531 |
|
} |
532 |
|
|
533 |
|
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
536 |
|
c = torsion->getAtomC()->getGlobalIndex(); |
537 |
|
d = torsion->getAtomD()->getGlobalIndex(); |
538 |
|
|
539 |
+ |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
540 |
+ |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
541 |
+ |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
542 |
+ |
std::set<int> rigidSetD = getRigidSet(d, atomGroups); |
543 |
+ |
|
544 |
+ |
exclude_.removePairs(rigidSetA, rigidSetB); |
545 |
+ |
exclude_.removePairs(rigidSetA, rigidSetC); |
546 |
+ |
exclude_.removePairs(rigidSetA, rigidSetD); |
547 |
+ |
exclude_.removePairs(rigidSetB, rigidSetC); |
548 |
+ |
exclude_.removePairs(rigidSetB, rigidSetD); |
549 |
+ |
exclude_.removePairs(rigidSetC, rigidSetD); |
550 |
+ |
|
551 |
+ |
/* |
552 |
+ |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end()); |
553 |
+ |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end()); |
554 |
+ |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end()); |
555 |
+ |
exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end()); |
556 |
+ |
exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end()); |
557 |
+ |
exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end()); |
558 |
+ |
|
559 |
+ |
|
560 |
|
exclude_.removePair(a, b); |
561 |
|
exclude_.removePair(a, c); |
562 |
|
exclude_.removePair(a, d); |
563 |
|
exclude_.removePair(b, c); |
564 |
|
exclude_.removePair(b, d); |
565 |
|
exclude_.removePair(c, d); |
566 |
+ |
*/ |
567 |
|
} |
568 |
|
|
426 |
– |
Molecule::RigidBodyIterator rbIter; |
427 |
– |
RigidBody* rb; |
569 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
570 |
|
std::vector<Atom*> atoms = rb->getAtoms(); |
571 |
|
for (int i = 0; i < atoms.size() -1 ; ++i) { |
603 |
|
//setup fortran force field |
604 |
|
/** @deprecate */ |
605 |
|
int isError = 0; |
606 |
< |
initFortranFF( &fInfo_.SIM_uses_RF, &fInfo_.SIM_uses_UW, |
607 |
< |
&fInfo_.SIM_uses_DW, &isError ); |
606 |
> |
|
607 |
> |
setupCutoff(); |
608 |
> |
|
609 |
> |
setupElectrostaticSummationMethod( isError ); |
610 |
> |
setupSwitchingFunction(); |
611 |
> |
setupAccumulateBoxDipole(); |
612 |
> |
|
613 |
|
if(isError){ |
614 |
|
sprintf( painCave.errMsg, |
615 |
|
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
616 |
|
painCave.isFatal = 1; |
617 |
|
simError(); |
618 |
|
} |
473 |
– |
|
474 |
– |
|
475 |
– |
setupCutoff(); |
619 |
|
|
620 |
|
calcNdf(); |
621 |
|
calcNdfRaw(); |
650 |
|
int useLennardJones = 0; |
651 |
|
int useElectrostatic = 0; |
652 |
|
int useEAM = 0; |
653 |
+ |
int useSC = 0; |
654 |
|
int useCharge = 0; |
655 |
|
int useDirectional = 0; |
656 |
|
int useDipole = 0; |
662 |
|
int useDirectionalAtom = 0; |
663 |
|
int useElectrostatics = 0; |
664 |
|
//usePBC and useRF are from simParams |
665 |
< |
int usePBC = simParams_->getPBC(); |
666 |
< |
int useRF = simParams_->getUseRF(); |
667 |
< |
int useUW = simParams_->getUseUndampedWolf(); |
668 |
< |
int useDW = simParams_->getUseDampedWolf(); |
665 |
> |
int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
666 |
> |
int useRF; |
667 |
> |
int useSF; |
668 |
> |
int useSP; |
669 |
> |
int useBoxDipole; |
670 |
|
|
671 |
+ |
std::string myMethod; |
672 |
+ |
|
673 |
+ |
// set the useRF logical |
674 |
+ |
useRF = 0; |
675 |
+ |
useSF = 0; |
676 |
+ |
useSP = 0; |
677 |
+ |
|
678 |
+ |
|
679 |
+ |
if (simParams_->haveElectrostaticSummationMethod()) { |
680 |
+ |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
681 |
+ |
toUpper(myMethod); |
682 |
+ |
if (myMethod == "REACTION_FIELD"){ |
683 |
+ |
useRF = 1; |
684 |
+ |
} else if (myMethod == "SHIFTED_FORCE"){ |
685 |
+ |
useSF = 1; |
686 |
+ |
} else if (myMethod == "SHIFTED_POTENTIAL"){ |
687 |
+ |
useSP = 1; |
688 |
+ |
} |
689 |
+ |
} |
690 |
+ |
|
691 |
+ |
if (simParams_->haveAccumulateBoxDipole()) |
692 |
+ |
if (simParams_->getAccumulateBoxDipole()) |
693 |
+ |
useBoxDipole = 1; |
694 |
+ |
|
695 |
+ |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
696 |
+ |
|
697 |
|
//loop over all of the atom types |
698 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
699 |
|
useLennardJones |= (*i)->isLennardJones(); |
700 |
|
useElectrostatic |= (*i)->isElectrostatic(); |
701 |
|
useEAM |= (*i)->isEAM(); |
702 |
+ |
useSC |= (*i)->isSC(); |
703 |
|
useCharge |= (*i)->isCharge(); |
704 |
|
useDirectional |= (*i)->isDirectional(); |
705 |
|
useDipole |= (*i)->isDipole(); |
750 |
|
temp = useEAM; |
751 |
|
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
752 |
|
|
753 |
+ |
temp = useSC; |
754 |
+ |
MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
755 |
+ |
|
756 |
|
temp = useShape; |
757 |
|
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
758 |
|
|
762 |
|
temp = useRF; |
763 |
|
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
764 |
|
|
765 |
< |
temp = useUW; |
766 |
< |
MPI_Allreduce(&temp, &useUW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
765 |
> |
temp = useSF; |
766 |
> |
MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
767 |
|
|
768 |
< |
temp = useDW; |
769 |
< |
MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
770 |
< |
|
768 |
> |
temp = useSP; |
769 |
> |
MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
770 |
> |
|
771 |
> |
temp = useBoxDipole; |
772 |
> |
MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
773 |
> |
|
774 |
> |
temp = useAtomicVirial_; |
775 |
> |
MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
776 |
> |
|
777 |
|
#endif |
778 |
|
|
779 |
|
fInfo_.SIM_uses_PBC = usePBC; |
786 |
|
fInfo_.SIM_uses_StickyPower = useStickyPower; |
787 |
|
fInfo_.SIM_uses_GayBerne = useGayBerne; |
788 |
|
fInfo_.SIM_uses_EAM = useEAM; |
789 |
+ |
fInfo_.SIM_uses_SC = useSC; |
790 |
|
fInfo_.SIM_uses_Shapes = useShape; |
791 |
|
fInfo_.SIM_uses_FLARB = useFLARB; |
792 |
|
fInfo_.SIM_uses_RF = useRF; |
793 |
< |
fInfo_.SIM_uses_UW = useUW; |
794 |
< |
fInfo_.SIM_uses_DW = useDW; |
795 |
< |
|
796 |
< |
if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) { |
615 |
< |
|
616 |
< |
if (simParams_->haveDielectric()) { |
617 |
< |
fInfo_.dielect = simParams_->getDielectric(); |
618 |
< |
} else { |
619 |
< |
sprintf(painCave.errMsg, |
620 |
< |
"SimSetup Error: No Dielectric constant was set.\n" |
621 |
< |
"\tYou are trying to use Reaction Field without" |
622 |
< |
"\tsetting a dielectric constant!\n"); |
623 |
< |
painCave.isFatal = 1; |
624 |
< |
simError(); |
625 |
< |
} |
626 |
< |
|
627 |
< |
} else { |
628 |
< |
fInfo_.dielect = 0.0; |
629 |
< |
} |
630 |
< |
|
793 |
> |
fInfo_.SIM_uses_SF = useSF; |
794 |
> |
fInfo_.SIM_uses_SP = useSP; |
795 |
> |
fInfo_.SIM_uses_BoxDipole = useBoxDipole; |
796 |
> |
fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; |
797 |
|
} |
798 |
|
|
799 |
|
void SimInfo::setupFortranSim() { |
810 |
|
} |
811 |
|
|
812 |
|
//calculate mass ratio of cutoff group |
813 |
< |
std::vector<double> mfact; |
813 |
> |
std::vector<RealType> mfact; |
814 |
|
SimInfo::MoleculeIterator mi; |
815 |
|
Molecule* mol; |
816 |
|
Molecule::CutoffGroupIterator ci; |
817 |
|
CutoffGroup* cg; |
818 |
|
Molecule::AtomIterator ai; |
819 |
|
Atom* atom; |
820 |
< |
double totalMass; |
820 |
> |
RealType totalMass; |
821 |
|
|
822 |
|
//to avoid memory reallocation, reserve enough space for mfact |
823 |
|
mfact.reserve(getNCutoffGroups()); |
827 |
|
|
828 |
|
totalMass = cg->getMass(); |
829 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
830 |
< |
mfact.push_back(atom->getMass()/totalMass); |
830 |
> |
// Check for massless groups - set mfact to 1 if true |
831 |
> |
if (totalMass != 0) |
832 |
> |
mfact.push_back(atom->getMass()/totalMass); |
833 |
> |
else |
834 |
> |
mfact.push_back( 1.0 ); |
835 |
|
} |
836 |
|
|
837 |
|
} |
878 |
|
"succesfully sent the simulation information to fortran.\n"); |
879 |
|
MPIcheckPoint(); |
880 |
|
#endif // is_mpi |
881 |
+ |
|
882 |
+ |
// Setup number of neighbors in neighbor list if present |
883 |
+ |
if (simParams_->haveNeighborListNeighbors()) { |
884 |
+ |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
885 |
+ |
setNeighbors(&nlistNeighbors); |
886 |
+ |
} |
887 |
+ |
|
888 |
+ |
|
889 |
|
} |
890 |
|
|
891 |
|
|
948 |
|
|
949 |
|
#endif |
950 |
|
|
951 |
< |
double SimInfo::calcMaxCutoffRadius() { |
951 |
> |
void SimInfo::setupCutoff() { |
952 |
> |
|
953 |
> |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
954 |
|
|
955 |
+ |
// Check the cutoff policy |
956 |
+ |
int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
957 |
|
|
958 |
< |
std::set<AtomType*> atomTypes; |
959 |
< |
std::set<AtomType*>::iterator i; |
960 |
< |
std::vector<double> cutoffRadius; |
958 |
> |
// Set LJ shifting bools to false |
959 |
> |
ljsp_ = false; |
960 |
> |
ljsf_ = false; |
961 |
|
|
962 |
< |
//get the unique atom types |
963 |
< |
atomTypes = getUniqueAtomTypes(); |
964 |
< |
|
965 |
< |
//query the max cutoff radius among these atom types |
966 |
< |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
785 |
< |
cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i)); |
962 |
> |
std::string myPolicy; |
963 |
> |
if (forceFieldOptions_.haveCutoffPolicy()){ |
964 |
> |
myPolicy = forceFieldOptions_.getCutoffPolicy(); |
965 |
> |
}else if (simParams_->haveCutoffPolicy()) { |
966 |
> |
myPolicy = simParams_->getCutoffPolicy(); |
967 |
|
} |
968 |
|
|
969 |
< |
double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end())); |
970 |
< |
#ifdef IS_MPI |
971 |
< |
//pick the max cutoff radius among the processors |
972 |
< |
#endif |
969 |
> |
if (!myPolicy.empty()){ |
970 |
> |
toUpper(myPolicy); |
971 |
> |
if (myPolicy == "MIX") { |
972 |
> |
cp = MIX_CUTOFF_POLICY; |
973 |
> |
} else { |
974 |
> |
if (myPolicy == "MAX") { |
975 |
> |
cp = MAX_CUTOFF_POLICY; |
976 |
> |
} else { |
977 |
> |
if (myPolicy == "TRADITIONAL") { |
978 |
> |
cp = TRADITIONAL_CUTOFF_POLICY; |
979 |
> |
} else { |
980 |
> |
// throw error |
981 |
> |
sprintf( painCave.errMsg, |
982 |
> |
"SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
983 |
> |
painCave.isFatal = 1; |
984 |
> |
simError(); |
985 |
> |
} |
986 |
> |
} |
987 |
> |
} |
988 |
> |
} |
989 |
> |
notifyFortranCutoffPolicy(&cp); |
990 |
|
|
991 |
< |
return maxCutoffRadius; |
992 |
< |
} |
993 |
< |
|
994 |
< |
void SimInfo::getCutoff(double& rcut, double& rsw) { |
995 |
< |
|
996 |
< |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
991 |
> |
// Check the Skin Thickness for neighborlists |
992 |
> |
RealType skin; |
993 |
> |
if (simParams_->haveSkinThickness()) { |
994 |
> |
skin = simParams_->getSkinThickness(); |
995 |
> |
notifyFortranSkinThickness(&skin); |
996 |
> |
} |
997 |
|
|
998 |
< |
if (!simParams_->haveRcut()){ |
999 |
< |
sprintf(painCave.errMsg, |
998 |
> |
// Check if the cutoff was set explicitly: |
999 |
> |
if (simParams_->haveCutoffRadius()) { |
1000 |
> |
rcut_ = simParams_->getCutoffRadius(); |
1001 |
> |
if (simParams_->haveSwitchingRadius()) { |
1002 |
> |
rsw_ = simParams_->getSwitchingRadius(); |
1003 |
> |
} else { |
1004 |
> |
if (fInfo_.SIM_uses_Charges | |
1005 |
> |
fInfo_.SIM_uses_Dipoles | |
1006 |
> |
fInfo_.SIM_uses_RF) { |
1007 |
> |
|
1008 |
> |
rsw_ = 0.85 * rcut_; |
1009 |
> |
sprintf(painCave.errMsg, |
1010 |
> |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1011 |
> |
"\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n" |
1012 |
> |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1013 |
> |
painCave.isFatal = 0; |
1014 |
> |
simError(); |
1015 |
> |
} else { |
1016 |
> |
rsw_ = rcut_; |
1017 |
> |
sprintf(painCave.errMsg, |
1018 |
> |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1019 |
> |
"\tOOPSE will use the same value as the cutoffRadius.\n" |
1020 |
> |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1021 |
> |
painCave.isFatal = 0; |
1022 |
> |
simError(); |
1023 |
> |
} |
1024 |
> |
} |
1025 |
> |
|
1026 |
> |
if (simParams_->haveElectrostaticSummationMethod()) { |
1027 |
> |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1028 |
> |
toUpper(myMethod); |
1029 |
> |
|
1030 |
> |
if (myMethod == "SHIFTED_POTENTIAL") { |
1031 |
> |
ljsp_ = true; |
1032 |
> |
} else if (myMethod == "SHIFTED_FORCE") { |
1033 |
> |
ljsf_ = true; |
1034 |
> |
} |
1035 |
> |
} |
1036 |
> |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1037 |
> |
|
1038 |
> |
} else { |
1039 |
> |
|
1040 |
> |
// For electrostatic atoms, we'll assume a large safe value: |
1041 |
> |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
1042 |
> |
sprintf(painCave.errMsg, |
1043 |
|
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
1044 |
|
"\tOOPSE will use a default value of 15.0 angstroms" |
1045 |
|
"\tfor the cutoffRadius.\n"); |
1046 |
< |
painCave.isFatal = 0; |
1046 |
> |
painCave.isFatal = 0; |
1047 |
|
simError(); |
1048 |
< |
rcut = 15.0; |
1049 |
< |
} else{ |
1050 |
< |
rcut = simParams_->getRcut(); |
1051 |
< |
} |
1048 |
> |
rcut_ = 15.0; |
1049 |
> |
|
1050 |
> |
if (simParams_->haveElectrostaticSummationMethod()) { |
1051 |
> |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1052 |
> |
toUpper(myMethod); |
1053 |
> |
|
1054 |
> |
// For the time being, we're tethering the LJ shifted behavior to the |
1055 |
> |
// electrostaticSummationMethod keyword options |
1056 |
> |
if (myMethod == "SHIFTED_POTENTIAL") { |
1057 |
> |
ljsp_ = true; |
1058 |
> |
} else if (myMethod == "SHIFTED_FORCE") { |
1059 |
> |
ljsf_ = true; |
1060 |
> |
} |
1061 |
> |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1062 |
> |
if (simParams_->haveSwitchingRadius()){ |
1063 |
> |
sprintf(painCave.errMsg, |
1064 |
> |
"SimInfo Warning: A value was set for the switchingRadius\n" |
1065 |
> |
"\teven though the electrostaticSummationMethod was\n" |
1066 |
> |
"\tset to %s\n", myMethod.c_str()); |
1067 |
> |
painCave.isFatal = 1; |
1068 |
> |
simError(); |
1069 |
> |
} |
1070 |
> |
} |
1071 |
> |
} |
1072 |
> |
|
1073 |
> |
if (simParams_->haveSwitchingRadius()){ |
1074 |
> |
rsw_ = simParams_->getSwitchingRadius(); |
1075 |
> |
} else { |
1076 |
> |
sprintf(painCave.errMsg, |
1077 |
> |
"SimCreator Warning: No value was set for switchingRadius.\n" |
1078 |
> |
"\tOOPSE will use a default value of\n" |
1079 |
> |
"\t0.85 * cutoffRadius for the switchingRadius\n"); |
1080 |
> |
painCave.isFatal = 0; |
1081 |
> |
simError(); |
1082 |
> |
rsw_ = 0.85 * rcut_; |
1083 |
> |
} |
1084 |
|
|
1085 |
< |
if (!simParams_->haveRsw()){ |
813 |
< |
sprintf(painCave.errMsg, |
814 |
< |
"SimCreator Warning: No value was set for switchingRadius.\n" |
815 |
< |
"\tOOPSE will use a default value of\n" |
816 |
< |
"\t0.95 * cutoffRadius for the switchingRadius\n"); |
817 |
< |
painCave.isFatal = 0; |
818 |
< |
simError(); |
819 |
< |
rsw = 0.95 * rcut; |
820 |
< |
} else{ |
821 |
< |
rsw = simParams_->getRsw(); |
822 |
< |
} |
1085 |
> |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1086 |
|
|
824 |
– |
} else { |
825 |
– |
// if charge, dipole or reaction field is not used and the cutofff radius is not specified in |
826 |
– |
//meta-data file, the maximum cutoff radius calculated from forcefiled will be used |
827 |
– |
|
828 |
– |
if (simParams_->haveRcut()) { |
829 |
– |
rcut = simParams_->getRcut(); |
1087 |
|
} else { |
1088 |
< |
//set cutoff radius to the maximum cutoff radius based on atom types in the whole system |
1089 |
< |
rcut = calcMaxCutoffRadius(); |
1088 |
> |
// We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1089 |
> |
// We'll punt and let fortran figure out the cutoffs later. |
1090 |
> |
|
1091 |
> |
notifyFortranYouAreOnYourOwn(); |
1092 |
> |
|
1093 |
|
} |
1094 |
+ |
} |
1095 |
+ |
} |
1096 |
|
|
1097 |
< |
if (simParams_->haveRsw()) { |
1098 |
< |
rsw = simParams_->getRsw(); |
1097 |
> |
void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
1098 |
> |
|
1099 |
> |
int errorOut; |
1100 |
> |
int esm = NONE; |
1101 |
> |
int sm = UNDAMPED; |
1102 |
> |
RealType alphaVal; |
1103 |
> |
RealType dielectric; |
1104 |
> |
|
1105 |
> |
errorOut = isError; |
1106 |
> |
|
1107 |
> |
if (simParams_->haveElectrostaticSummationMethod()) { |
1108 |
> |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1109 |
> |
toUpper(myMethod); |
1110 |
> |
if (myMethod == "NONE") { |
1111 |
> |
esm = NONE; |
1112 |
|
} else { |
1113 |
< |
rsw = rcut; |
1113 |
> |
if (myMethod == "SWITCHING_FUNCTION") { |
1114 |
> |
esm = SWITCHING_FUNCTION; |
1115 |
> |
} else { |
1116 |
> |
if (myMethod == "SHIFTED_POTENTIAL") { |
1117 |
> |
esm = SHIFTED_POTENTIAL; |
1118 |
> |
} else { |
1119 |
> |
if (myMethod == "SHIFTED_FORCE") { |
1120 |
> |
esm = SHIFTED_FORCE; |
1121 |
> |
} else { |
1122 |
> |
if (myMethod == "REACTION_FIELD") { |
1123 |
> |
esm = REACTION_FIELD; |
1124 |
> |
dielectric = simParams_->getDielectric(); |
1125 |
> |
if (!simParams_->haveDielectric()) { |
1126 |
> |
// throw warning |
1127 |
> |
sprintf( painCave.errMsg, |
1128 |
> |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
1129 |
> |
"\tA default value of %f will be used for the dielectric.\n", dielectric); |
1130 |
> |
painCave.isFatal = 0; |
1131 |
> |
simError(); |
1132 |
> |
} |
1133 |
> |
} else { |
1134 |
> |
// throw error |
1135 |
> |
sprintf( painCave.errMsg, |
1136 |
> |
"SimInfo error: Unknown electrostaticSummationMethod.\n" |
1137 |
> |
"\t(Input file specified %s .)\n" |
1138 |
> |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
1139 |
> |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
1140 |
> |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
1141 |
> |
painCave.isFatal = 1; |
1142 |
> |
simError(); |
1143 |
> |
} |
1144 |
> |
} |
1145 |
> |
} |
1146 |
> |
} |
1147 |
|
} |
1148 |
+ |
} |
1149 |
|
|
1150 |
+ |
if (simParams_->haveElectrostaticScreeningMethod()) { |
1151 |
+ |
std::string myScreen = simParams_->getElectrostaticScreeningMethod(); |
1152 |
+ |
toUpper(myScreen); |
1153 |
+ |
if (myScreen == "UNDAMPED") { |
1154 |
+ |
sm = UNDAMPED; |
1155 |
+ |
} else { |
1156 |
+ |
if (myScreen == "DAMPED") { |
1157 |
+ |
sm = DAMPED; |
1158 |
+ |
if (!simParams_->haveDampingAlpha()) { |
1159 |
+ |
// first set a cutoff dependent alpha value |
1160 |
+ |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
1161 |
+ |
alphaVal = 0.5125 - rcut_* 0.025; |
1162 |
+ |
// for values rcut > 20.5, alpha is zero |
1163 |
+ |
if (alphaVal < 0) alphaVal = 0; |
1164 |
+ |
|
1165 |
+ |
// throw warning |
1166 |
+ |
sprintf( painCave.errMsg, |
1167 |
+ |
"SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1168 |
+ |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); |
1169 |
+ |
painCave.isFatal = 0; |
1170 |
+ |
simError(); |
1171 |
+ |
} else { |
1172 |
+ |
alphaVal = simParams_->getDampingAlpha(); |
1173 |
+ |
} |
1174 |
+ |
|
1175 |
+ |
} else { |
1176 |
+ |
// throw error |
1177 |
+ |
sprintf( painCave.errMsg, |
1178 |
+ |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
1179 |
+ |
"\t(Input file specified %s .)\n" |
1180 |
+ |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
1181 |
+ |
"or \"damped\".\n", myScreen.c_str() ); |
1182 |
+ |
painCave.isFatal = 1; |
1183 |
+ |
simError(); |
1184 |
+ |
} |
1185 |
+ |
} |
1186 |
|
} |
1187 |
+ |
|
1188 |
+ |
// let's pass some summation method variables to fortran |
1189 |
+ |
setElectrostaticSummationMethod( &esm ); |
1190 |
+ |
setFortranElectrostaticMethod( &esm ); |
1191 |
+ |
setScreeningMethod( &sm ); |
1192 |
+ |
setDampingAlpha( &alphaVal ); |
1193 |
+ |
setReactionFieldDielectric( &dielectric ); |
1194 |
+ |
initFortranFF( &errorOut ); |
1195 |
|
} |
1196 |
|
|
1197 |
< |
void SimInfo::setupCutoff() { |
1198 |
< |
getCutoff(rcut_, rsw_); |
846 |
< |
double rnblist = rcut_ + 1; // skin of neighbor list |
1197 |
> |
void SimInfo::setupSwitchingFunction() { |
1198 |
> |
int ft = CUBIC; |
1199 |
|
|
1200 |
< |
//Pass these cutoff radius etc. to fortran. This function should be called once and only once |
1201 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &rnblist); |
1200 |
> |
if (simParams_->haveSwitchingFunctionType()) { |
1201 |
> |
std::string funcType = simParams_->getSwitchingFunctionType(); |
1202 |
> |
toUpper(funcType); |
1203 |
> |
if (funcType == "CUBIC") { |
1204 |
> |
ft = CUBIC; |
1205 |
> |
} else { |
1206 |
> |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1207 |
> |
ft = FIFTH_ORDER_POLY; |
1208 |
> |
} else { |
1209 |
> |
// throw error |
1210 |
> |
sprintf( painCave.errMsg, |
1211 |
> |
"SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1212 |
> |
painCave.isFatal = 1; |
1213 |
> |
simError(); |
1214 |
> |
} |
1215 |
> |
} |
1216 |
> |
} |
1217 |
> |
|
1218 |
> |
// send switching function notification to switcheroo |
1219 |
> |
setFunctionType(&ft); |
1220 |
> |
|
1221 |
|
} |
1222 |
|
|
1223 |
+ |
void SimInfo::setupAccumulateBoxDipole() { |
1224 |
+ |
|
1225 |
+ |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1226 |
+ |
if ( simParams_->haveAccumulateBoxDipole() ) |
1227 |
+ |
if ( simParams_->getAccumulateBoxDipole() ) { |
1228 |
+ |
setAccumulateBoxDipole(); |
1229 |
+ |
calcBoxDipole_ = true; |
1230 |
+ |
} |
1231 |
+ |
|
1232 |
+ |
} |
1233 |
+ |
|
1234 |
|
void SimInfo::addProperty(GenericData* genData) { |
1235 |
|
properties_.addProperty(genData); |
1236 |
|
} |
1287 |
|
Molecule* mol; |
1288 |
|
|
1289 |
|
Vector3d comVel(0.0); |
1290 |
< |
double totalMass = 0.0; |
1290 |
> |
RealType totalMass = 0.0; |
1291 |
|
|
1292 |
|
|
1293 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1294 |
< |
double mass = mol->getMass(); |
1294 |
> |
RealType mass = mol->getMass(); |
1295 |
|
totalMass += mass; |
1296 |
|
comVel += mass * mol->getComVel(); |
1297 |
|
} |
1298 |
|
|
1299 |
|
#ifdef IS_MPI |
1300 |
< |
double tmpMass = totalMass; |
1300 |
> |
RealType tmpMass = totalMass; |
1301 |
|
Vector3d tmpComVel(comVel); |
1302 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1303 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1302 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1303 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1304 |
|
#endif |
1305 |
|
|
1306 |
|
comVel /= totalMass; |
1313 |
|
Molecule* mol; |
1314 |
|
|
1315 |
|
Vector3d com(0.0); |
1316 |
< |
double totalMass = 0.0; |
1316 |
> |
RealType totalMass = 0.0; |
1317 |
|
|
1318 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1319 |
< |
double mass = mol->getMass(); |
1319 |
> |
RealType mass = mol->getMass(); |
1320 |
|
totalMass += mass; |
1321 |
|
com += mass * mol->getCom(); |
1322 |
|
} |
1323 |
|
|
1324 |
|
#ifdef IS_MPI |
1325 |
< |
double tmpMass = totalMass; |
1325 |
> |
RealType tmpMass = totalMass; |
1326 |
|
Vector3d tmpCom(com); |
1327 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1328 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1327 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1328 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1329 |
|
#endif |
1330 |
|
|
1331 |
|
com /= totalMass; |
1349 |
|
Molecule* mol; |
1350 |
|
|
1351 |
|
|
1352 |
< |
double totalMass = 0.0; |
1352 |
> |
RealType totalMass = 0.0; |
1353 |
|
|
1354 |
|
|
1355 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1356 |
< |
double mass = mol->getMass(); |
1356 |
> |
RealType mass = mol->getMass(); |
1357 |
|
totalMass += mass; |
1358 |
|
com += mass * mol->getCom(); |
1359 |
|
comVel += mass * mol->getComVel(); |
1360 |
|
} |
1361 |
|
|
1362 |
|
#ifdef IS_MPI |
1363 |
< |
double tmpMass = totalMass; |
1363 |
> |
RealType tmpMass = totalMass; |
1364 |
|
Vector3d tmpCom(com); |
1365 |
|
Vector3d tmpComVel(comVel); |
1366 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1367 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1368 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1366 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1367 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1368 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1369 |
|
#endif |
1370 |
|
|
1371 |
|
com /= totalMass; |
1384 |
|
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1385 |
|
|
1386 |
|
|
1387 |
< |
double xx = 0.0; |
1388 |
< |
double yy = 0.0; |
1389 |
< |
double zz = 0.0; |
1390 |
< |
double xy = 0.0; |
1391 |
< |
double xz = 0.0; |
1392 |
< |
double yz = 0.0; |
1387 |
> |
RealType xx = 0.0; |
1388 |
> |
RealType yy = 0.0; |
1389 |
> |
RealType zz = 0.0; |
1390 |
> |
RealType xy = 0.0; |
1391 |
> |
RealType xz = 0.0; |
1392 |
> |
RealType yz = 0.0; |
1393 |
|
Vector3d com(0.0); |
1394 |
|
Vector3d comVel(0.0); |
1395 |
|
|
1401 |
|
Vector3d thisq(0.0); |
1402 |
|
Vector3d thisv(0.0); |
1403 |
|
|
1404 |
< |
double thisMass = 0.0; |
1404 |
> |
RealType thisMass = 0.0; |
1405 |
|
|
1406 |
|
|
1407 |
|
|
1439 |
|
#ifdef IS_MPI |
1440 |
|
Mat3x3d tmpI(inertiaTensor); |
1441 |
|
Vector3d tmpAngMom; |
1442 |
< |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1443 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1442 |
> |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1443 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1444 |
|
#endif |
1445 |
|
|
1446 |
|
return; |
1461 |
|
Vector3d thisr(0.0); |
1462 |
|
Vector3d thisp(0.0); |
1463 |
|
|
1464 |
< |
double thisMass; |
1464 |
> |
RealType thisMass; |
1465 |
|
|
1466 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1467 |
|
thisMass = mol->getMass(); |
1474 |
|
|
1475 |
|
#ifdef IS_MPI |
1476 |
|
Vector3d tmpAngMom; |
1477 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1477 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1478 |
|
#endif |
1479 |
|
|
1480 |
|
return angularMomentum; |
1481 |
|
} |
1482 |
|
|
1483 |
< |
|
1483 |
> |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1484 |
> |
return IOIndexToIntegrableObject.at(index); |
1485 |
> |
} |
1486 |
> |
|
1487 |
> |
void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { |
1488 |
> |
IOIndexToIntegrableObject= v; |
1489 |
> |
} |
1490 |
> |
|
1491 |
> |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1492 |
> |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1493 |
> |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1494 |
> |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1495 |
> |
*/ |
1496 |
> |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1497 |
> |
Mat3x3d intTensor; |
1498 |
> |
RealType det; |
1499 |
> |
Vector3d dummyAngMom; |
1500 |
> |
RealType sysconstants; |
1501 |
> |
RealType geomCnst; |
1502 |
> |
|
1503 |
> |
geomCnst = 3.0/2.0; |
1504 |
> |
/* Get the inertial tensor and angular momentum for free*/ |
1505 |
> |
getInertiaTensor(intTensor,dummyAngMom); |
1506 |
> |
|
1507 |
> |
det = intTensor.determinant(); |
1508 |
> |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1509 |
> |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1510 |
> |
return; |
1511 |
> |
} |
1512 |
> |
|
1513 |
> |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1514 |
> |
Mat3x3d intTensor; |
1515 |
> |
Vector3d dummyAngMom; |
1516 |
> |
RealType sysconstants; |
1517 |
> |
RealType geomCnst; |
1518 |
> |
|
1519 |
> |
geomCnst = 3.0/2.0; |
1520 |
> |
/* Get the inertial tensor and angular momentum for free*/ |
1521 |
> |
getInertiaTensor(intTensor,dummyAngMom); |
1522 |
> |
|
1523 |
> |
detI = intTensor.determinant(); |
1524 |
> |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1525 |
> |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1526 |
> |
return; |
1527 |
> |
} |
1528 |
> |
/* |
1529 |
> |
void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { |
1530 |
> |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1531 |
> |
sdByGlobalIndex_ = v; |
1532 |
> |
} |
1533 |
> |
|
1534 |
> |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1535 |
> |
//assert(index < nAtoms_ + nRigidBodies_); |
1536 |
> |
return sdByGlobalIndex_.at(index); |
1537 |
> |
} |
1538 |
> |
*/ |
1539 |
|
}//end namespace oopse |
1540 |
|
|